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Abstract 

Background:  Noninvasive diagnostic markers that are capable of distinguishing patients with colorectal cancer 
(CRC) from healthy individuals or patients with other cancer types are lacking. We report the discovery and validation 
of a panel of methylation-based markers that specifically detect CRC.

Methods:  This was a large-scale discovery study based on publicly available datasets coupled with a validation study 
where multiple types of specimens from six cohorts with CRC, other cancer types, and healthy individuals were used 
to identify and validate the tissue-specific methylation patterns of CRC and assess their diagnostic performance.

Results:  In the discovery and validation cohort (N = 9307), ten hypermethylated CpG sites located in three genes, 
C20orf194, LIFR, and ZNF304, were identified as CRC-specific markers. Different analyses have suggested that these 
CpG sites are CRC-specific hypermethylated and play a role in transcriptional silencing of corresponding genes. 
A random forest model based on ten markers achieved high accuracy rates between 85.7 and 94.3% and AUCs 
between 0.941 and 0.970 in predicting CRC in three independent datasets and a low misclassification rate in ten other 
cancer types. In the in-house validation cohort (N = 354), these markers achieved consistent discriminative capabili-
ties. In the cfDNA pilot cohort (N = 14), hypermethylation of these markers was observed in cfDNA samples from CRC 
patients. In the cfDNA validation cohort (N = 155), the two-gene panel yielded a sensitivity of 69.5%, specificity of 
91.7%, and AUC of 0.806.

Conclusions:  Hypermethylation of the ten CpG sites is a CRC-specific alteration in tissue and has the potential use as 
a noninvasive cfDNA marker to diagnose CRC.
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Background
Colorectal cancer (CRC) is third in terms of incidence 
and second in terms of mortality of cancer worldwide 
based on GLOBOCAN 2020 estimates [1]. Although 
CRC incidence has been declining, it is still the main 
cause of cancer deaths. The 5-year survival rate of CRC 
decreases significantly from 90% during the localized 
stage to 14% in the advanced stage. Therefore, early 
detection is critical to provide curable treatment and 
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ultimately increase CRC survival rates. Multiple accepted 
methods are available for CRC screening, including 
stool-based tests and endoscopy. In addition, there is suf-
ficient evidence that the use of these tests reduces CRC 
incidence and mortality, and the benefits outweigh the 
harms [2]. However, participant rates for these tests are 
low [3]. Even among the noninvasive tests of annual fecal 
occult blood tests, only 64.6% of patients who received a 
mailed reminder in the intervention group returned stool 
cards [4]. However, evidence suggests that 97% of par-
ticipants who refused a colonoscopy were more likely to 
accept a noninvasive screening test, where 83% of them 
chose a blood test in one study [5].

DNA methylation changes are hallmarks of various 
cancers, highlighted by the hypermethylation of the pro-
moter region silencing the transcription of tumor sup-
pressor genes [6]. The use of DNA methylation-based 
biomarkers has been considered to be an ideal method 
for cancer diagnostics because of the high stability of 
DNA methylation over time and the easy detection using 
existing techniques (i.e., methylation-specific PCR) [7]. 
Recent studies have highlighted the potential advan-
tages of cell-free DNA (cfDNA) methylation markers in 
CRC diagnosis [8]. For instance, in one study the sensi-
tivity and specificity of cfDNA MYO1-G methylation 
were 84.3% and 94.5%, respectively [9]. However, only 
the methylation of septin-9 (SEPT9) was translated into 
clinical application for screening colon cancer approved 
by the FDA in 2016, with variable values of sensitivity 
(58–95.6%) and specificity (69–97.1%) [7]. As a tumor 

suppressor gene, hypermethylation of SEPT9 was also 
found in the blood or tissues of other cancer type patients 
in addition to CRC, such as lung cancer, head and neck 
squamous cell cancer, and breast cancer [10–12], which 
could lead to a false positive diagnosis for other cancer 
types. As cancers originating from different tissue types 
may share similar methylation changes, methylation-
based markers for early cancer diagnosis should have tis-
sue-specific patterns [13]. Otherwise, it will influence the 
identification of the tissue origin of cancer and the selec-
tion of subsequent diagnostic methods. Hence, CRC-spe-
cific methylation markers are urgently needed.

