10724 measured reflections

 $R_{\rm int} = 0.035$

6546 independent reflections

5035 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-(3-Methoxybenzylidene)-4-nitrobenzohydrazide monohydrate

Tanveer Ahmad,^a Muhammad Zia-ur-Rehman,^b* Hamid Latif Siddiqui,^a Muhammad Fasih Ullah^a and Masood Parvez^c

^aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, ^bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and ^cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4 Correspondence e-mail: rehman_pcsir@hotmail.com

Received 20 March 2010; accepted 23 March 2010

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.071; wR factor = 0.149; data-to-parameter ratio = 15.3.

There are two independent formula units in the asymmetric unit of the title compound, $C_{15}H_{13}N_3O_4$ ·H₂O. The C=C-N-C torsion angle of the methylidenehydrazide group is 174.3 (2)° in one molecule and 178.6 (2)° in the other. The dihedral angles between the two benzene rings in the two molecules are 4.17 (12) and 3.58 (12)°. In the crystal structure, intermolecular O-H···O, N-H···O and O-H···N hydrogen bonds link the components into a two-dimensional network and additional stabilization is provided by weak intermolecular C-H···O hydrogen bonds.

Related literature

For the synthesis of related compounds, see: Zia-ur-Rehman *et al.* (2005, 2006). For the biological activity of benzohydrazides, see: Zia-ur-Rehman *et al.* (2009); Jiang *et al.* (1990); Ochiai & Ishida (1982); Guersoy *et al.* (1995); Farghaly & Moharram (1999). For related structures, see: Raj *et al.* (2008); Fun *et al.* (2008); Wang *et al.* (2008); Qiu *et al.* (2009).

Experimental

Crystal data

 $\begin{array}{l} C_{15}H_{13}N_{3}O_{4}\cdot H_{2}O\\ M_{r}=317.30\\ \text{Triclinic, }P\overline{1}\\ a=6.7162\ (3)\ \text{\AA}\\ b=7.4929\ (3)\ \text{\AA}\\ c=32.1141\ (15)\ \text{\AA}\\ \alpha=91.883\ (2)^{\circ}\\ \beta=91.5697\ (12)^{\circ} \end{array}$

 $\gamma = 112.753 (2)^{\circ}$ $V = 1488.12 (11) \text{ Å}^3$ Z = 4Mo K\alpha radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 173 K $0.10 \times 0.04 \times 0.03 \text{ mm}$ Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{min} = 0.989, T_{max} = 0.997$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.071$	H atoms treated by a mixture of
WR(F) = 0.149 S = 1.17	refinement
6546 reflections	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
429 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2N\cdots O9$	0.88	1.98	2.839 (3)	166
N5−H5 <i>N</i> ···O10	0.88	2.08	2.930 (3)	163
C2-H2···O9	0.95	2.23	3.153 (3)	164
C8-H8···O9	0.95	2.45	3.277 (3)	145
$C15 - H15B \cdots O6$	0.98	2.55	3.443 (4)	151
C21-H21···O10	0.95	2.42	3.355 (3)	169
C23-H23···O10	0.95	2.46	3.295 (3)	147
$O9-H9A\cdots O7^{i}$	0.91 (4)	2.26 (3)	3.020 (3)	140 (3)
$O9-H9A\cdots N6^{i}$	0.91 (4)	2.34 (3)	3.093 (3)	140 (3)
$O9-H9B\cdots O3^{i}$	0.92 (3)	1.84 (4)	2.758 (3)	173 (3)
$O10-H10A\cdots O7^{i}$	0.87 (4)	1.99 (4)	2.846 (3)	167 (3)
$O10-H10B\cdots O3^{ii}$	0.80 (4)	2.17 (4)	2.925 (3)	158 (3)
$C13-H13\cdots O4^{i}$	0.95	2.52	3.390 (3)	153
$C15 - H15A \cdots O6^{iii}$	0.98	2.59	3.560 (4)	171
$C30-H30A\cdots O2^{iv}$	0.98	2.40	3.322 (4)	156
$C30-H30B\cdotsO1^{v}$	0.98	2.59	3.200 (4)	121

Symmetry codes: (i) x - 1, y, z; (ii) x - 1, y - 1, z; (iii) -x + 2, -y + 2, -z + 2; (iv) -x, -y, -z + 1; (v) -x + 1, -y, -z + 1.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *SCALE*-*PACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

HLS is grateful to the Institute of Chemistry, University of the Punjab, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5018).

