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Sulnmary  

The chromosomal translocation t(15;17)(q22;q12) is a consistent feature of acute promyelocytic 
leukemia (APL) that results in the disruption of genes for the zinc finger transcription factor 
PML and the retinoic acid receptor ot (RARot). We have previously shown that PML is a growth 
suppressor and is able to suppress transformation of NIH/3T3 by activated neu oncogene. In 
the study presented here, the full-length PML cDNA was transfected into B104-1-1 cells (NIH/3T3 
cells transformed by the activated neu oncogene) by retrovirally mediated gene transfer. We found 
that expression of PML could reverse phenotypes of B104-1-1 including morphology, contact- 
limiting properties, and growth rate in both transient-expression and stable transfectants. We 
also demonstrated that PML is able to suppress clonogenicity of B104-1-1 in soft agar assay and 
tumorigenicity in nude mice. These results strongly support our previous finding that PML 
is a transformation or growth suppressor. Our results further demonstrate that expression of 
PML in B104-1-1 cells has little effect on cell cycle distribution. Western blot analysis demonstrated 
that suppression ofneu expression in B104-1-1 by PML was insignificant in the transient transfection 
experiment but significant in the PML stable transfectants. This study suggests that PML may 
suppress neu expression and block signaling events associated with activated neu. This study supports 
our hypothesis that disruption of the normal function of PML, a growth or transformation 
suppressor, is a critical event in APL leukemogenesis. 

A ute promyelocytic leukemia (APL) 1 represents a clonal 
expansion of the leukemia blast at the promyelocyte stage 

of myeloid differentiation. The nonrandom chromosomal 
translocation t(15;17)(q22;q12) is a consistent cytogenetic 
hallmark for APL (1, 2). This translocation event results in 
the disruption of the PML gene on chromosome 15 and the 
retinoic acid receptor ol (RARc~) gene on chromosome 17 
(3-8). In addition, the translocation results in formation of 
the P M L - R A R ~  and RARot-PML fusion genes, which are 
transcriptionally active and encode PML-RAR~ and RARoe- 
PML fusion proteins (3-8). The PML-RARol fusion protein 
consists of the entire functional domains of the PML and 
RARoe genes, and it may play an important role in APL leu- 
kemogenesis (9). 

The involvement of the RARot gene in the t(15;17) break- 
point of APL has been an interesting subject to many investi- 
gators, especially for the remarkable responsiveness of APL 
to all-trans-retinoic acid therapy (10-12). However, disrup- 

1 Abbreviations used in this paper: APL, acute promyelocytic leukemia; BCS, 
bovine calf serum; G418 k, G418 resistant; HXM, hypoxanthine, xanthine, 
and mycophenolic acid; Neo R, neomycin resistance gene; PKC, protein 
kinase c; PLC, phospholipase C; RA, retinoic acid; RARe, retinoic acid 
receptor ~x; RXR, retinoid X receptor; TBS, Tris-buffered saline. 

tion of the RARc~ gene in APL is insufficient for the devel- 
opment of APL. This is illustrated in HL-60 cells, which 
lose RA sensitivity because of a mutation that disrupts the 
normal function of RAR.oe: sensitivity can be restored by 
increased expression of other forms of R A R  or retinoid X 
receptor (RXR) (13). It is now clear that expression of the 
PML-RARo~ protein in myeloid precursor cells can induce 
RA sensitivity (9). Furthermore, APL-derived NB4 cells (14) 
that lose their RA inducibility also lose the expression of 
PML-RARce protein (15). 