In this study, we performed a genome-wide analysis to 
identify tissue-specific DNA methylation markers for the 
detection of CRC.

Methods
Study design
This study included six cohorts to discover and validate 
tissue-specific methylation markers of CRC (Fig.  1). 
Tissue-specific markers of CRC were initially discov-
ered by comparing genome-wide methylation data from 
the discovery cohort (N = 5805) and validated in large-
scale independent datasets from three validation cohorts 
(N = 3855). We further confirmed the hypermethyla-
tion of these markers in cfDNA samples of two cohorts 
(N = 160) using two PCR-based techniques. The details of 
the datasets are shown in Additional file 1: Table S1.

cfDNA pilot cohort
• Inhouse study
• 14 samples:

• CRC (cfDNA): Tumor: 9; Normal: 5
• Gene-specific methylation analysis: Targeted bisulfite sequencing
• 3 CRC-specific methylation CpG sites  were selected and validated

Discovery cohort
• TCGA & GEO
• 5805 samples:

• CRC (tissues): Tumor: 395; Normal: 45
• 10 other cancer types (tissues): Tumor: 4007; Normal: 518
• Healthy (blood leukocytes): Normal: 840

• Genome-wide methylation analysis: Infinium 450K
• 10 CRC-specific methylation CpG sites were discovered

Validation cohort 1
• GEO
• 2045 samples:

• CRC (tissues): Tumor: 231; Normal: 198
• 10 other cancer types (tissues): Tumor: 1297; Normal: 319

• Genome-wide methylation analysis: Infinium 450K
• 10 CRC-specific methylation CpG sites were validated

Validation cohort 2
• Cancer Cell Line Encyclopedia
• 1457 cell lines:

• 38 cancer types
• Genome-wide methylation analysis : RRBS
• 2 CRC-specific methylation genes were validated

cfDNA validation cohort
• Inhouse study
• 155 samples:

• CRC (cfDNA): Tumor: 95; Normal: 60
• Gene-specific methylation analysis: ddPCR
• 2 CRC-specific methylation genes were selected and validated

Validation cohort 3
• Inhouse study
• 353 samples:

• CRC (tissues): Tumor: 272; Normal: 23
• CRC (WBCs): Tumor: 29; Normal: 29

• Gene-specific methylation analysis: Targeted bisulfite sequencing
• 8 CRC-specific methylation CpG sites were selected and validated

Fig. 1  Overall workflow of this study
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Data source
The Cancer Genome Atlas (TCGA) for CRC and ten 
other types of primary solid cancer (bladder urothelial 
carcinoma [BLCA], breast invasive carcinoma [BRCA], 
esophageal carcinoma [ESCA], glioblastoma multiforme 
[GBM], head and neck squamous cell carcinoma [HNSC], 
kidney renal clear cell carcinoma [KIRC], liver hepatocel-
lular carcinoma [LIHC], lung adenocarcinoma [LUAD], 
lung squamous cell carcinoma [LUSC], and uterine cor-
pus endometrial carcinoma [UCEC]) data of Infinium 
HumanMethylation450 BeadChip® microarrays (Illu-
mina Inc., San Diego, CA, USA) were downloaded using 
the UCSC Xena Browser (https://​xena.​ucsc.​edu/), includ-
ing 395 primary CRC tissues, 45 matched adjacent nor-
mal tissues, and 4525 tissues of ten other cancer types. 
The methylation level of each CpG site is represented 
as the beta-value (β), which is the ratio of the methyla-
tion intensity and the overall intensity (sum of methyla-
tion intensity and unmethylated intensity) and ranges 
from 0 to 1. RNA-seq gene expression data for CRC 
were downloaded from TCGA (https://​portal.​gdc.​cancer.​
gov/) using the raw read count. Additionally, 20 meth-
ylation datasets were obtained from the Gene Expres-
sion Omnibus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​
geo/), involving 840 samples of blood leukocytes from 
normal individuals (GSE40279, GSE69270), 429 samples 
of tissues from CRC patients (GSE42752, GSE48684, 
and GSE101764), and 1616 samples of tissues from ten 
other cancer types (GSE66695, GSE69914, GSE52826, 
GSE79366, GSE36278, GSE60274, GSE123678, 
GSE38266, GSE61441, GSE54503, GSE39279, GSE67116, 
and GSE93589). Furthermore, DNA methylation and 
gene expression parallel sequencing data from 1457 can-
cer cell lines for 38 cancer types were obtained from the 
Cancer Cell Line Encyclopedia (CCLE, http://​www.​broad​
insti​tute.​org/​ccle/​home).