References

- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Farghaly, A. O. & Moharram, A. M. (1999). Boll. Chim. Farm. 138, 280-289.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fun, H.-K., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, 02377.
- Guersoy, A. & Illhan, N. (1995). Farmaco, 50, 559-562.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Jiang, J. B., Hesson, D. P., Dusak, B. A., Dexter, D. L. & Kang, G. T. (1990). J. Med. Chem. 33, 1721–1728.
- Ochiai, T. & Ishida, R. (1982). Jpn J. Pharmacol. 32, 427-438.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Qiu, F., He, X.-J., Sun, Y.-X. & Zhu, X. (2009). Acta Cryst. E65, o2050.

- Raj, B. N. B., Kurup, M. R. P. & Suresh, E. (2008). Spectrochim. Acta Part A, **71**, 1253–1260.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 Wang, Y.-Z., Wang, M.-D., Diao, Y.-P. & Cai, Q. (2008). Acta Cryst. E64, o668.
Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178. Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1175.

Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.

Acta Cryst. (2010). E66, 0977-0978 [doi:10.1107/S1600536810010986]

N'-(3-Methoxybenzylidene)-4-nitrobenzohydrazide monohydrate

T. Ahmad, M. Zia-ur-Rehman, H. L. Siddiqui, M. Fasih Ullah and M. Parvez

Comment

Benzohydrazides and their derivatives are reported to show a wide variety of biological activities. For example, some of these are found useful for the treatment of autoimmune and inflammatory diseases, tumors, osteoarthritis and hemorrhage (Jiang *et al.*, 1990) whereas some others exhibit antibacterial and anti-oxidant (Zia-ur-Rehman *et al.*, 2009), anti-viral (Ochiai & Ishida, 1982), anti-tuberculous (Guersoy *et al.*, 1995) and insecticidal activities (Farghaly & Moharram, 1999). As part of our on-going research on the synthesis of various heterocyclic compounds (Zia-ur-Rehman *et al.*, 2005; 2006; 2009), we herein report the crystal structure of the title compound.

The structure of the title compound is composed of two independent molecules and two molecules of water of hydration (Fig. 1) in an asymmetric unit. The bond distances and angles agree with the cortresponding bond distances and angles reported in closely related compounds (Raj *et al.*, 2008; Fun *et al.*, 2008; Wang *et al.*, 2008; Qiu *et al.*, 2009). The methylidenehydrazide fragment C22/C23/N5/N6/O7 is essentially planar with the maximum deviation of N6 being 0.0194 (18) Å compared to the corresponding fragment in the other molecule (C7/C8/N2/N3/O3) wherein C8 and N3 deviate by 0.0411 (14) and 0.0501 (18) Å in opposite directions from the mean-planes formed by these atoms. The mean-planes of the phenyl rings C1–C6 and C9–C14 make dihedral angles of 8.83 (14) and 12.24 (12)°, respectively, with the mean-plane of the methylidenehydrazide fragment; the corresponding dihedral angles in the other molecule are 3.23 (14) and 0.90 (14)°, respectively. The C=C–N–C torsion angle of the methylidenehydrazide group is 174.3 (2)° in one molecule and 178.6 (2)° in the other. The dihedral angle between the two benzene rings in each molecule are 4.17 (12) and 3.58 (12)°. In the crystal structure, intermolecular O—H..O, N—H..O and O—H…N hydrogen bonds link the components of the structure into a two-dimensional network and additional stabilization is provided by weak intermolecular C—H…O hydrogen bonds; geometric details are provided in Table 1.

Experimental

A mixture of *p*-nitrobenzohydrazide (0.1 g; 0.552 moles), 4-methoxybenzaldehyde (0.33 ml; 0.552 mmoles), orthophosphoric acid (0.2 ml) and methanol (50.0 ml) was heated to reflux for 4 hours followed by removal of the solvent under vacuum. The contents were allowed to cool and washed with a mixture of cold methanol-water (9:1) to yield the title compound. Crystals suitable for X-ray crystallographic studies were grown from a mixture of methanol-water (9:1) at room temperature by slow evaporation. Yield: 89%. M.p. 506 K.

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with N—H = 0.88 Å and C—H = 0.95 and 0.98 Å, for aryl and methyl H-atoms, respectively; the H-atoms of the water of hydrate molecules were allowed to refine. The $U_{iso}(H)$ were allowed at 1.2 U_{eq} (parent atom). The final difference map was essentially featuress.

Figures

Fig. 1. The asymmetric unit of the title compound with the displacement ellipsoids plotted at 30% probability level (Farrugia, 1997).