Although RARol biologic function as a R_A-dependent 
transcription factor has been well characterized, the functional 
role of PML remains relatively unknown. PML belongs to 
a novel family of proteins corresponding to a subgroup of 
a large family that possess a "ring finger" (16). Nuclear pro- 
teins in this family share common structural features: a cys- 
teine/histidine-rich motif at the NH2 terminus followed by 
a predicted coiled-coil structure (7, 17, 18). The C O O H  ter- 
minus of the predicted PML protein consists of a proline/ 
serine-rich region, which suggests that PML may be a phos- 
phoprotein and a substrate for serine/threonine protein ki- 
nase and/or phosphatase (6). This proline/serine-rich region 
is deleted in the PML/RARo~. Similar events have been seen 
in other members of that family in the context of oncogenic 
fusion (7). 
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The PML-RARot fusion protein is able to form a homo- 
dimer through the coiled-coil regions of the PML protein. 
This homodimer was shown to have distinct DNA binding 
properties when compared with the R A R / R X R  heterodimer 
(19). Physiologically, heterodimerization between RAR and 
R X R  is required for efficient binding of the PML-RARot 
fusion protein to target sequences (7, 19, 20). In APL, PML- 
RARot can heterodimerize with PML or RXR. Thus the 
fusion protein can potentially be a dominant negative inhib- 
itor of PML and R X R  (7, 19). It is noteworthy that seques- 
tration of R X R  by heterodimerization with PML-RARol 
may inhibit the heterodimerization of R X R  with some hor- 
mone receptors like RARs, thyroid hormone receptor, and 
vitamin D3 receptor (7, 9, 19). In turn, the normal biolog- 
ical function of these receptors will be impeded and hamper 
the ability of the cell to respond to differentiation induction 
by its ligands (e.g., vitamin D, thyroid hormone) and there- 
fore may result in a differentiation arrest. 

A multistep process of oncogenesis is required for most 
other tumors, but in APL the t(15;17) translocation is usu- 
ally the only consistent cytogenetic abnormality found (2), 
and no other molecular events, for example, mutations in the 
R A S  and p53 genes, have been noted (21). Consequently, 
we decided to address whether the loss of PML function in 
APL, in addition to sequestration of R X R  and alteration of 
RARot, may contribute to leukemogenesis. In our previous 
study, we showed that PML is a growth suppressor and able 
to suppress loci formation induced by the activated neu on- 
cogene (22). Thus, we chose the mutation-activated neu- 
transformed NIH/3T3 line, B104-1-1, as a model to study 
the effects of PML on oncogenesis. In this study, we found 
that constitutive expression of PML could reverse the pheno- 
type of B104-1-1 cells, suppress clonogenicity in a soft agar 
assay, and suppress tumorigenicity in nude mice. The pos- 
sible mechanism of PML effect on growth and the role of 
PML in APL pathogenesis were also discussed. 

Materials and Methods 
Cell Lines. The B104-1-1 cell line was obtained from M.-C. 

Hung (The University of Texas M.D. Anderson Cancer Center). 
As previously described, each B104-1-1 cell is an NIH/3T3 cell 
derivative containing "~ 10 copies of the mutation-activated genomic 
neu oncogene (23). B104-1-1 cells, NIH/3T3 cells, and their deriv- 
atives were maintained at 37~ in DME with 10% (vol/vol) bo- 
vine calf serum (BCS) (GIBCO BILL, Gaithersburg, MD). The 
packaging cell lines, GP + E-86 and PA317 (24, 25) and their de- 
rivatives were maintained in HXM complete medium (containing 
15/~g/ml of hypoxanthine, 250/~g/ml of xanthine, and 25 ~g/ml 
of mycophenolic acid) and HAT complete medium (containing 1.36 
mg/ml of hypoxanthine, 17.6 I~g/ml of aminopterin, and 378/~g/ml 
of thymidine). Each medium was supplemented with penicillin (5 
U/ml) and streptomycin (5 U/ml). 

Plasmids, Transfections, and Infection. The PML retroviral con- 
struct pLPMLSN was constructed by inserting the full-length 
cDNA of PML (22) into the unique BamHI restriction site of the 
retroviral vector, pLXSN, a gift from Dr. A. D. Miller (Fred Hutch- 
inson Cancer Research Center, Seattle, WA) (26). pLXSN or 
pLPMLSN were transfected into the ecotropic cell line GP+ E-86 
or the amphotropic PA317 packaging cell lines by calcium phos- 
phate coprecipitation (27, 28). After 24 h of coprecipitation, the 
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transfected packaging cells were split and grown in either HXM 
or HAT selective medium with 800/tg/ml of active G418. G418- 
resistant (G418 g) colonies were picked and expanded in selective 
medium and assayed for PML expression. The expression of trans- 
fected PML cDNA was determined by RNA slot blot analysis using 
the PML cDNA as described in our previous report (3). Expres- 
sion of the PML protein was determined by Western blotting as 
described below. 