Differential analysis of DNA methylation and gene 
expression
Forty-five of the 395 CRC patients, who had both can-
cer and normal methylation profiles, were used for dif-
ferential methylation analysis. CpG sites with more than 
10% missing values were removed. The Bioconductor 
package ‘impute’ version 1.54.0 designed for imputa-
tion of microarray data was used to impute the missing 
data. Then, a paired t test was used to determine the 
differential methylation analysis, and the Benjamini‒
Hochberg procedure was used to calculate the false dis-
covery rate (FDR). Significant differentially methylated 
CpG sites were defined based on an FDR less than 0.05 
and an absolute value of differentially methylated levels 
(|Δβ|) greater than 0.2. The CpG sites were annotated 

to genomic regions according to the R package ‘Illumi-
naHumanMethylation450kanno.ilmn12.hg19’ version 
0.6.0, and annotation information of the first gene was 
used, while a CpG site was mapped to more than one 
gene. CpG sites from the X and Y chromosomes were 
removed. Of the 45 patients from the TCGA, 36 paired 
CRC and normal samples with expression data were 
used for differential expression analysis. The Biocon-
ductor package ‘TCGAbiolinks’ version 2.8.3 was used 
to identify differentially expressed genes using raw read 
counts. Genes with an FDR below 0.05 and an absolute 
value of log2-fold change (|log2FC|) higher than 1 were 
identified as differentially expressed genes.

Tissue‑specific methylation marker discovery
In the discovery cohort (N = 5805), tissue-specific 
methylation markers of CRC were identified based on 
the following process. First, 45 paired CRC and nor-
mal samples from TCGA were used to integrate pro-
moter methylation and gene expression to select 942 
hypermethylated CpG sites (Δβ > 0.20, and FDR < 0.05) 
of downregulated genes (log2FC < −1, and FDR < 0.05). 
Second, 395 CRC and 45 normal tissues were compared 
to select 942 CpG sites that were still significantly dif-
ferentially methylated (P < 0.05). Third, methylation 
levels were assessed in 840 samples of blood leukocytes 
from healthy individuals without CRC (GSE69270, 
GSE40279); 366 CpG sites whose average methylation 
levels were less than 0.1 were retained. Fourth, the 366 
remaining CpG sites were filtered against 4525 samples 
of ten other cancer types; 356 CpG sites with average 
methylation levels higher than 0.1 in any group of ten 
other cancer types from TCGA were excluded. The 
remaining 10 CpG sites were potential CRC-specific 
methylation-based markers.

Functional analysis
Considering the potential gene regulation function of 
these CpG sites, correlation analysis between the meth-
ylation of these CpG sites and their corresponding gene 
expression was performed using MEXPRESS (http://​
mexpr​ess.​be) to integrate and visualize gene expression, 
DNA methylation, and clinical data at the single-gene 
level in TCGA CRC data. Visualization of the correla-
tion between methylation levels of each selected CpG site 
and neighbor sites (comethylation) was generated by the 
R package ‘coMET’ version 1.10.2. Furthermore, DNA 
methylation and gene expression data of selected mark-
ers were analyzed from 38 cancer-type cell lines from the 
validation cohort 2 (N = 1457) to verify whether these 
genes were specifically methylated in CRC.

https://xena.ucsc.edu/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.broadinstitute.org/ccle/home
http://www.broadinstitute.org/ccle/home
http://mexpress.be
http://mexpress.be
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Tissue‑specific methylation marker validation
TCGA data of 45 paired CRC and normal samples were 
used as the training set. The TCGA CRC full data-
set with 395 CRC and 45 normal tissues was utilized as 
the internal validation set. Three independent datasets 
(GSE42752, GSE48684, and GSE101764) were utilized 
as the external validation sets. An optimized cutoff value 
for each CpG site at the maximal Youden’s index was cal-
culated. At this cutoff value, a confusion matrix for each 
CpG site was generated in the training set and validation 
sets to provide performance characteristics of sensitivity 
and specificity. Additionally, the misclassification rate of 
predicting CRC in non-CRC tumors and non-CRC nor-
mal samples from ten other cancer types was also cal-
culated at this cutoff value. To evaluate the diagnostic 
performance of the DNA methylation classifier, a random 
forest model using all selected CpG sites was built in the 
training set and applied to the validation set.