N'-(3-Methoxybenzylidene)-4-nitrobenzohydrazide monohydrate

$C_{15}H_{13}N_3O_4{\cdot}H_2O$	Z = 4
$M_r = 317.30$	F(000) = 664
Triclinic, PT	$D_{\rm x} = 1.416 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Melting point: 506 K
a = 6.7162 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>b</i> = 7.4929 (3) Å	Cell parameters from 5661 reflections
c = 32.1141 (15) Å	$\theta = 1.0-27.5^{\circ}$
$\alpha = 91.883 \ (2)^{\circ}$	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 91.5697 (12)^{\circ}$	T = 173 K
$\gamma = 112.753 \ (2)^{\circ}$	Needle, yellow
$V = 1488.12 (11) \text{ Å}^3$	$0.10 \times 0.04 \times 0.03 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer	6546 independent reflections
Radiation source: fine-focus sealed tube	5035 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.035$
ω and ϕ scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: multi-scan (SORTAV; Blessing, 1997)	$h = -8 \rightarrow 8$
$T_{\min} = 0.989, T_{\max} = 0.997$	$k = -9 \rightarrow 9$
10724 measured reflections	$l = -41 \rightarrow 41$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.071$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.149$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.17	$w = 1/[\sigma^2(F_o^2) + (0.0216P)^2 + 1.6183P]$ where $P = (F_o^2 + 2F_c^2)/3$
6546 reflections	$(\Delta/\sigma)_{max} < 0.001$
429 parameters	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$