The B104-1-1 cells, as target cells, were transduced with pLXSN 
or pLPMLSN by the supernatant gene transfer technique, as previ- 
ously described (29). In brief, B104-1-1 cells in exponential growth 
were plated with 106 cells in 100-mm culture dishes 1 d before 
recombinant virus infection. Each recipient culture dish was then 
fed with 10 ml of recombinant viral supernatant containing poly- 
brene at a final concentration of 6/~g/ml. The recipient ceils were 
then infected with viral particles in the supernatant for 48 h. The 
viral supernatant was prepared by incubating fresh medium for I d 
with the growth-accelerated viral producer. The viral supernatant 
was then harvested and centrifuged at 3,000g for 5 min to remove 
cells and debris. The pLXSN- or pLPMLSN-containing virus- 
infected B104-1-1 cells were designated as B-LXSN and B-PMLSN, 
respectively. The transiently infected B-PMLSN cells were then split, 
selected, and expanded in DME complete medium containing 500 
/~g/ml of G418. A G418 rt single-cell colony was selected and used 
directly for other experiments. The titers of recombinant retrovirus 
were determined using the NIH/3T3 cells and were expressed as 
G418 g NIH/3T3 CFU/ml (G418 rL CFU/ml) as previously de- 
scribed (30). 

Antibody, Gel Electrophoresis, and Immunoblotting. The antipep- 
tide antibody against PML, PMI_,C7, was raised in rabbits as de- 
scribed in our previous report (22). The neu oncogene product was 
detected by c-neu (Ab-3) mouse mAb (Oncogene .Science, Inc., Man- 
hasset, NY). 

For expression analysis of PML or neu protein, cells were washed 
with cold PBS and scraped into 0.5 ml of RIPA buffer (10 mM 
Tris-HCL, pH 7.5, 120 mM NaC1, 1% NP-40, 1% deoxycholate, 
0.1% SDS, 1 mM PMSF, 5/~g/ml leupeptin, 5/~g/ml aprotinin, 
1 #g/ml pepstatin, and 50 mM sodium fluoride per 100-mm dish). 
After 15 min on ice, the lysed cells were spun at 5,000 g for 15 
min at 4~ Protein samples were mixed 1:1 with 2x SDS sample 
buffer (containing 0.1 M Tris-HCl, pH 6.8, 0.2 M dithiothreitol, 
4% SDS, 0.2% bromophenol blue, and 20% glycerol) and then 
heated to 100~ for 5 min before a 7.5% SDS-PAGE. After elec- 
trophoresis, proteins were transferred onto nitrocellulose filter 
(Schleicher & Schuell, Inc., Keene, NH) in a buffer containing 25 
mM Tris, 192 mM glycine, and 20% methanol at 0.2 A for i h 
at 4~ Filters were then blocked by incubating overnight in Tris- 
buffered saline (TBS; 10 mM Tris, pH 8.0, 150 mM NaC1) con- 
taining 5% nonfat dried milk. The blots were then washed in TBS 
and incubated for 2 h with PML antibody or Ab-3. The primary 
antibody was removed and the blots were washed four times in 
TBS. To detect antibody reactions, the blots were incubated for 
1.5 h with alkaline phosphatase-conjugated anti-rabbit or anti- 
mouse IgG (Bio-Rad Laboratories, Inc., Richmond, CA) diluted 
1:2,000 in TBS, washed three times in TBS, and then placed in 
a buffer containing 100 mM Tris-HC1, pH 9.5, 100 mM NaC1, 
5 mM MgCI2, 330/zg of Nitroblue tetrazolium/ml, and 150/~g 
of 5-bromo-4-chloro-3-indolyl phosphate/m for 10-20 min. Enzy- 
matic color development was stopped by rinsing the filters in 
deionized water. 

Immunofluorescence staining of the PML protein was performed 
by using the affinity-purified antipeptide antibody as previously de- 
scribed (22). 

[~H]Thymidine Incorporation. A total of 2.5 x 104 cells were 
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plated in triplicate in 24-well plates and cultured in complete 
medium. The cells received a 1-h pulse of 1 /~Ci of [raethyl- 
3H]thymidine and then were harvested 16, 40, and 64 h after 
labeling. Cells were washed in cold PBS and fixed with methanol. 
Unincorporated [met~l-3H]thymidine was removed by washing 
with cold 10% TCA. Total cells in each well were harvested after 
lysis with 0.3 N sodium hydroxide and 1% sodium lauryl sarcosinate. 
Radioactivity of the incorporated thymidine was then determined 
with a scintillation counter (model LS5000 TD; Beckman Instru- 
ments, Inc., Fullerton, CA). 