Comparison with commercial methylation markers
The performance of these markers in the tissue was com-
pared with three methylation-based biomarkers from 
three commercially available assays (the N-myc downreg-
ulated gene 4 [NDRG4], the bone morphogenetic protein 
3 [BMP3] biomarkers of Cologuard and the SEPT9 bio-
marker of Epi proColon and Epi proColon/ColoVantage). 
The methylation data of the CpG sites that were covered 
or surrounded by primer sequences of the three assays 
and other published articles were extracted [14–26].

Biospecimen sources
To validate the findings from publicly available datasets, 
we carried out diagnostic test evaluation in three cohorts: 
the validation cohort 3 from 272 CRC tissues, 23 adjacent 
normal tissues, 29 CRC white blood cell samples, and 29 
healthy control white blood cell samples; a cfDNA pilot 
cohort from 9 CRC cfDNA samples and 5 healthy control 
cfDNA samples; and a cfDNA validation cohort from 95 
CRC cfDNA samples and 60 healthy control cfDNA sam-
ples. All CRC samples were collected at Harbin Medical 
University Cancer Hospital, from diagnosed patients who 
underwent a colonoscopy before neoadjuvant chemo-
therapy. All healthy control samples were obtained from 
volunteers without CRC or colorectal adenoma who 
underwent colonoscopy. Informed consent was obtained 
from all study participants. The approval for the research 
on human subjects was obtained from the Medical Ethics 
Committee of Harbin Medical University.

DNA extraction and bisulfite conversion
The genomic DNA from tissues and white blood cells 
were extracted with the classic phenol‒chloroform 

procedure and the QIAamp DNA Blood Mini Kit (QIA-
GEN GmbH, Hilden, Germany) according to the manu-
facturer’s instructions. Samples of cfDNA were isolated 
from 4  mL of plasma using the QIAamp Circulating 
Nucleic Acid Kit (QIAGEN GmbH, Hilden, Germany) 
according to the recommended protocol. The DNA sam-
ples were bisulfite-converted with the EZ DNA Meth-
ylation-Gold™ Kit (Zymo Research, Irvine, CA, USA) 
according to the manufacturer’s protocol.

DNA methylation detection
We performed methylation analysis using two PCR-
based techniques for this study. We first developed and 
performed targeted bisulfite sequencing analysis in the 
validation cohort 3 (N = 354) and the cfDNA pilot cohort 
(N = 14). DNA methylation level was quantified using 
MethylTarget sequencing (Genesky Biotechnologies Inc., 
China). Briefly, methylation levels of the target regions 
were tested using a two-step PCR approach. Sequenc-
ing was performed on the Illumina HiSeq 2000 platform 
in 150  bp paired-end mode (Additional file  1: Supple-
mentary methods). In the cfDNA validation cohort 
(N = 155), the methylation levels of the selected mark-
ers were detected in cfDNA samples from CRC patients 
and healthy controls using droplet Digital PCR (ddPCR). 
The converted DNA was subjected to ddPCR using the 
designed primers and the optimized conditions on the 
QX200 ddPCR System (Additional file 1: Supplementary 
methods).

