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Attention is an important mechanism for young adults, whose lives largely involve interacting with media and performing
technology multitasking. Nevertheless, the existing studies related to attention are characterized by low accuracy and poor
attention levels in terms of attention monitoring and inefficiency during attention training. In this paper, we propose an improved
random forest- (IRF-) algorithm-based attention monitoring and training method with closed-loop neurofeedback. For attention
monitoring, an IRF classifier that uses grid search optimization andmultiple cross-validation to improvemonitoring accuracy and
performance is utilized, and five attention levels are proposed. For attention training, we develop three training modes with
neurofeedback corresponding to sustained attention, selective attention, and focus attention and apply a self-control method with
four indicators to validate the resulting training effect. An offline experiment based on the Personal EEG Concentration Tasks
dataset and an online experiment involving 10 young adults are conducted. +e results show that our proposed IRF-algorithm-
based attention monitoring approach achieves an average accuracy of 79.34%, thereby outperforming the current state-of-the-art
algorithms. Furthermore, when excluding familiarity with the game environment, statistically significant performance im-
provements (p< 0.05) are achieved by the 10 young adults after attention training, which demonstrates the effectiveness of the
proposed serious games. Our work involving the proposed method of attention monitoring and training proves to be reliable
and efficient.

1. Introduction

Attention can be characterized as a cognitive process in the
brain that selectively focuses on some part of the available
information [1]. Nevertheless, excessive media multitasking
poses a serious issue with respect to the attention function of
young adults, resulting in distraction and poor attention
control. +erefore, there is an increasing demand for at-
tention monitoring and training for young adults [2].

Numerous methods have been developed for attention
training, meditation [3], and computer-based exercises [4],
but these approaches may contribute to mental fatigue. In
recent years, several researchers have explored methods with
fewer side effects. For example, Putri et al. [5] proposed the
method of regular high-intensity circuit training (HICT),
which can improve attention function in young male adults.

In the same year, Luo and Zhang [2] conducted experiments
to validate that noninvasive tactile training has an excellent
effect on sustained attention in young adults. +e main
purpose of this paper is to investigate a method of attention
monitoring and training based on closed-loop neurofeed-
back. We use brain-computer interface (BCI) technology,
which utilizes recorded brain activity, primarily measured by
electroencephalography (EEG), to execute communications
between the brain and computers to manipulate the envi-
ronment in a manner that is compatible with the intentions
of humans [6]. Notably, EEG signals are the most frequently
used. In contrast to the previously developed methods in
[3, 4, 7], an EEG-based system can be used as a noninvasive
neurofeedback platform to enhance individual attention and
cognitive abilities [8]. Furthermore, a neurofeedback-based
attention training system not only helps young adults but
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also is suitable for children, especially those with attention
deficit hyperactivity disorder (ADHD) [9].

BCI-based technology can be used to identify subtle
shifts in individual attention [10]. Chiang et al. [11] de-
veloped an attention monitoring technique that integrates
the minimum entropy principle approach (MEPA) and an
associative Petri network (APN). Using a 14-electrode EEG
device, a two-class classification accuracy of 90.4% was
achieved based on 10 subjects in an online experiment. Hu
et al. [12] compared the correlation-based feature selection
(CFS) algorithm with other classification algorithms to
evaluate attention at 3 levels (high, neutral, and low) and
concluded that combining CFS and the K-nearest neighbors
(KNN) data mining algorithm, which was used with a single
valence resulted in the best performance. Six electrodes (C3,
C4, Cz, P3, P4, and Pz) were used, and 10 subjects achieved
an accuracy of 80.84% in their online experiment. In another
study, Mohammadpour and Mozaffari [1] adopted an ar-
tificial neural network (ANN) to classify attention into four
levels by using EEG signals from Fp1, Fp2, F3, F4, F7, F8, and
Fz electrodes. An online experiment involving 5 subjects was
conducted and an average accuracy of 79.75% was obtained.
However, there have been two major issues to be further
investigated. One issue is that the accuracy of attention
monitoring needs to be improved, which may be related to
the numbers of attention levels, detection algorithms, and
types of feedback. +e other issue is that more attention
levels (i.e., ≥5) and fewer electrodes (i.e., ≤4) need to be
explored in online attention monitoring, especially for EEG-
based practical application.