Growth Rate Assay. Equal numbers of cells (2 x 103) from in- 
dividual clones were seeded onto 60-mm dishes. Cells were then 
cultured in 10% or 0.5% BCS and subsequently trypsinized, and 
viable cells were counted by the trypan blue dye exclusion method 
at daily intervals. 

Soft Agar Colony-firming Assay. Soft agar colony-forming assays 
were done at least in triplicate in 0.367% agar. Equal numbers of 
cells (103) from each of the indicated clones were seeded onto 60- 
mm culture dishes with or without 500 #g/ml of G418 (active 
concentration) (GIBCO BILL). After cooling to 4~ cells were 
cultured at 37~ in 5% CO2 for 14 d. The colonies were visible 
and counted after staining with 0.2% p-iodonitrotetrazolium violet 
(Sigma Chemical Co., St. Louis, MO). 

Tumorigenicity Assay in Nude Mice. Tumorigenicity assays were 
performed in nude mice as previously described (31). In brief, 10 s 
cells from each clone were subcutaneously injected on day 0 into 
the flanks of athymic nude mice of the same age. Each clone was 
assayed at four injection sites. Each tumor was measured with a 
tumorimeter and its three-dimensional diameter determined. The 
experimental mice were sacrificed on day 17, after which the tumors 
were dissected and their apparent weights recorded. 

Flow Cytometric Analysis. For analysis of DNA content by flow 
cytometry, cells were fixed for at least 24 h in 70% ethanol, washed 
twice with PBS, and resuspended in PBS containing 20/~g/ml of 

propidium iodide (Sigma Chemical Co.), 0.5% Tween 20, and 400 
U/ml of pancreatic RNase (Worthington Biochemical Corp., Free- 
hold, NJ). Cells were left in the dark overnight before analysis in 
a FACSCAN | flow cytometer equipped with a doublet discrimi- 
nator and LYSYS II and CELLFIT software (Becton-Dickinson & 
Co., Mountain View, CA). 

Results 
Isolation of pLPMLSN Recombinant Virus Producer and Stable 

Transfectants of pLPMLSN in BI04-1-1 Cells. The G418 g 
pLPMLSN-containing recombinant virus producers were 
selected after transfecting the GP+ E-86 ecotropic packaging 
cell line with the recombinant retroviral construct pLPMLSN. 
Expression of the PML eDNA in these stable transfectants 
was confirmed by Western blotting. We found that two of  
six isolated packaging cell lines, designated GPE-PMLD and 
GPE-PMLF, expressed the 90-kD PML protein. For the nega- 
tive control, we transfected the GP-E-86 and the PA317 pack- 
aging cell lines with pLXSN. Two clones of  pLXSN- 
containing recombinant virus producer were isolated. They 
were confirmed as clones by their ability to infect N I H / 3 T 3  
cells and to produce G418 p" clones. In addition, Southern 
blot analysis of the genomic D N A  isolated from these clones 
showed a 2.1-kb fragment of the BamHI/ApaLI-digested ne- 
omycin resistance gene (Neo p') sequence of pLXSN (our un- 
published data). The virus-producing titers were determined 
by their ability to produce NeoP'-containing colonies after 
infection with N I H / 3 T 3  cells. The viral titers of the culture 
supernatants of GPE-PMLD and GPE-PMLF were determined 
to be 1.2-3.0 x 106 CFU/ml ,  and the titer of  the pLXSN 
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Figure 1. Expression of PML pro- 
tein in PML-transfected B104-1-1 cells. 
Immunofluorescence staining of the 
PML protein in B-LXSN (mock- 
infected control) (a), PML1 (b), and 
PML2 (c) was performed by using the 
affinity-purified PML antipeptide an- 
tibody. Our PML antibody detected 
a single band of 120 (PML-RAR~, 
lane I) and 90 kD (PML, lane 2) pro- 
teins in NIH/3T3 cells transfected 
with the expression plasmids PML- 
RARot and PML (d). Expression of 
the 90-kD PML protein was detected 
in the stable transfectants PML1 (lane 
2) and PML2 (lane 3) by Western blot- 
ting (e). Lane I represents the protein 
fraction isolated from the mock- 
infected control (B-LXSN). 



recombinant virus producers (the control) was '~0.9-3.0 x 
106 CFU/ml. 