0 restraints

 $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.5409 (5)	0.3361 (4)	0.52359 (7)	0.0652 (7)
O2	0.2135 (5)	0.3034 (4)	0.53490 (8)	0.0782 (9)
O3	0.8790 (3)	0.8188 (3)	0.71569 (6)	0.0423 (5)
O4	0.8847 (3)	1.1025 (3)	0.92010 (6)	0.0383 (5)
O5	0.2433 (3)	0.6052 (3)	0.96336 (6)	0.0461 (5)
O6	0.5729 (3)	0.7096 (3)	0.98840 (6)	0.0432 (5)
07	0.8929 (3)	0.4098 (3)	0.80674 (6)	0.0390 (5)
08	0.1740 (4)	-0.1127 (4)	0.57904 (6)	0.0613 (7)
09	0.0742 (3)	0.5580 (3)	0.72390 (7)	0.0437 (5)
H9A	-0.016 (5)	0.464 (5)	0.7397 (10)	0.052*
H9B	0.017 (5)	0.651 (5)	0.7228 (10)	0.052*
O10	0.0793 (3)	0.1569 (3)	0.77316 (7)	0.0468 (6)
H10A	0.002 (6)	0.218 (5)	0.7828 (11)	0.056*
H10B	0.005 (6)	0.052 (5)	0.7631 (11)	0.056*
N1	0.4053 (5)	0.3579 (4)	0.54538 (8)	0.0522 (7)
N2	0.5317 (4)	0.7257 (3)	0.73434 (6)	0.0327 (5)
H2N	0.3936	0.6645	0.7272	0.039*
N3	0.5961 (4)	0.8154 (3)	0.77402 (6)	0.0327 (5)
N4	0.4328 (4)	0.6279 (3)	0.96079 (7)	0.0334 (5)
N5	0.5518 (3)	0.2963 (3)	0.77803 (6)	0.0293 (5)
H5N	0.4142	0.2727	0.7811	0.035*
N6	0.6228 (3)	0.2498 (3)	0.74060 (6)	0.0305 (5)
C1	0.6020 (4)	0.6333 (4)	0.66505 (8)	0.0317 (6)
C2	0.3846 (5)	0.5612 (4)	0.65178 (8)	0.0379 (6)
H2	0.2801	0.5730	0.6698	0.045*
C3	0.3205 (5)	0.4724 (4)	0.61237 (9)	0.0424 (7)
H3	0.1729	0.4241	0.6030	0.051*
C4	0.4752 (5)	0.4557 (4)	0.58715 (8)	0.0379 (6)
C5	0.6907 (5)	0.5251 (4)	0.59902 (9)	0.0420 (7)
Н5	0.7938	0.5119	0.5808	0.050*
C6	0.7534 (5)	0.6152 (4)	0.63848 (8)	0.0401 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H6	0.9017	0.6650	0.6474	0.048*
C7	0.6827 (4)	0.7339 (4) 0.70724 (8)		0.0329 (6)
C8	0.4388 (4)	0.8124 (4)	0.79569 (8)	0.0343 (6)
H8	0.2963	0.7536	0.7836	0.041*
С9	0.4687 (4)	0.8960 (4)	0.83847 (8)	0.0297 (5)
C10	0.6675 (4)	0.9670 (4)	0.86004 (8)	0.0291 (5)
H10	0.7925	0.9669	0.8469	0.035*
C11	0.6828 (4)	1.0387 (3)	0.90111 (8)	0.0272 (5)
C12	0.5013 (4)	1.0433 (3)	0.92029 (8)	0.0298 (5)
H12	0.5129	1.0940	0.9482	0.036*
C13	0.3032 (4)	0.9734 (4)	0.89832 (8)	0.0333 (6)
H13	0.1787	0.9760	0.9112	0.040*
C14	0.2862 (4)	0.8998 (4)	0.85770 (8)	0.0350 (6)
H14	0.1501	0.8517	0.8428	0.042*
C15	0.9058 (5)	1.1692 (4)	0.96298 (8)	0.0408 (7)
H15A	1.0560	1.2070	0.9732	0.049*
H15B	0.8110	1.0650	0.9796	0.049*
H15C	0.8649	1.2811	0.9655	0.049*
C16	0.6180 (4)	0.4345 (3)	0.84904 (7)	0.0259 (5)
C17	0.7721 (4)	0.5258 (4)	0.88126 (8)	0.0299 (5)
H17	0.9191	0.5459	0.8777	0.036*
C18	0.7132 (4)	0.5871 (4)	0.91830 (8)	0.0312 (6)
H18	0.8175	0.6487	0.9403	0.037*
C19	0.4983 (4)	0.5564 (3)	0.92247 (7)	0.0272 (5)
C20	0.3404 (4)	0.4629 (4)	0.89158 (8)	0.0302 (5)
H20	0.1932	0.4408	0.8956	0.036*
C21	0.4029 (4)	0.4028 (4)	0.85474 (8)	0.0309 (5)
H21	0.2973	0.3390	0.8331	0.037*
C22	0.6997 (4)	0.3791 (3)	0.80989 (8)	0.0289 (5)
C23	0.4724 (4)	0.1688 (4)	0.71271 (8)	0.0323 (6)
H23	0.3278	0.1467	0.7192	0.039*
C24	0.5146 (4)	0.1086 (4)	0.67096 (8)	0.0310 (5)
C25	0.3371 (4)	0.0256 (4)	0.64343 (8)	0.0366 (6)
H25	0.1975	0.0102	0.6521	0.044*
C26	0.3616 (5)	-0.0352 (4)	0.60320 (8)	0.0398 (7)
C27	0.5630 (5)	-0.0151 (4)	0.59032 (8)	0.0374 (6)
H27	0.5803	-0.0569	0.5629	0.045*
C28	0.7408 (5)	0.0676 (4)	0.61821 (9)	0.0388 (6)
H28	0.8799	0.0810	0.6096	0.047*
C29	0.7193 (4)	0.1306 (4)	0.65817 (8)	0.0361 (6)
H29	0.8423	0.1881	0.6767	0.043*
C30	0.1873 (6)	-0.1784 (6)	0.53710 (9)	0.0624 (10)
H30A	0.0433	-0.2282	0.5232	0.075*
H30B	0.2426	-0.2817	0.5376	0.075*
H30C	0.2851	-0.0702	0.5219	0.075*