Neurofeedback is an effective training technique based
on brain waves and computer processing [13], and EEG-
based neurofeedback training can provide real-time infor-
mation to individuals regarding their brain function through
BCI devices. Bettencourt et al. [14] used closed-loop neu-
rofeedback from multivariate pattern analysis (MVPA) as a
type of cognitive prosthetic to provide a neural error signal
so that individuals could learn to properly evaluate the state
of their attention. Mohammadi et al. [13] designed a
computer game to train individual attention based on
neurofeedback, and they summarized that the neurofeed-
back game not only helps individuals increase the possibility
of success in controlling their attention but also decreases
the time required for the training process. Although EEG-
based neurofeedback training plays an important role in
attention improvement, one should note that the above-
mentioned training methods are not suitable for all the
different mechanisms of attention, such as sustained at-
tention, selective attention, and focus attention.

To address these above issues, we focus on EEG-based
attention monitoring and training with closed-loop neu-
rofeedback in this study. On one hand, we propose an
improved random forest- (IRF-) algorithm-based moni-
toring method, which uses grid search optimization and
multiple cross-validation to classify attention into five levels.
+e Personal EEG Concentration Tasks dataset involving 80
subjects was used to verify the effectiveness of the proposed
attention monitoring method in the offline analysis. On the
other hand, along with closed-loop neurofeedback, we

provide three serious game-type training modes based on
sustained attention, selective attention, and focus attention,
which might be promising in terms of self-regulated at-
tention training. Four primary indicators, including the
Schulte times, win times, game scores, and skill times, were
evaluated in an online experiment.

+e rest of this paper is organized as follows: Section 2
offers additional details on various methods, such as EEG
data processing, classification algorithms, and game design.
+e succeeding section illustrates the process of the ex-
periments and analyzes the results, followed by a discussion
and our conclusions.

2. Materials and Methods

+is section provides an overview of the utilized methods, as
shown in Figure 1, which are separated into two modules:
EEG-based attention monitoring and EEG-based training.
+e first module commences with attention monitoring
workflows based on EEG signals. +en, EEG data processing
and feature extraction are performed. Finally, the output
classification obtained based on the IRF algorithm is pre-
sented. In the second module, we illustrate the principle of
attention training and describe the implementation of se-
rious games with closed-loop neurofeedback.

2.1. EEG-Based Attention Monitoring. In the attention
monitoring module, an OpenBCI headset with 8 channels
was used to collect EEG signals, and a wavelet transform
algorithm was used to analyze and extract features for the
preprocessed EEG data. +en, we utilized the IRF algorithm
to classify attention.

2.1.1. EEG Data Preprocessing and Feature Extraction.
Previous related studies have shown that the power spectral
densities (PSDs) of delta, theta, alpha, beta, and gamma have
certain correlations with human attention. To this end, we
selected and extracted EEG features based on these findings.
An OpenBCI headset was used to capture the EEG data.
Additionally, in terms of EEG data processing and attention
monitoring, there are two factors to be considered. First, the
most active sites of attention need to be given priority be-
cause the response is not evenly distributed across the
electrodes. Second, if the algorithm is time-consuming, the
time delays will not conform to the real-time constraints,
rendering the feedback meaningless. Given the complexity
of all kinds of data processing and the activity of positions,
this paper selected the relatively active and attention-relative
channels located in the frontal and temporal lobes, that is,
TP9, AF7, AF8, and TP10, following the research of Castillo
et al. [15] and Taillez et al. [16]. +e wavelet transform al-
gorithm was then applied to extract the PSD features of the
EEG signals.