Our antibody fails to detect the murine PML protein in 
the parental B104-1-1 or B-LXSN cells; however, as expected, 
after retroviral transduction, a 90-kD PML protein was de- 
tected (Fig. 1). 10 single colonies infected with recombinant 
GPE-PMLD or GPE-PMLF virus were isolated by selection 
in 500/~g/ml of G418. Three of the stable transfectants ex- 
pressing the 90-kD PML protein by Western blotting (PML1, 
PML2, and PML3) were selected for further studies. Expres- 
sion of the PML protein in PML1 and PML2 was demon- 
strated by immunofluorescence staining and Western blot- 
ting (Fig. 1, b and c). 

Effects of PML on the Morphology ofB104-1-1 Cells. As 
shown in Fig. 2, a-c, in comparison with its parental 
NIH/3T3 fibrobhst, B-104-1-1 ceUs showed the typical mor- 
phological characteristics of a transformed phenotype (32-34). 
They showed more anchorage-independent and less contact 
limitation, and they were able to overlap and pile up even 
when some cells were separated from each other. The nega- 
tive control experiment was conducted by mock infection 
of B104-1-1 cells with pLXSN-containing virus. These cells 
demonstrated G418 resistance but showed no discernable 
change in their morphology (our unpublished data). On the 

other hand, PML1 and other PML-stable transfectants (PML2 
and PML3) showed a more differentiated morphology. These 
cells become more anchorage dependent and more contact 
limited. The cell volume became larger, and the cytophsm/nu- 
cleus ratio significantly increased. The morphology of the 
PML-expressing B104-1-1 cells appears to be similar to that 
of the wild-type NIH/3T3 cells. This result indicates that 
the expression of PML in B104-1-1 cells suppressed the trans- 
formation phenotype. Under serum-deprived conditions, mor- 
phology of NIH/3T3, B104-1-1, and the PML1 cells appeared 
significantly different from each other (Fig. 2, d-j). A 
significant number of cytoplasmic vacuoles were found in the 
PML1 cells. 

Effects of PML Expression on Clonogenicity in Sofi-Agar Assay 
and Tumorigenicity in Nude Mice. According to the results 
of these studies, PML is able to suppress the transformed 
phenotype of B104-1-1 cells. To investigate whether PML 
also suppresses the donogenicity of these cells, we first tested 
the effects of constitutive PML expression on the anchorage- 
independent growth of 8104-1-1 calls on soft agar. As shown 
in Fig. 3, the negative (mock-infected) control, that is, 
B-LXSN-infected cells, showed no suppression of colony for- 
mation in soft agar assay. However, the number of colonies 
formed in the B-PMLSN-infected B104-1-1 cells was sig- 
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Figure 2. Effect of PML on the morphology 
of the B104-1-1 cells. (a) Light microscopic photo- 
graph of NIH/3T3 cells showing the typical mor- 
phology of monolayer cells. (b) Light microscopic 
photographs of the B104-1-1 showing the trans- 
formed phenotype. (c) The three stable transfect- 
ants of B104-1-1 cells expressing the PML protein 
(PML1, PML2, and PML3) displayed morphology 
similar to that of the NIH/3T3 cells. Cells were 
cultured under 10% BCS (a-c) or 0.5% BCS (d-J). 



Figure 3. Suppression of clonogenicity of B104-1-1 cells by PML. 
Clonogenicity ofB104-1-1, B-LXSN (mock-infected control), B-PMLSN 
(pLPMLSN containing virus-infected B104-1-1 cells), and the stable trans- 
fectants PML1, PML2, and PML3 were determined by soft agar assay as 
described in Materials and Methods. The number of colonies counted for 
each experiment represents the average counts of three plates. Bar heights 
represent mean _+ SEM of three independent experiments. 

nificantly suppressed (up to 68%). Stable transfectants ob- 
tained from single colonies, PML1, PML2, and PML3, were 
able to suppress 89-94% of its C F U  on soft agar. 

The effects of PML on tumorigenicity of the B104-1-1 cells 
were assayed in athymic nude mice. As shown in Table 1, 
all nude mice injected with 105 B104-1-1 cells formed 
tumors as early as day 8. Similar results were observed in 
the group of mice injected with mock-infected B104-1-1 cells. 
No  difference in the time to tumor appearance, average tumor 
size, or average tumor weight were found between the two 
groups of mice. However, the appearance of tumor was delayed 
until day 10 in nude mice that were injected with PML3 cells 
and until day 14 in those that were injected with PML2 cells; 