Atomic displacement parameters	(λ^2)
Atomic alsplacement parameters	(A)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.101 (2)	0.0737 (16)	0.0305 (12)	0.0446 (15)	0.0065 (12)	-0.0088 (11)
02	0.0780 (19)	0.097 (2)	0.0421 (14)	0.0186 (16)	-0.0182 (13)	-0.0240 (14)
03	0.0343 (10)	0.0517 (12)	0.0369 (11)	0.0137 (9)	-0.0009 (8)	-0.0129 (9)
O4	0.0299 (10)	0.0522 (12)	0.0313 (10)	0.0153 (9)	-0.0018 (8)	-0.0114 (8)
05	0.0418 (12)	0.0508 (12)	0.0417 (12)	0.0136 (10)	0.0152 (9)	-0.0073 (9)
O6	0.0554 (13)	0.0420 (11)	0.0260 (10)	0.0132 (10)	-0.0029 (9)	-0.0087 (8)
07	0.0277 (10)	0.0500 (12)	0.0368 (11)	0.0131 (9)	0.0046 (8)	-0.0116 (9)
08	0.0517 (13)	0.106 (2)	0.0288 (11)	0.0356 (13)	-0.0095 (9)	-0.0207 (12)
09	0.0313 (11)	0.0545 (13)	0.0409 (12)	0.0114 (10)	0.0061 (9)	0.0046 (10)
O10	0.0312 (11)	0.0570 (14)	0.0513 (13)	0.0186 (10)	-0.0053 (9)	-0.0228 (11)
N1	0.080 (2)	0.0484 (15)	0.0269 (13)	0.0243 (15)	-0.0034 (14)	-0.0049 (11)
N2	0.0337 (12)	0.0380 (12)	0.0236 (11)	0.0117 (10)	-0.0011 (9)	-0.0041 (9)
N3	0.0393 (12)	0.0369 (12)	0.0222 (11)	0.0156 (10)	0.0006 (9)	-0.0025 (9)
N4	0.0437 (13)	0.0256 (11)	0.0280 (11)	0.0102 (10)	0.0080 (10)	0.0002 (9)
N5	0.0288 (11)	0.0379 (12)	0.0230 (10)	0.0150 (9)	0.0043 (8)	-0.0028 (9)
N6	0.0374 (12)	0.0336 (11)	0.0226 (10)	0.0162 (10)	0.0052 (9)	-0.0008 (9)
C1	0.0368 (14)	0.0290 (13)	0.0279 (13)	0.0114 (11)	-0.0001 (11)	-0.0014 (10)
C2	0.0387 (15)	0.0423 (15)	0.0287 (14)	0.0116 (12)	0.0041 (11)	-0.0036 (11)
C3	0.0409 (16)	0.0458 (16)	0.0327 (15)	0.0091 (13)	-0.0029 (12)	-0.0033 (12)
C4	0.0546 (18)	0.0320 (14)	0.0252 (13)	0.0150 (13)	0.0005 (12)	-0.0008 (11)
C5	0.0532 (18)	0.0494 (17)	0.0306 (15)	0.0281 (15)	0.0067 (13)	-0.0038 (12)
C6	0.0425 (16)	0.0495 (17)	0.0310 (14)	0.0211 (14)	0.0007 (12)	-0.0029 (12)
C7	0.0354 (14)	0.0332 (14)	0.0304 (13)	0.0140 (11)	-0.0003 (11)	-0.0018 (11)
C8	0.0347 (14)	0.0392 (15)	0.0276 (13)	0.0132 (12)	-0.0019 (11)	-0.0017 (11)
C9	0.0355 (14)	0.0272 (12)	0.0263 (12)	0.0119 (10)	0.0039 (10)	0.0028 (10)
C10	0.0310 (13)	0.0314 (13)	0.0261 (13)	0.0132 (10)	0.0055 (10)	0.0006 (10)
C11	0.0282 (12)	0.0256 (12)	0.0276 (12)	0.0103 (10)	0.0017 (10)	0.0016 (10)
C12	0.0362 (14)	0.0286 (12)	0.0260 (12)	0.0140 (11)	0.0055 (10)	-0.0008 (10)
C13	0.0301 (13)	0.0369 (14)	0.0353 (14)	0.0148 (11)	0.0100 (11)	0.0041 (11)
C14	0.0330 (14)	0.0400 (15)	0.0329 (14)	0.0152 (12)	0.0006 (11)	0.0021 (11)
C15	0.0406 (16)	0.0427 (16)	0.0296 (14)	0.0068 (13)	-0.0042 (12)	-0.0069 (12)
C16	0.0281 (12)	0.0242 (12)	0.0255 (12)	0.0102 (10)	0.0019 (10)	0.0009 (9)
C17	0.0251 (12)	0.0325 (13)	0.0311 (13)	0.0102 (10)	0.0005 (10)	-0.0014 (10)
C18	0.0299 (13)	0.0330 (13)	0.0276 (13)	0.0096 (11)	-0.0049 (10)	-0.0044 (10)
C19	0.0349 (13)	0.0249 (12)	0.0216 (11)	0.0112 (10)	0.0050 (10)	0.0009 (9)
C20	0.0266 (12)	0.0352 (13)	0.0287 (13)	0.0121 (11)	0.0022 (10)	-0.0007 (10)
C21	0.0270 (12)	0.0380 (14)	0.0250 (12)	0.0103 (11)	-0.0007 (10)	-0.0045 (10)
C22	0.0312 (13)	0.0280 (12)	0.0275 (13)	0.0116 (10)	0.0025 (10)	-0.0009 (10)
C23	0.0362 (14)	0.0358 (14)	0.0265 (13)	0.0158 (11)	0.0044 (11)	-0.0011 (11)
C24	0.0405 (14)	0.0313 (13)	0.0229 (12)	0.0154 (11)	0.0038 (10)	0.0014 (10)
C25	0.0357 (14)	0.0471 (16)	0.0288 (14)	0.0183 (12)	0.0037 (11)	-0.0018 (12)
C26	0.0460 (16)	0.0493 (17)	0.0261 (14)	0.0214 (14)	-0.0036 (12)	-0.0041 (12)
C27	0.0512 (17)	0.0396 (15)	0.0241 (13)	0.0204 (13)	0.0061 (12)	0.0000 (11)
C28	0.0413 (16)	0.0403 (15)	0.0345 (15)	0.0151 (13)	0.0104 (12)	-0.0006 (12)