Wavelet analysis involves a combination of the time
domain and frequency domain and is suitable for multiscale
time-frequency analyses. +e wavelet basis is defined as
follows:
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In equation (2), a time-scale planar function CWT(s, a)

mapped by the signal f(t) is shown. CWT(s, a) represents a
one-dimensional continuous wavelet transform.
Cψ � 􏽒

+∞
−∞(|ψ(u)|2/|u|du), and ψ(u) is the Fourier transform

(FT) of ψ(t).
+e continuous wavelet transform (CWT) is used for

extracting the PSD features of EEG signals. In this study, we
used Daubechies coefficients for the wavelet transform, as
they are characterized by excellent time localization per-
formance and a maximal number of vanishing moments for
a given support set. Daubechies 4 enjoys compact support
and an orthonormal wavelet with smoothness. +us, an
improved effect can be achieved through the analysis of
nonstationary EEG signals. It is necessary to select a suitable
number of decomposition levels to analyze an EEG signal;
thus, we selected a decomposition level of 5 (L� 5). In
addition, the sampling frequency was 256Hz, and the band-
limited EEG was then subjected to a five-level decomposi-
tion coefficient of six subband signals through CWT. As
shown in Figure 2, six subbands, including xD1, xD2, xD3,
xD4, xD5, and xA1, represented the frequency range of the
band-limited EEG signal [17], where xA is the decompo-
sition approximation coefficient and xD is the decomposi-
tion detail coefficient.

Four wavelet thresholding methods were used in [18] to
select an accurate threshold. We adopted the SURE
threshold, which is an adaptive soft thresholding method.
Once the threshold coefficients were extracted from each
level, the effect of the noise on the EEG signals was removed.

We then used the inverse CWT to reconstruct the signals at
each level.

+e first reconstructed detail D1 was regarded as the
noise component of the EEG signal, and the reconstruction
details of the other four subband signals D2–D5 and the
reconstruction approximation of the subband signal A5
yielded signal information relevant to each EEG frequency
band. Furthermore, 5 PSD features were extracted for
classification: the delta (0Hz< f< 4Hz), theta
(4Hz< f< 8Hz), alpha (8Hz< f< 16Hz), beta
(16Hz< f< 32Hz), and gamma (32Hz< f< 64Hz) bands.
+ere were a total of 20 EEG features (4× 5� 20).

2.1.2. Improved Random Forest Classifier. Compared with
the correlation classification method, random forest clas-
sification removes noise more effectively and accurately,
which contributes to the higher accuracy during the clas-
sification of noise-containing EEG signals. In addition, the
random forest method offers stability, running efficiency,
and reducing errors for imbalanced datasets. On this
foundation, Belle et al. [19] compared the random forest and
regression techniques for attention classification based on
EEG signals, determining that random forest seems to work
best for both modalities, which obtained an average accuracy
of 85.7% for EEG. +us, we choose the random forest al-
gorithm to classify the attention level and propose the IRF
method with higher accuracy.

+e workflows of the IRF algorithm used for attention
monitoring are shown in Figure 3. A random forest is a set of
multiple decision tree classifiers h(x, ϕk), k � 1, . . .􏼈 􏼉, and
the parameter set ϕk􏼈 􏼉 is an independent and identically
distributed random vector. +e input feature variables X are
classified separately by each decision tree, and the results are
relied on to make predictions. After that, the classification
results with the most votes are attained as the output.

(1) Decision Tree. +e random forest algorithm takes
multiple samples from the original data through bootstrap
resampling and generates multiple decision tree classifica-
tion models. +ree steps are involved in the establishment of
a decision tree.

Step 1. Select a random bootstrap sample across N

original training sets by using the sampling with the
replacement method, and repeat k times.

Neurofeedback

EEG

signals

Attention

levels

Data preprocessing

Feature extraction

Improved random forest-
based classification

Attention monitoring

Serious games

Closed-loop
neurofeedback

Attention
mechanisms

Attention trainingData acquisition

Figure 1: Architecture of the attention monitoring and training modules.
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Step 2. Train a decision tree with a training set in-
cluding each bootstrap sample and recognize it as the
root node of the sample. When each node is split, the
feature variables x(x≪X) are extracted from the X

total feature variables at random for calculation pur-
poses, and the best feature obtained from the x feature
variables is selected as a branch of the node to achieve
minimal node impurity.
Step 3. Split each node as before without a pruning
operation in the course of establishing the decision tree.