Figure 4. The effect of PML on [3H]thymidine incorporation of 
B104-1-1 cells. Thymidine uptake in B104-1-1 (B104); B-LXSN (mock- 
infected control); B-PMLSN (transient PML transfectant), and PML1, 
PML2, and PML3 (stable PML transfectant) cells were performed as de- 
scribed in Materials and Methods. The results presented in each experi- 
ment represent the average of three plates. The bar height represents the 
mean +_ SEM of two separate experiments. P < *0.05, * *0.02, * * -0.01 
vs control values. Statistical comparisons were performed by using the un- 
paired Student's t test; P <0.05 was considered statistically significant. 

no tumor was observed on any site in the nude mice injected 
with PML1 cells. Tumor size and weight were significantly 
reduced in mice injected with PML2 and PML3 cells. These 
results demonstrate that PML is able to suppress the clonoge- 
nicity of B104-1-1 cells in soft agar assay and their tumorige- 
nicity in nude mice. 

The Effect of PML on Growth of neu-transformed Fibro- 
blasts. [3H]Thymidine incorporation into D N A  is gener- 
ally well correlated with overall D N A  synthesis, and it has 

Table 1. Suppression of Tumorigenicity of B104-1-I Cells by PML 

Average tumor volume* Average tumor weight* 

Cell lines Day 8' Day 10 Day 12 Day 14 Day 16 Day 17 

mm 3 g 

B104-1-1 49 175 459 1,479 2,160 2.57 + 0.85 
B-LXSN 53 171 477 1,562 3,061 2.57 +_ 1.02 
PML3 0 12 135 441 1,027 1.26 +_ 0.90 

PML2 0 0 0 45 112 0.28 + 0.27 

PML1 0 0 0 0 0 0.00 + 0.00 

Athymic nude mice of the same age were subcutaneously injected with 10 s cells from each clone into the flanks. Tumor volume was determined 
with a tumorimeter. Tumor-bearing mice were killed on day 17, after which the tumors were removed and their apparent weights were recorded. 
" An average of tumor volume and weight from four mice. 

Days after injection. 
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been used as a parameter to measure growth-affecting cells. 
B104-1-1, a neu-transformed NIH/3T3 fibroblast line, has 
been demonstrated to have an elevated growth rate (34). We 
thus determined the effect of PML expression on growth of 
the B104-1-1 cells by monitoring [3H]thymidine incorpora- 
tion. The results presented in Fig. 4 indicate that no significant 
changes in thymidine incorporation were found in mock- 
infected cells. However, a significant reduction in thymidine 
incorporation was found in cells that were transfected with 
pLPMLSN and that expressed the PML protein (PML1 and 
PML2). Therefore, PML expression in the B104-1-1 cells could 
reverse, to a variable degree, the rate of DNA synthesis when 
ceils were cultured under normal conditions. This observa- 
tion of growth suppression by PML was further demonstrated 
by determining the growth curves of different cell types in 
the presence of various concentrations of BCS (10%, 0.5%). 
The results presented in Fig. 5 indicate that all cells expressing 
the PML protein showed a slower growth rate. The differ- 
ence in growth rate between the mock-infected controls and 
the PML-expressing cells was more dramatic when the cells 
were cultured under low serum conditions. However, the 
effects of PML on the phase distribution of the cell cycle ap- 
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peared to be subtle and were insignificant either at normal 
or serum-deprived conditions (Table 2). 

Effects of PML on the Expression of neu Oncogene. To in- 
vestigate the mechanism of the PML suppression effect on 
B104-1-1 cells, we analyzed whether expression of PML pro- 
tein in these cells affected the expression of neu. The neu gene 
encodes a 185-kD transmembrane protein of the tyrosine ki- 
nase receptor family (35-37). As shown in Fig. 6 a, B104-1-1 
cells expressed high levels of the 185-kD NEU protein in both 
its phosphorylated (upper band) and unphosphoryhted (lower 
band) forms. Expression of NEU in the GPE-PMLD- and 
GPE-PMLF-infected cells did not show any significant differ- 
ence when compared with that of B104-1-1 and the mock- 
infected control. However, its expression was significantly 
suppressed in the stable PML transfectants, although a 
moderate level of NEU was still detectable in these cells (Fig. 
6 b). Immunofluorescence staining of these cells indicated that 
almost 100% of the cells were PML + . This observation 
demonstrated that constitutive expression of PML in the neu- 
transformed NIH/3T3 cells significantly affects the expres- 
sion of the NEU protein in vivo. Therefore, we conclude 
from these studies that PML did not significantly affect the 
expression of NEU in the transient assay, but did produce 
a dramatic reduction in NEU expression in the stable trans- 
fectants. Since there are 10 copies of activated neu oncogene 
transfected in the B104-1-1 cells, and high levels of the NEU 
protein is constitutively expressed, the moderate expression 
of NEU protein in the two stable transfectants suggested that 
constitutive expression of PML in these ceUs did not com- 
pletely suppress the expression of activated NEU. Our results 
also suggest that growth suppression of the B104-1-1 cells 
by PML is a result of suppressing neu expression and the signals 
arising from the NEU protein. 