Statistical analysis
All statistical tests were two-sided, and a P value < 0.05 
was considered statistically significant unless otherwise 
specified. All analyses were conducted in the R version 
3.5.1. All the genomic coordinates corresponded to the 
human reference genome version GRCh37/hg19. The 
methylation levels of the two groups were compared by 
the Student’s t test or the paired t test. The correlation 
between the methylation level of the CpG sites and the 
corresponding gene expression level was assessed by the 
Pearson correlation coefficient. The comethylation at the 
adjacent CpG sites was analyzed using the Spearman cor-
relation. ROC curves were used to determine the optimal 
cutoff value for each candidate CpG site at the maxi-
mal Youden’s index. The random forest model was built 
using the R package ‘caret’ version 6.0-80. Sensitivity, 
specificity, accuracy, and AUC were used to evaluate the 
diagnostic performance of the individual CpG sites and 
models. A sample size of 46 participants for each group 
of CRC and healthy control was estimated to be able to 
provide a power of 80% in a pre-estimate AUC of 0.80 
and AUC with 95% confidence the degree of estimate 
about 0.10 [27].
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Results
Integrative analysis of DNA methylation and gene 
expression
With a threshold of |Δβ|> 0.20 and an FDR < 0.05, a total 
of 42,102 differentially methylated CpG sites were iden-
tified in the 45 paired TCGA CRC datasets, which were 
mapped to 7087 genes (Additional file  1: Fig. S1). The 
genomic location of the differentially methylated CpG 
sites was analyzed. Globally, we identified 19,183 hyper-
methylated CpG sites located in 2977 known genes and 
22,919 hypomethylated CpG sites associated with 5487 
known genes. By the intersection of the differential meth-
ylation and gene expression, a total of 1468 genes were 
differentially methylated and differentially expressed, 
where 264 downregulated genes had 942 hypermethyl-
ated CpG sites in the promoter region (Fig. 2).

Discovery of tissue‑specific methylation markers of CRC​
A total of 942 CpG sites were identified by integrative 
analysis of promoter methylation and gene expression, 
which were still significantly differentially methylated 
between the 395 CRC tissues and the 45 normal tissues 
(Fig. 3B). Then, 366 CpG sites were selected after remov-
ing 576 hypermethylated CpG sites (mean β > 0.1) in 840 
normal blood samples (Fig.  3C). Finally, ten CRC-spe-
cific CpG sites were obtained by removing hypermeth-
ylated CpG sites (mean β > 0.1) in 4525 samples of the 
ten other cancer types (Fig.  3D). The ten CRC-specific 
CpG sites were annotated to three genes (Additional 
file 1: Table S2): chromosome 20 open reading frame 194 
(C20orf194; cg04125300, cg15863924, and cg02893482), 

LIF receptor alpha (LIFR; cg18174928, cg12602374, 
and cg11841722), and zinc finger protein 304 (ZNF304; 
cg23250910, cg10157975, cg13788592, and cg21627760). 
These CpG sites in the same gene were located in neigh-
boring regions, and 9 out of 10 were located in CpG 
islands (CGIs).

Functional analysis of tissue‑specific methylation markers
With the underlying assumption that hypermethylated 
CpG sites in promoter CGIs can play a role in gene silenc-
ing, the correlation between DNA methylation and gene 
expression was investigated (Additional file  1: Figs. S2, 
S3, S4). All methylation of the ten CpG sites was signifi-
cantly negatively correlated with gene expression, with 
Pearson correlation coefficients (r) of − 0.214 to − 0.642. 
Furthermore, the Spearman correlation method was used 
to study the pattern of comethylation. The results showed 
a highly consistent methylation status of the selected 
CpG sites with neighboring CpG sites in the same pro-
moter region. The results from the CCLE support that 
the selected genes C20orf194 and ZNF304 (LIFR without 
data) were specifically hypermethylated and downregu-
lated in CRC cell lines compared to those of other cancer 
types (Additional file 1: Fig. S5).

Evaluation and validation of the performance 
of tissue‑specific methylation markers
The differences in methylation levels of the ten CpG sites 
between CRC samples and normal samples were similar 
in four different CRC datasets (Additional file 1: Table S3 
and Fig. S6). By using the optimal cutoff value for 
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individual CpG sites, the observed sensitivity of an indi-
vidual CpG for CRC detection ranged from 33.9 to 86.4% 
and the specificity ranged from 87.8 to 100% (Additional 
file 1: Table S4). To evaluate the combined performance 
of these hypermethylated CpG sites, 45 paired CRC tis-
sues and normal tissues from TCGA were used as a train-
ing dataset to build a random forest model. In the internal 
validation datasets, the accuracy rate was 93.6% (95% CI 
90.9–95.7%; Table 1) with an AUC value of 0.996 (Addi-
tional  file  1:  Fig.  S6). The random forest model using 