C29 C30	0.0371 (15)	0.0376 (14)	0.0323 (14)	0.0131 (12)	0.0051 (11) -0.0091 (15)	-0.0010(11) -0.0170(17)
	0.000 (_)	0.072(0)	0.0277 (10)	0.020 (2)	0.0031 (10)	0.0170 (17)
Geometric parar	neters (Å, °)					
01—N1		1.220 (4)	С9—(C14	1.39	7 (4)
02—N1		1.225 (4)	C10-	-C11	1.39	3 (3)
O3—C7		1.240 (3)	C10-	-H10	0.95	00
O4—C11		1.368 (3)	C11—	-C12	1.39	3 (3)
O4—C15		1.433 (3)	C12—	-C13	1.38	8 (4)
O5—N4		1.223 (3)	C12—	-H12	0.95	00
O6—N4		1.233 (3)	C13—	-C14	1.38	4 (4)
O7—C22		1.235 (3)	C13—	-H13	0.95	00
O8—C26		1.370 (3)	C14—	-H14	0.95	00
O8—C30		1.436 (3)	C15—	-H15A	0.98	00
О9—Н9А		0.91 (4)	C15—	-H15B	0.98	00
O9—H9B		0.92 (3)	C15—	-H15C	0.98	00
O10—H10A		0.87 (4)	C16—	-C21	1.38	9 (3)
O10—H10B		0.80 (4)	C16—	-C17	1.39	9 (3)
N1—C4		1.480 (3)	C16—	-C22	1.49	5 (3)
N2—C7		1.339 (3)	C17—	-C18	1.38	3 (3)
N2—N3		1.397 (3)	C17—	-H17	0.95	00
N2—H2N		0.8800	C18—	-C19	1.38	2 (4)
N3—C8		1.274 (3)	C18—	-H18	0.95	00
N4—C19		1.471 (3)	C19—	-C20	1.38	6 (3)
N5-C22		1.358 (3)	C20—	-C21	1.38	5 (3)
N5—N6		1.388 (3)	C20—	-H20	0.95	00
N5—H5N		0.8800	C21—	-H21	0.95	00
N6—C23		1.277 (3)	C23—	-C24	1.47	0 (3)
C1—C6		1.388 (4)	C23—	-H23	0.95	00
C1—C2		1.395 (4)	C24—	-C25	1.38	6 (4)
C1—C7		1.508 (3)	C24—	-C29	1.39	5 (4)
C2—C3		1.387 (4)	C25—	-C26	1.39	1 (4)
С2—Н2		0.9500	C25—	-H25	0.95	00
C3—C4		1.375 (4)	C26—	-C27	1.37	9 (4)
С3—Н3		0.9500	C27—	-C28	1.39	5 (4)
C4—C5		1.373 (4)	C27—	-H27	0.95	00
C5—C6		1.391 (4)	C28—	-C29	1.38	4 (4)
С5—Н5		0.9500	C28—	-H28	0.95	00
С6—Н6		0.9500	C29—	-H29	0.95	00
С8—С9		1.467 (3)	C30—	-H30A	0.98	00
С8—Н8		0.9500	C30—	-H30B	0.98	00
C9—C10		1.386 (4)	C30—	-H30C	0.98	00
C11—O4—C15		117.2 (2)	C13—	-C14—C9	120.	1 (2)
C26—O8—C30		117.7 (2)	C13—	-C14—H14	119.	9
H9A—O9—H9B		106 (3)	С9—(С14—Н14	119.	9
H10A—O10—H1	0B	112 (3)	O4—0	C15—H15A	109.	5
O1—N1—O2		124.0 (3)	O4—0	C15—H15B	109.	5
O1—N1—C4		118.4 (3)	H15A	—С15—Н15В	109.	5