Table  2. Distribution of Cell Cycle Phases in B-LXSN and 
PML1 Cells in 10% and 0.5% BCS 
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Figure 5. The effect of PML on growth rate of B104-1-1 cells. Stable 
PML transfectants of B104-1-1 (PML1 and PML2), B104-1-1 transiently 
infected with PML recombinant virus (B-PMLSN), and the mockqnfected 
control (B-LXSN) were cultured in 10% (a) and 0.5% (b) BCS. The number 
of cells determined at each point represents the mean cell numbers of dupli- 
cated experiments. 

Percentage of Cells 

Cell Culture Percentage 
type days of BCS G1/G0 S G2/M 

B-LXSN 

PML 1 

1 0.5 76.6 14,1 9.2 

1 10.0 65.5 20.9 13.5 

3 0.5 78.4 12.5 9.0 
3 10.0 64.3 21.1 14.5 

1 0.5 72.9 17.4 9.6 
1 10.0 63.8 24.1 11.9 
3 0.5 80.2 11.8 8.0 
3 10.0 69.1 19.9 10.9 

B-LXSN and PML1 cells (2 x 10s) were seeded onto 60-ram culture 
dishes in DME containing 10% or 0.5% BCS. Flow cytometry analysis 
of various phases of the cell cycle was performed as described in Materi- 
als and Methods. 
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Figure 6. The effect of PML 
on the expression of NEU protein 
in stable transfectants and in tran- 
sient infection. Expression of PML 
and NEU proteins in these cells 
was analyzed by Western blotting. 
For transient infection (a), total 
protein was isolated 72 h after viral 
infection. In the upper blots, lanes 
I and 2 represent proteins isolated 
from GPE-PMLD- and GPE- 
PMLF- infected cells; lane 3 
represents protein isolated from 
the pLXSN mock-infected con- 
trol. In the lower blots, lanes 1 
and 2 represent proteins isolated 

from B104-1-1 and the mock-infected control, B-LXSN, respectively. Lanes 
3 and 4 represent protein samples of GPE-PMLD and GPE-PMLF re- 
combinant virus-infected cells. The upper and lower blots represent the 
expression of PML and NEU proteins, respectively. (/3) Lanes 1 and 2 rep- 
resent protein samples of B104-1-1 and the mock-infected control, respec- 
tively; lanes 3 and 4 represent protein samples of PML1 and PML2. The 
uppper blots show the expression of the NEU protein. The lower blots 
show the comparable quantity of protein samples of the upper blots stained 
with Coomassie blue. Expression of PML protein in PML1 and PML2 
is shown in Fig. 1. 

Discussion 

The characteristic morphology of the activated neu- 

transformed NIH/3T3 cell line B104-1-1 makes it a good 
model for analyzing the functions of gene products that can 
affect the expression or the function of the activated neu on- 
cogene. The B104-1-1 cell line in culture exhibited less an- 
chorage dependence and less contact limitation by piling up 
and overlapping, especially during confluence. Our study 
demonstrated that the transformed phenotype could be reversed 
by infection with a retrovirally transduced P M L  gene. We 
have shown that PML is able to suppress anchorage-indepen- 
dent growth ofB104-1-1 cdls on soft agar. Furthermore, PML 
also suppressed act iva ted-neu- induced transformation, which 
was demonstrated most stringently by the suppression of 
tumor formation in nude mice. These results indicated that 
PML can reverse neu- induced transformation. Since PML is 
a putative zinc finger transcription factor, this result implies 
that PML affects the activated neu oncogene either by in- 
hibiting neu expression or by blocking the signals transduced 
by the NEU protein. Our results as shown in Fig. 6 suggest 
that constitutive expression of PML in B104-1-1 ceils sup- 
presses both the expression and biologic function of the neu 

gene. Suppression of NEU function in a neu- trans formed cell 
line resulted in cell cycle arrest at the G2/M phase (38, 39). 
However, PML-suppressed transformation of B104-1-1 cells 
did not significantly affect the cell cycle phases (Table 2), in- 
dicating that the effect of the molecular mechanism of PML 
suppression of neu is different from the effect of using specific 
monoclonal antibody against the NEU receptor (38, 39). In 
addition, morphology of PML1 is different from NIH/3T3 
under serum-deprived conditions (Fig. 2). 