To achieve stable accuracy, two random factors are in-
troduced during the establishment of the decision tree. One
is the bootstrap samples drawn from the N original training
sets.+e other is the stochastic feature variable selected from
the node of the decision tree.

(2) Voting. To enhance the mutual influence between the
classification models and improve their prediction ability,
diverse decision trees are constructed by using different
samples. After k rounds of training are conducted, the
optimal classification models h1(X), h2(X), . . . , hk(X)􏼈 􏼉 are
obtained and combined in a sequence to acquire the ultimate
classification results by using the simple majority voting
method. Equation (4) presents the classification decision:

H(x) � argmax
Y

􏽘

k

i�1
F hi(x) � Y( 􏼁, (4)

where H(x) is the classification model after the combination
and hi(x) is one of the decision tree classification models. Y

is the target variable, and the characteristic function is
F(hi(x) � Y).
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Figure 2: Wavelet multiresolution analysis.
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(3) Grid Search Optimization. +e random forest algo-
rithm has high precision and runs fast. However, a large
number of hyperparameters are generated in the course of
operation. To obtain attention monitoring results with high
accuracy, a grid search is used to optimize the parameters.
+e grid search algorithm involves meshing the variable
regions, traversing all the grid points, solving for the ob-
jective function values that satisfy the constraint conditions,
and selecting the optimal values [20]. Figure 4 shows the
workflow of the optimization process.

To the best of our knowledge, it takes considerable time to
traverse all the parameters, which decreases the training speed
to some extent. In this paper, we use an improved grid search to
increase the training speed. First, we use a large step size for a
rough search over a wide range. +e mesh built on the co-
ordinate system consists of penalty parameters, the numbers of
decision trees, and split features, n_estimators, max_features,
and min_sample_leaf. When a set of parameters meets the set
requirements, the optimal parameters and accuracy are output.
In a case where more than one set of parameters meets the
requirements, the set of parameters with the smallest penalty
parameter is output as the best selection object. +en, the
search range and step size are reduced to search the parameter
set more accurately. +e above steps are repeated with a step
size of 2 to find the global hyperparameters.

(4) Multiple Cross-Validation. +e accuracy of the
proposed method is closely related to the ratio of training
data to test data. To address this problem, S-fold cross-
validation is conducted by randomly dividing the data into S

subsets without repetition, of which S − 1 subsets are used
for training and the remaining subset is used for testing:

T1, T2, . . . , TS􏼈 􏼉,

Ti ∩Tj � ∅􏼐 􏼑.
(5)

+is process is repeated S times, and S accuracies are
obtained. After each round, S − 1 subsets are selected at
random to be retrained. In our paper, we use 10-fold cross-
validation, which mitigates the situation of overfitting and
yields reliable results. +e training set is split into 10 subsets,
of which one subset is used for testing and the remaining
subsets are used as the training set.

2.2. Neurofeedback-Based Attention Training. +ree types of
attention mechanisms and closed-loop neurofeedback were
adopted to implement the attention training function.
Closed-loop neurofeedback technology involves the self-
regulation of an individual’s brain activity by relying on real-
time visual and auditory feedback regarding his/her brain
patterns. +is technique can maintain specific conditions in
the brain states of young adults and improve their cognitive
function through training.

We proposed an attention training method based on
closed-loop neurofeedback technology that increases indi-
vidual interest through the use of serious games and im-
proves attention in a relaxing atmosphere without adverse
reactions. At the same time, impaired concentration is as-
sociated not only with psychology but also with the three
previously mentioned attention mechanisms: sustained at-
tention, selective attention, and focus attention. According
to the persistence, selectivity, and focus of attention, we
designed three serious games (as shown in Figure 5), named
Tug of War (Figure 5(a)), Adventures of Birds (Figure 5(b)),
and Greedy Jelly (Figure 5(c)) in this study.