the ten CpG sites achieved high predictive performances 
in three external validation datasets (Table 1). The accu-
racy rates were more than 85%, with values of 85.7% 
(95% CI 74.6–93.3%) in GSE42752, 85.7% (95% CI 77.5–
91.8%) in GSE48684, and 94.3% (95% CI 90.7–96.8%) in 
GSE101764. The corresponding AUC values were above 
0.94 in all three datasets (Additional file 1:  Fig. S6). With 
this model, only 4.1% (187 of 4525) of samples from the 
ten other cancer types in TCGA were misclassified into 
the CRC group (Fig.  4), which was consistent with the 

Fig. 3  Discovery of specific methylation-based markers. A A process for identification of candidate DNA methylation-based markers of CRC. B 
Unsupervised hierarchical clustering of ten methylation-based markers selected for the diagnosis of CRC in the 45 TCGA paired CRC samples. C 
Unsupervised hierarchical clustering of ten methylation-based markers in 840 blood leukocytes of healthy individuals. D Unsupervised hierarchical 
clustering of ten methylation-based markers in 4525 tumor and normal tissues of ten other cancer types

Table 1  Confusion matrix of prediction performance of random forest model using 10 CRC-specific methylation CpG sites in 
distinguishing CRC from normal samples

Validation dataset TCGA​ GSE42752 GSE48684 GSE101764

Accuracy (95% CI) 0.936 (0.909, 0.957) 0.857 (0.746, 0.933) 0.857 (0.775, 0.918) 0.943 (0.907, 0.968)

Balanced accuracy 0.965 0.869 0.839 0.938

Sensitivity 0.929 0.909 0.922 0.902

Specificity 1.000 0.829 0.756 0.973

Kappa 0.728 0.701 0.693 0.882
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GEO datasets (misclassification rate = 6.9%, 111 of 1616; 
Additional file 1: Table S5).

Comparison with previously commercial methylation 
markers
Then, a comparison with three methylation-based 
biomarkers (NDRG4, BMP3 and SEPT9) of commer-
cially available assays was performed (Additional file  1: 
Table  S2). Compared with our selected CpG sites, indi-
vidual CpG sites from three commercial biomarkers had 
similar performance in discriminating CRC from normal 
colorectal samples (Additional file 1: Table S3, Table S4). 
However, poor performance was observed in predicting 
tumor and normal samples from the ten other cancer 
types (Fig.  4; Additional file  1: Table  S5) because these 
CpG sites had similar patterns between CRC and the ten 
other cancer types (Additional file  1: Fig. S6). The ran-
dom forest model using the 15 CpG sites of commercial 
methylation markers had a higher performance (accuracy 
rate: 98.4%) in the internal validation of the TCGA CRC 
dataset, while it achieved a lower performance (accuracy 
rate: 75.2–92.0%) in the three external validation datasets 

(Additional file 1: Table S6). Importantly, a large percent-
age of tumor and normal samples from the ten other 
cancer types in both TCGA (43.8%, 1980 of 4525; Fig. 4) 
and GEO (41.0%, 663 of 1616; Additional file 1: Table S5) 
were misclassified into the CRC group using the com-
mercial methylation markers.

Validation in samples of tissue and white blood cell 
in an in‑house study
To verify findings from public datasets, we performed 
targeted bisulfite sequencing analysis in tissues and white 
blood cells in the validation cohort 3 (Additional file  1: 
Fig. S7 and Table  S7). Differential methylation analysis 
of these markers (8 CpG sites in the LIFR and ZNF304 
genes were selected) showed that all 8 CpG sites were sig-
nificantly hypermethylated in 272 CRC tissues compared 
to 23 normal tissues (Fig.  5A). ROC analysis revealed 
that 8 CpG sites yielded AUC values of 0.645–0.896 to 
distinguish CRC tissues and normal tissues (Additional 
file  1: Fig. S8). By using the optimal cutoff value, the 
observed sensitivity and specificity of an individual CpG 
site ranged between 47.4 and 81.6% and 95.7 and 100.0%, 

Fig. 4  Comparison of tissue-specific methylation markers with previously commercial methylation markers. Heatmap shows misclassification rate 
of 10 CpG sites from our study and 15 CpG sites from three commercial biomarkers in distinguishing CRC samples from ten other cancer types in 
TCGA dataset. Numbers represent the misclassification rate of predicted CRC in non-CRC tumor (T) and non-CRC normal (N) samples
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respectively. Moreover, methylation levels of 8 CpG sites 
were very low in white blood cell samples from CRC 
patients (N = 29) and healthy controls (N = 29), consist-
ent with the findings from public datasets.