O2—N1—C4	117.5 (3)	O4—C15—H15C	109.5
C7—N2—N3	119.2 (2)	H15A—C15—H15C	109.5
C7—N2—H2N	120.4	H15B—C15—H15C	109.5
N3—N2—H2N	120.4	C21—C16—C17	119.3 (2)
C8—N3—N2	113.4 (2)	C21—C16—C22	124.1 (2)
O5—N4—O6	123.5 (2)	C17—C16—C22	116.5 (2)
O5—N4—C19	118.4 (2)	C18—C17—C16	120.8 (2)
O6—N4—C19	118.1 (2)	С18—С17—Н17	119.6
C22—N5—N6	118.4 (2)	С16—С17—Н17	119.6
C22—N5—H5N	120.8	C19—C18—C17	118.1 (2)
N6—N5—H5N	120.8	C19—C18—H18	120.9
C23—N6—N5	114.2 (2)	C17—C18—H18	120.9
C6—C1—C2	119.4 (2)	C18—C19—C20	122.7 (2)
C6—C1—C7	117.7 (2)	C18—C19—N4	119.2 (2)
C2—C1—C7	122.9 (2)	C20-C19-N4	118.1 (2)
C3—C2—C1	120.3 (3)	C21—C20—C19	118.3 (2)
С3—С2—Н2	119.9	С21—С20—Н20	120.9
C1—C2—H2	119.9	С19—С20—Н20	120.9
C4—C3—C2	118.5 (3)	C20—C21—C16	120.8 (2)
С4—С3—Н3	120.7	C20—C21—H21	119.6
С2—С3—Н3	120.7	C16—C21—H21	119.6
C5—C4—C3	123.0 (3)	O7—C22—N5	122.0 (2)
C5—C4—N1	118.7 (3)	O7—C22—C16	121.2 (2)
C3—C4—N1	118.3 (3)	N5-C22-C16	116.7 (2)
C4—C5—C6	118.0 (3)	N6-C23-C24	122.5 (2)
C4—C5—H5	121.0	N6—C23—H23	118.8
С6—С5—Н5	121.0	С24—С23—Н23	118.8
C1—C6—C5	120.8 (3)	C25—C24—C29	119.6 (2)
С1—С6—Н6	119.6	C25—C24—C23	116.5 (2)
С5—С6—Н6	119.6	C29—C24—C23	123.9 (2)
O3—C7—N2	122.9 (2)	C24—C25—C26	120.6 (3)
O3—C7—C1	120.7 (2)	С24—С25—Н25	119.7
N2—C7—C1	116.4 (2)	C26—C25—H25	119.7
N3—C8—C9	122.7 (2)	O8—C26—C27	125.0 (2)
N3—C8—H8	118.6	O8—C26—C25	114.7 (3)
С9—С8—Н8	118.6	C27—C26—C25	120.3 (3)
C10-C9-C14	120.0 (2)	C26—C27—C28	118.9 (2)
C10—C9—C8	122.6 (2)	С26—С27—Н27	120.5
C14—C9—C8	117.4 (2)	С28—С27—Н27	120.5
C9—C10—C11	119.6 (2)	C29—C28—C27	121.5 (3)
С9—С10—Н10	120.2	C29—C28—H28	119.3
C11-C10-H10	120.2	С27—С28—Н28	119.3
O4—C11—C12	124.0 (2)	C28—C29—C24	119.2 (3)
O4—C11—C10	115.4 (2)	С28—С29—Н29	120.4
C12-C11-C10	120.6 (2)	С24—С29—Н29	120.4
C13—C12—C11	119.4 (2)	O8—C30—H30A	109.5
C13—C12—H12	120.3	O8—C30—H30B	109.5
C11—C12—H12	120.3	H30A—C30—H30B	109.5
C14—C13—C12	120.3 (2)	O8—C30—H30C	109.5