The activated neu oncogene transfected in the B104-1-1 
cell contains a single amino acid substitution in the trans- 
membrane domain, and it has higher tyrosine kinase activity 

than its normal counterpart (40--43). By Western blotting, 
we found that PML had only subtle effects on neu expression 
in the transient expression assay. However, the subtle change 
in neu expression cannot explain the significant reversal of 
the transformed phenotype and growth suppression that oc- 
curred in the PML-expressing B104-1-1 line. These results 
suggest that PML can reverse the neu-transformed pheno- 
type of B104-1-1 cells and that this effect does not result from 
the suppression of neu expression, but mostly from the inhi- 
bition of signal transduction induced by activated neu. 

Although the effects of tumorigenicity suppression by PML 
can be associated with that of growth retardation (31, 44, 
45), the growth-suppressing effects of PML were demonstrated 
by decreased thymidine incorporation in PML-expressing 
B104-1-1 cells (B-PMLSN, PML1, PML2, and PML3). This 
was also reflected by the concordant suppression of cell growth 
in PML-expressing B104-1-1 lines shown in growth curves. 
The growth suppression effect of PML was more noticeable 
under conditions of serum deprivation. From our analysis 
of cell cycle distribution, it was clear that serum deprivation 
did arrest more fibroblasts in the G0/G1 phase, but that no 
significant difference resulted from the expression of PML. 
Thus, it is possible that the growth difference resulting from 
PML expression, especially in conditions of serum depriva- 
tion, came from a survival disadvantage, but not from cell 
cycle redistribution. 

Our findings demonstrate that PML functions as a growth 
suppressor gene and, although it has yet to be demonstrated 
prospectively, the disruption of PML suppressor function after 
the t(15;17) will likely be an important contributor to the 
development of leukemic transformation. 

In our previous study, we convincingly demonstrated that 
PML is a growth suppressor based on the following findings: 
(a) PML suppressed the anchorage-independent growth of 
APL-derived NB4 cells on soft agar and tumorigenidtr in 
nude mice; (b) PML suppressed the oncogenic transforma- 
tion of rat embryo fibroblast by cooperative oncogenes; and 
(c) PML suppressed transformation of NIH/3T3 cells by ac- 
tivated neu oncogene (22). We also showed by a cotransfec- 
tion experiment that PML-RARo~ can suppress the trans- 
formation suppressor function of PML, possibly by a dominant 
negative-inhibitory effect. Our recent results demonstrated 
that PML is a phosphoprotein, and that at least one of the 
sites is phosphorylated by a tyrosine kinase. Our recent study 
also showed that PML is associated with the nuclear matrix 
(46). In addition to these results, we also found that PML 
is a promoter-specific transcription suppressor (22). There- 
fore, from these studies, we conclude that PML, the gene 
disrupted by the translocation breakpoint in APL, has many 
similar properties to tumor suppressors, for example, retino- 
blastoma gene product (Rb). 

The mechanism of neu transformation may be coupled to 
phosphatidylinositol turnover through tyrosine phosphory- 
lation of phospholipase C (PLC) (46, 47). It was also found 
in activated neu- t rans formed cells that PLC 3, is constitutively 
phosphorylated on the tyrosine residues and forms a kinase- 
dependent complex with the mutation-activated neu receptor 
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(43). The coupling of activated neu to PLC'r produces ino- 
sitol 1,4,5-triphosphate and diacylglycerol, which in turn in- 
duces Ca 2+ and activates protein kinase C (PKC) (48). In 
view of the effects of PML on neu-induced transformation 
and survival promotion, it is possible that PML can attenuate 
or block the signal arising from activated neu. It was found 
that in lymphocytes, cell death (apoptosis) could be repressed 

by a PKC inhibitor, and that hormone-induced apoptosis could 
be sensitized by an inhibitor of tyrosine kinase (49). 

In conclusion, the studies performed in this report further 
support the hypothesis that disruption of the PML gene by 
the t(15;17) translocation plays an important role in APL leu- 
kemogenesis. 
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