Validation in cfDNA samples
To test whether this tissue-specific methylation could be 
a noninvasive marker, we developed and applied targeted 
bisulfite sequencing analysis (3 CpG sites in the LIFR and 
ZNF304 genes were selected) in the cfDNA pilot cohort 
with 9 cfDNA samples from CRC patients and 5 cfDNA 
samples from healthy controls. The mean methylation 

value of 3 CpG sites was higher in the CRC patients than 
in the healthy controls (Fig.  5A; Additional file  1: Fig. 
S7). To further assess the clinical applications of these 
markers, we detected the methylation status of LIFR 
(Fig. 5B) and ZNF304 (Fig. 5C) in the cfDNA validation 
cohort with 95 cfDNA samples from CRC patients and 
60 cfDNA samples from healthy controls using ddPCR. 
We detected LIFR hypermethylation in 51 cfDNA sam-
ples from CRC patients and 4 healthy controls. ZNF304 
hypermethylation was observed in 51 CRC patients and 
1 healthy control. The two-gene panel yielded a sensitiv-
ity of 69.5% (66 of 95), a specificity of 91.7% (55 of 60), 

Fig. 5  Validation of specific methylation-based markers in in-house study. A Validation of the methylation markers using target bisulfite sequencing 
array in validation cohort 3 and cfDNA pilot cohort. Numbers represent average methylation levels of CpG sites in multiple specimens. B and C 
Validation of the methylation markers using Droplet Digital PCR in cfDNA validation cohort. **P < 0.05. D ROC curves for tissue-specific methylation 
markers in the cfDNA validation cohort
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and an AUC of 0.806 (Fig. 5D). The two-gene panel was 
more sensitive in advanced-stage CRC, with a sensitivity 
of 54.5% in early-stage CRC and 72.4% in advanced-stage 
CRC.

Discussion
cfDNA carries cancer-specific genetic and epigenetic 
aberrations and thus can be used as a noninvasive diag-
nostic marker for cancer [28]. Our proof-of-concept 
study demonstrated that it was feasible to discover CRC-
specific markers by genome-wide methylation analysis of 
multiple cancers coupled with validation using cfDNA 
samples. The current findings were limited by the lack of 
validation in cfDNA samples from other cancer types and 
colorectal adenoma.

A growing number of studies have examined cfDNA 
methylation as a potential diagnostic biomarker for can-
cers, including CRC, with the following strategies. The 
markers were discovered by differential methylation 
analysis between CRC tissues and normal tissues, and 
the diagnostic ability of cfDNA was further assessed. 
Although these strategies have identified numerous 
methylation-based markers with high sensitivity, the 
specificity of the tumor-derived signal is doubtful. These 
strategies run counter to the well-established principle of 
ctDNA methylation as a diagnostic marker in that can-
cers, including CRC, should have a unique pattern of 
DNA methylation. Previously, cfDNA methylation mark-
ers for CRC detection were limited by high noise signals 
from other cancer types. For example, our systematic 
analysis suggested that using SEPT9 for the detection of 
CRC was limited by high misclassification rates in other 
cancer types. Correspondingly, a study found plasma 
SEPT9 methylation in HNSCC patients [29]. In addition, 
94 of 98 patients with liver cancer tested positive by the 
SEPT9 array [30]. The performance of this array in distin-
guishing other diseases was limited because the positive 
rate was 17.28% (33 of 191) in subjects with nontumor 
chronic conditions and 41.62% (72 of 173) in subjects 
with non-CRC-related cancers [31]. Recently published 
studies have shown that unique DNA methylation altera-
tions can be found in a particular tissue and have used 
genome-wide methylation approaches in cfDNA to infer 
the contributions of different tissues [32–36]. Therefore, 
the use of tissue-specific methylation in cfDNA could 
be used to trace the tissue of origin from plasma DNA, 
which has the potential to be a diagnostic biomarker for 
various diseases, including cancers. However, a more 
cost-effective method is required for the use of tissue-
specific methylation patterns for the diagnosis of CRC; 
that is, a small number of diagnostic markers need to 
be identified for clinical translation. Using large public 
methylome databases, we present a strategy that searches 