2.2.1. Serious Games with Closed-Loop Neurofeedback.
+e young adults controlled each game by their attention
levels; the specific implementation process is as follows: first,
EEG signals were obtained from the young adults through
OpenBCI. +en, their attention function was monitored by
the IRF algorithm, and the results were quantified as young
adults’ attention levels during the games. +e value of “high
attention” was quantified as 1, the value of “medium-high
attention” was quantified as 0.75, the value of “medium
attention” was quantified as 0.5, the value of “medium-low
attention” was quantified as 0.25, and the value of “low
attention” was quantified as 0. In the sustained game, only
when the young adults’ attention levels were higher than a
certain threshold would the strength of the character in the
game be greater than that of the enemy. During the selective
game, the bird’s direction (upward, downward, or horizontal
flight) was manipulated by the young adults’ attention levels.
For the focus game, the character, who was equipped with a
special skill, would release his skill when the young adults’
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X2

Xk

······

Voting
Random
sampling

Result of
decision tree k

Result of
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······
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Grid search optimization

10-fold cross-validation

Medium-high

Medium

High

Medium-low
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Figure 3: Workflows of the improved random forest algorithm used in attention monitoring.
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attention was focused and reached the maximum level. In
Figure 5(d), a subject is shown playing a serious game with
closed-loop neurofeedback.

To increase the efficiency of attention training, we op-
timized the graphical user interface (GUI) of the games as
follows:

(1) We designed various game environments and
characters by taking young adults as the basis to
increase their interest in the GUI.

(2) Feedback was provided to the young adults in real
time in the form of a progress bar that showed their
attention levels.

(a) (b)

(c) (d)

Figure 5: +ree serious games were developed to improve attention. (a) Tug of War was designed in terms of the mechanism of sustained
attention. (b) Adventures of Birds was designed in terms of the mechanism of selective attention. (c) Greedy Jelly was designed in terms of
the mechanism of focus attention. (d) A subject playing a serious game with closed-loop neurofeedback.

Start to traverse all
parameters

Select the set of parameters that
meets the requirements

10-fold cross-validation

Multiple sets of parameters

End
traversal?

Output the optimal
parameters

Penalty function

Number of decision trees

Number of split features

Minimum number of leaf
node samples

Hyperparameters

Reduce search
range and step size 

No

Yes

Figure 4: Workflow of the optimization process.
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Closed-loop neurofeedback technology can be an ad-
ditional option for enhancing attention, which means that
young adults could control the characters in the games with
their attention; at the same time, they could also receive
attention feedback from the games. Furthermore, young
adults could increase their focus by actively concentrating
after becoming acquainted with their attention function.

3. Experiments and Results

3.1. Experiments for Attention Monitoring

3.1.1. Offline Analysis. In offline analysis, the Personal EEG
Concentration Tasks dataset involving 80 subjects was used
to verify the effectiveness of the proposed attention moni-
toring method. We selected 70% of the samples as the
training set and 30% of the samples as the test set at random.
Different algorithms were utilized to divide attention into
the abovementioned five levels. +e results are shown in
Table 1.

Among the five algorithms, the IRF achieved an accuracy
of 79.34%, with a loss rate of 21.76%, a recall rate of 76.18%,
and a precision of 82.60%. +e results show that the at-
tention monitoring method based on the IRF algorithm
obtained the highest accuracy rate.

3.1.2. Online Analysis. In the online experiment, we used an
OpenBCI headset at 256Hz to record the EEG data. Ten
healthy subjects participated in the experiment, including 5
males and 5 females. +e ages of the subjects ranged from 8
to 20 years old (mean� 15.95, std.� 4.63). +e study was
approved by the Ethics Committee of South China Normal
University and complied with the Code of Ethics of the
World Medical Association (Declaration of Helsinki). Be-
fore the experiment started, the subjects sat on a comfortable
chair without blinking or moving their bodies, and they
completed the entire experiment according to the provided
instructions.+ere were two sessions during the experiment:
a calibration session and an evaluation session.