C14—C13—H13	119.8	H30A—C30—H30C	109.5
C12—C13—H13	119.8	H30B—C30—H30C	109.5
C7—N2—N3—C8	174.3 (2)	C8—C9—C14—C13	178.8 (2)
C22—N5—N6—C23	178.6 (2)	C21—C16—C17—C18	-1.0 (4)
C6—C1—C2—C3	0.0 (4)	C22-C16-C17-C18	178.3 (2)
C7—C1—C2—C3	179.1 (3)	C16—C17—C18—C19	-0.2 (4)
C1—C2—C3—C4	0.6 (4)	C17—C18—C19—C20	1.6 (4)
C2—C3—C4—C5	-0.8 (5)	C17—C18—C19—N4	-177.3 (2)
C2—C3—C4—N1	179.0 (3)	O5—N4—C19—C18	177.6 (2)
O1—N1—C4—C5	2.7 (4)	O6—N4—C19—C18	-1.6 (3)
O2—N1—C4—C5	-177.5 (3)	O5—N4—C19—C20	-1.4 (3)
O1—N1—C4—C3	-177.2 (3)	O6—N4—C19—C20	179.4 (2)
O2—N1—C4—C3	2.7 (4)	C18—C19—C20—C21	-1.7 (4)
C3—C4—C5—C6	0.3 (5)	N4-C19-C20-C21	177.3 (2)
N1—C4—C5—C6	-179.5 (3)	C19—C20—C21—C16	0.3 (4)
C2—C1—C6—C5	-0.5 (4)	C17—C16—C21—C20	1.0 (4)
C7—C1—C6—C5	-179.6 (3)	C22-C16-C21-C20	-178.3 (2)
C4—C5—C6—C1	0.3 (4)	N6—N5—C22—O7	-1.6 (4)
N3—N2—C7—O3	-0.3 (4)	N6-N5-C22-C16	177.5 (2)
N3—N2—C7—C1	179.8 (2)	C21—C16—C22—O7	-179.5 (3)
C6—C1—C7—O3	9.0 (4)	C17—C16—C22—O7	1.2 (4)
C2—C1—C7—O3	-170.1 (3)	C21-C16-C22-N5	1.4 (4)
C6—C1—C7—N2	-171.0 (3)	C17-C16-C22-N5	-177.9 (2)
C2-C1-C7-N2	9.9 (4)	N5-N6-C23-C24	180.0 (2)
N2—N3—C8—C9	179.2 (2)	N6-C23-C24-C25	-178.9 (3)
N3—C8—C9—C10	-6.7 (4)	N6-C23-C24-C29	1.1 (4)
N3—C8—C9—C14	174.2 (3)	C29—C24—C25—C26	-0.2 (4)
C14—C9—C10—C11	1.2 (4)	C23—C24—C25—C26	179.8 (3)
C8—C9—C10—C11	-177.9 (2)	C30—O8—C26—C27	0.1 (5)
C15—O4—C11—C12	3.1 (4)	C30—O8—C26—C25	179.9 (3)
C15—O4—C11—C10	-177.2 (2)	C24—C25—C26—O8	-179.3 (3)
C9—C10—C11—O4	178.9 (2)	C24—C25—C26—C27	0.6 (4)
C9—C10—C11—C12	-1.4 (4)	O8—C26—C27—C28	179.6 (3)
O4—C11—C12—C13	-179.5 (2)	C25—C26—C27—C28	-0.3 (4)
C10-C11-C12-C13	0.9 (4)	C26—C27—C28—C29	-0.4 (4)
C11—C12—C13—C14	-0.1 (4)	C27—C28—C29—C24	0.8 (4)
C12—C13—C14—C9	-0.2 (4)	C25—C24—C29—C28	-0.5 (4)
C10—C9—C14—C13	-0.3 (4)	C23—C24—C29—C28	179.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
N2—H2N…O9	0.88	1.98	2.839 (3)	166.
N5—H5N…O10	0.88	2.08	2.930 (3)	163.
С2—Н2…О9	0.95	2.23	3.153 (3)	164.
С8—Н8…О9	0.95	2.45	3.277 (3)	145.
С15—Н15В…Об	0.98	2.55	3.443 (4)	151.
С21—Н21…О10	0.95	2.42	3.355 (3)	169.
С23—Н23…О10	0.95	2.46	3.295 (3)	147.

O9—H9A···O7 ⁱ	0.91 (4)	2.26 (3)	3.020 (3)	140 (3)
O9—H9A…N6 ⁱ	0.91 (4)	2.34 (3)	3.093 (3)	140 (3)
O9—H9B…O3 ⁱ	0.92 (3)	1.84 (4)	2.758 (3)	173 (3)
O10—H10A…O7 ⁱ	0.87 (4)	1.99 (4)	2.846 (3)	167 (3)
O10—H10B…O3 ⁱⁱ	0.80 (4)	2.17 (4)	2.925 (3)	158 (3)
C13—H13···O4 ⁱ	0.95	2.52	3.390 (3)	153.
C15—H15A···O6 ⁱⁱⁱ	0.98	2.59	3.560 (4)	171.
C30—H30A···O2 ^{iv}	0.98	2.40	3.322 (4)	156.
C30—H30B···O1 ^v	0.98	2.59	3.200 (4)	121.

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*-1, *y*-1, *z*; (iii) -*x*+2, -*y*+2, -*z*+2; (iv) -*x*, -*y*, -*z*+1; (v) -*x*+1, -*y*, -*z*+1.

Fig. 1