for unique methylation markers derived from CRC by 
controlling for the methylation patterns of other cancer 
types. We also controlled the methylation levels of the 
markers in white blood cells, as the largest proportion of 
cfDNA originates from white blood cells. Our develop-
ment strategy ensured that the markers were highly spe-
cific for the detection of CRC. Importantly, we performed 
blood tests to assess tissue-specific methylation patterns 
in cfDNA using two cost-effective PCR-based technolo-
gies and found that a few markers could diagnose CRC 
with high specificity.

To the best of our knowledge, the ten CpG sites discov-
ered in our study have not been previously reported for 
the diagnosis of CRC. Only a few studies have reported 
that two corresponding genes, LIFR and ZNF304, are 
hypermethylated in CRC tissues or cell lines using dif-
ferent experimental methods. Cho YG et  al. observed a 
higher frequency (65%, 52 of 80) of promoter hypermeth-
ylation of LIFR in colon cancer samples than in matched 
normal tissues (5%, 4 of 80) and colon normal mucosa 
tissues (0%, 0 of 13) of noncancer patients using quanti-
tative methylation-specific PCR (qMSP) [37]. This study 
also found downregulation of both LIFR mRNA and pro-
tein expression in CRC tissues. Jeon K et  al. tested 46 
cancer cell lines using targeted bisulfite PCR sequenc-
ing involving the five cancer types of colon, biliary 
tract, liver, lung, and stomach and found that a CpG site 
(chr5: 38557143) in LIFR, which was located within two 
selected CpG sites of cg18174928 (chr5: 38557085) and 
cg12602374 (chr5: 38557162) in our studies, was heav-
ily methylated in colon cancer cells only but not in other 
cancer cell lines [38]. ZNF304 acts as a transcriptional 
regulator and plays a role in gene silencing. We found 
that ZNF304 was hypermethylated and downregulated in 
CRC tissues. This result is supported by a study reporting 
that ZNF304 was hypermethylated in CRC tissues using 
Infinium 27 K and was validated by MSP in CRC tissues, 
adjacent normal tissues, normal colon cells, and CRC cell 
lines [39]. The mRNA expression of ZNF304 was restored 
after demethylating treatment with 5-aza-2’-deoxycyti-
dine (5-aza-dC) and vincristine in CRC cells [39]. These 
studies enhanced the power of our analysis in identifying 
novel CRC-specific methylation markers.

Our study provides proof of concept for the utility of 
large-scale genome-wide methylation data from multiple 
cancer types for studying tissue-specific methylation for 
the diagnosis of CRC, and these findings were extended 
to noninvasive approaches. However, our study also 
has some limitations. First, the validation study was a 
single-center design with moderately sized cfDNA sam-
ples. Second, the sensitivities of these markers were not 
as high as expected, and in the future, we will optimize 
experimental conditions and build an analytic operating 
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procedure to improve and evaluate their diagnostic per-
formance in large and multiple cohorts. Third, although 
our study provides convincing evidence for the clinical 
feasibility of our methylation markers to specifically diag-
nose CRC, the specificity should be compared with that 
of commercial markers in the cfDNA validation cohort 
with different cancer types. Finally, our markers were 
hypermethylated in the tissue samples from colorectal 
adenoma patients (Additional file  1: Fig. S9); however, 
whether these markers can serve as noninvasive bio-
markers for colorectal adenomas needs to be evaluated.

Conclusions
In conclusion, using genome-wide methylation data and 
samples of tissues and cfDNA, we identified and vali-
dated ten tissue-specific methylation sites as noninva-
sive markers that could detect CRC with high levels of 
specificity.
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