In the calibration session, each subject performed 20
trials, which took the subjects approximately one hour to
complete. Furthermore, each subject was asked to enter their
personal information on a computer at the start of the
experiment for the purpose of extracting the EEG data and
labeling them conveniently. At the beginning of each trial,
the computer screen showed a 10-second countdown to help
subjects adjust their attention. After that, a calculation task, a
minesweeping game task, or an article task was presented on
the computer screen, and subjects needed to select an option
or read. We induced the attention of subjects through the
assigned task and recorded their EEG data simultaneously.
After clicking the finish button, the subjects were asked to fill
in the valence of self-assessment manikins (SAMs) to report
their attention states, that is, high attention, medium-high
attention, medium attention, medium-low attention, and
low attention. +e overall process of this experiment is il-
lustrated in Figure 6.

In the evaluation session, we used similar experimental
trials to evaluate the model. In each trial, 6 algorithms (SVM,

KNN, AdaBoost, ET, RF, and IRF) were applied to detect
attention. Ultimately, we calculated the accuracy of each
approach by comparing the predicted attention levels and
the actual labels.

3.1.3. Results. Figure 7 reveals the accuracy of the attention
monitoring results for the 10 subjects, obtained by using the
abovementioned five algorithms during the experiment. P

values were calculated using a t-test to evaluate the accuracy
differences between IRF and other algorithms with the SPSS
tool, and the results are shown in Table 2, which were
corrected for false discovery rate of p< 0.01.

+e average accuracy rates of the various algorithms are
displayed in Table 3, from which we can find that the ac-
curacy of the IRF is significantly better than the accuracies of
the other methods during the online attention monitoring
experiment. +ere is a significant difference (p � 0.016)
between the IRF algorithm and ET algorithm.

3.2. Experiments for Attention Training

3.2.1. Workflow of the Attention Training Experiment.
Ten healthy subjects participated in this experiment, in-
cluding 5 males and 5 females; these subjects were different
from those who participated in the online experiment. +e
ages of the subjects ranged from 8 to 18 years (mean� 12.5,
std.� 4.32). We performed a self-controlled study to validate
the effectiveness of the training method, which offers good
comparability and high reliability. During the course of the
experiment, each subject sat quietly on a chair to avoid
excessive movements that would affect the results.

Each subject performed 3 experiments. Before Experi-
ment I and after each experiment, the subjects were required
to complete a 5× 5 grid of a Schulte table while recording the
observed completion time and EEG signals.

+ere were 3 phases in each experiment: a preparation
phase, a training phase, and a rest phase. +e preparation
phase, which lasted for 3 seconds, required subjects to ac-
tively refrain from noticing the game on the screen. During
the training phase, the sustained game was presented, and
the completion time was recorded. Afterwards, the selective
game was carried out, and the scores were recorded when the
subjects failed. Finally, the subjects performed the focus
game and recorded the times at which they released the
special skill. In addition, the resting phase provided a 5-

Table 1: Accuracy (%) of five-level attention monitoring with
different algorithms.

Algorithm Accuracy Loss Recall Precision
Support vector machine
(SVM) 52.46 51.48 26.65 53.41

K-nearest neighbors (KNN) 54.75 43.60 50.81 50.12
AdaBoost 67.32 32.35 68.74 71.69
Extreme random tree (ET) 72.90 27.28 65.68 81.09
Random forest (RF) 73.22 26.45 64.02 79.54
Improved random forest
(IRF) 79.34 21.76 76.18 82.60

Journal of Healthcare Engineering 7
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Table 2: Results of a t-test with SPSS.

Group SVM-IRF KNN-IRF AdaBoost-IRF ET-IRF RF-IRF
t-test statistics −29.347 −30.623 −9.565 −7.753 −20.622
P value <0.001 <0.001 <0.001 <0.001 <0.001

Table 3: Average accuracy rates (%) of various algorithms for five levels of attention in online experiments.

Algorithm SVM KNN AdaBoost ET RF IRF
Accuracy (%) 48.52± 5.35 50.49± 4.26 62.62± 4.70 72.95± 5.38 73.14± 5.93 79.06± 6.47
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second relaxation time during which subjects could divert
their attention from the screen.

3.2.2. Effectiveness. Four primary indicators, including the
Schulte times, win times, game scores, and skill times, are
proposed as follows:

(1) Schulte times, which represent the times(s) required
to complete the Schulte table.

(2) Win times, which denote the times(s) required to
win a sustained game.

(3) Game scores, which indicate the scores obtained by
each subject upon losing the selective game.

(4) Skill times, which denote the times at which the
special skill was released during the focus game.

+e Schulte times of the 10 subjects before Experiment I
and after each experiment are shown in Figure 8.
Figures 9(a)–9(c) show the win times, game scores, and skill
times, respectively.

In the above four figures, all indicators underwent re-
markable changes (p< 0.05). +e Schulte times and win
times were obviously reduced. In contrast, the game scores
and skill times increased significantly. +ese can be attrib-
uted to two reasons: (i) the familiarity of the subjects with the
game environment after much practice and (ii) the effec-
tiveness of neurofeedback. To explore the impact of the
neurofeedback on the 3 experiments, we conducted an
additional experiment without neurofeedback on the same
subjects. We removed the neurofeedback elements from the
three games in experiment III, such as the progress bar and
the background sound effects used to display the subject’s
attention level in the GUI. +e average results of the four
indicators for each experiment are presented in Figure 10.
For comparison purposes, we reduced the values of the win
times by a factor of 10.

As the subjects became more familiar with the game,
even without neurofeedback, their attention was improved
to a certain extent. However, the rates of change of the four
indicators without neurofeedback were much lower than
those observed when using neurofeedback.

Moreover, to verify the accuracy of the control pa-
rameters, the Schulte times and the EEG signals input into
the Schulte table before the experiment and after each ex-
periment were analyzed. +e Schulte times are often in-
versely proportional to the concentration and attention
levels. Table 4 illustrates the comparison between the Schulte
times and the results of attention monitoring among the
subjects. +e results showed that the shorter a given Schulte
time was, the more concentrated the subjects were and the
higher the attention monitoring results. In contrast, there
was less enhancement of the monitoring results.

4. Discussion

+e main work in our paper was to propose an IRF-algo-
rithm-based attention monitoring and training method with
closed-loop neurofeedback. For attention monitoring, we
divided attention into five levels ranging from low to high

attention and applied the IRF algorithm to improve mon-
itoring accuracy and performance. Furthermore, an offline
experiment based on the Personal EEG Concentration Tasks
dataset and an online experiment involving 10 young adults
were carried out. +e results yielded an average accuracy of
79.34% for the IRF algorithm. For attention training, we
designed three training modes with neurofeedback, corre-
sponding to sustained attention, selective attention, and
focus attention. Furthermore, a self-control method with
four indicators was used in the attention training experi-
ment, and the results demonstrated a statistically significant
performance improvement (p< 0.05) for the 10 tested young
adults after attention training, thereby demonstrating the
effectiveness of the proposed games.

From the perspective of the attention monitoring
method, it is essential to achieve a promising level of ac-
curacy and improved classification. At the same time, the
attention mechanism and training method are vital for at-
tention training. We show the differences between other
studies and our work in Tables 5 and 6.

Most past studies explored attention training methods,
such as the focused attention meditation (FAM) method
proposed by Yoshida et al. [24]. In addition, Shereena et al.
[25] used the EEG neurofeedback training method to design
training tasks, aiming to enhance β waves for the purpose of
suppressing θ waves. +ese studies related to attention
training focused on EEG signals, with little emphasis on
neurofeedback. Notably, several recent papers examined the
method of combining neurofeedback and serious games,
which is helpful for improving self-regulation skills in at-
tention training with appropriate guidance; an example of
this is the “ExerBrain” game [14], which assists individuals in
improving their attention control due to the immersive and
interactive feature of neurofeedback. Moreover, neuro-
feedback training has proven to be an efficient tool for
sustained attention [26]. Nevertheless, attention, as a kind of
higher-order cognition, comprises not only sustained at-
tention but also selective attention and focus attention [25].
As such, this study provides a means by which to implement
serious games and analyze three mechanisms of attention
simultaneously to help young adults enhance their attention
effectively.

+e advantages of this paper primarily comprise the
following points: (i) we utilized the IRF algorithm for five-
level attention monitoring and obtained promising accu-
racy; (ii) we designed serious games in a multiangle and
targeted manner with consideration of sustained, selective,
and focus attention; (iii) we quantified the attention mon-
itoring results and used them as the control parameters to
manipulate the games with improved accuracy; and (iv) four
indicators were proposed in the experiment to validate the
effectiveness of the presented method.

In addition, the main finding is that the attention of
young adults could be enhanced by using closed-loop
neurofeedback in comparison with methods that ignore
neurofeedback. +is is in line with the results of previous
attention monitoring studies [27]. On this basis, this paper
used the IRF algorithm to classify 5-level attention and
attained an accuracy of 79.34%, which is higher than those of
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Figure 8: Schulte times before the experiment and during experiment (I), experiment II, and experiment III. +e x-axis of each subfigure
corresponds to the subject IDs, and the y-axis corresponds to the Schulte times.
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Figure 9: +e win times (a), game scores (b), and skill times (c) obtained during experiment (I), experiment II, and experiment III. +e x-
axis of each subfigure corresponds to the subject IDs, and the y-axis corresponds to the performances of the corresponding indicators.
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the other algorithms that were compared. Furthermore,
consistent with past studies [11, 25], we showed that neu-
rofeedback training can assist young adults in improving
their attention. In the present study, we implemented three
serious games for young adults with neurofeedback and
incorporated three mechanisms of attention that were not
fully considered in past studies. Furthermore, the attention

training method in this paper contributed to significant
improvements in sustained attention, selective attention,
and focus attention. +erefore, we can conclude that all
mechanisms of attention can be improved with specific
serious games.

+e primary limitation of our study was the small
number of subjects examined during the experiment. In
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Indicators
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Figure 10: Average results of the four indicators in experiment (I), experiment II, and experiment III.+e x-axis of each subfigure identifies
each indicator, and the y-axis corresponds to the Schulte times, one-tenth of the win times, the game scores, and the skill times.

Table 4: Comparison of the Schulte times and the results of attention monitoring.

Subject
Before the experiment Experiment I Experiment II Experiment III
T D T D T D T D

1 25.12 Medium-low 16 High 15 High 14 High
2 34 Low 30 Low 26.8 Low 25 Medium-low
3 21.1 Medium 18.37 Medium-high 15.64 High 12.91 High
4 20.55 Medium-high 19.17 Medium-high 19 Medium-high 17 High
5 23.3 Medium- 19.25 Medium-high 18 Medium-high 16 High
6 32.07 Low 29 Low 28 Low 22 Medium
7 24.35 Medium-low 20.05 Medium-high 18 Medium-high 17.5 High
8 20.37 Medium-high 16.32 High 16 High 15.6 High
9 21.25 Medium 21 Medium 20 Medium-high 18 Medium-high
10 26 Medium-low 24.5 Medium-low 22 Medium 20 Medium-high
Note. T denotes the Schulte time of each subject, and D denotes the monitoring result of each subject.

Table 5: Comparison of different methods related to attention monitoring.

Reference Algorithm Classification Accuracy (%)
[1] ANN 4 levels 78
[21] KNN 3 levels 67
[22] Naive Bayes 3 levels 60
Our work IRF 5 levels 79.34

Table 6: Comparison of different methods related to attention training.

References Mechanism Method

[2] Sustained attention A closed-loop tactile training process related to visual sustained
attention.

[14] Sustained attention Closed-loop neurofeedback from MVPA as a type of cognitive
prosthetic.

[23] Sustained attention and selective attention A 3D game with neurofeedback.

Our work Sustained attention, selective attention, and focus
attention

+ree serious games related to the mechanism of attention with
neurofeedback.
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addition, there are a few datasets pertaining to the attention
of young adults; these data are challenging to record due to
the volatility of conductive media in BCIs. In addition,
several external factors, such as the habits, motivations, and
mental statuses of the subjects, were not considered.

5. Conclusions

We proposed an IRF-algorithm-based attention monitoring
and training method with closed-loop neurofeedback, and
we presented the mechanism of attention. In the future, we
will collect attention data and attempt to fuse EEG and
physiological signals (such as facial expressions and verbal
speech) to improve the accuracy of attention monitoring.
Furthermore, we will develop 3D serious games in the near
future.
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