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1  | INTRODUCTION

Knowledge of life-history traits such as age of sexual maturity, fecun-
dity, and survival are fundamental to the study of evolutionary ecology 
and to applied conservation. Evolutionary ecologists study how life-
history traits differ among species and higher taxonomic groups, and 
how constraints and trade-offs among life-history parameters shape 
evolution (Roff, 1992; Stearns, 1992). According to this theory, closely 
related species will often have similar life histories owing to their shared 

evolutionary history (Kindsvater, Mangel, Reynolds, & Dulvy, 2016). At 
the same time, life-history parameters can vary among and between 
populations of the same species in response to differences in environ-
mental capacity, resource availability, and intraspecific and conspecific 
interactions (e.g., Johnson & Zuniga-Vega, 2009; Kindsvater et al., 
2016), a phenomenon known as phenotypic plasticity (Stearns, 1992).

In conservation biology, life-history parameters are crucial pieces 
of information when developing models used to inform management 
and conservation planning because they determine the rate at which 
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Abstract
Knowledge of life-history parameters is frequently lacking in many species and popu-
lations, often because they are cryptic or logistically challenging to study, but also 
because life-history parameters can be difficult to estimate with adequate precision. 
We suggest using hierarchical Bayesian analysis (HBA) to analyze variation in life-
history parameters among related species, with prior variance components repre-
senting shared taxonomy, phenotypic plasticity, and observation error. We develop 
such a framework to analyze U-shaped natural mortality patterns typical of mam-
malian life history from a variety of sparse datasets. Using 39 datasets from seals in 
the family Phocidae, we analyzed 16 models with different formulations for natural 
morality, specifically the amount of taxonomic and data-level variance components 
(subfamily, species, study, and dataset levels) included in mortality hazard parame-
ters. The highest-ranked model according to DIC included subfamily-, species-, and 
dataset-level parameter variance components and resulted in typical U-shaped haz-
ard functions for the 11 seal species in the study. Species with little data had survival 
schedules shrunken to the mean. We suggest that evolutionary and population ecol-
ogists consider employing HBA to quantify variation in life-history parameters. This 
approach can be useful for increasing the precision of estimates resulting from a 
collection of (often sparse) datasets, and for producing prior distributions for popula-
tions missing life-history data.
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a population can grow or decline and explain the nature of popula-
tion persistence through time (Williams, Nichols, & Conroy, 2002). 
Life-history parameters are also fundamental inputs to population 
models. Such models can be “retrospective”—for instance, those 
fitted to historical data to explain past population changes (as with 
integrated population models and fisheries models; for example, 
Besbeas, Freeman, Morgan, & Catchpole, 2002; Newman, Buckland, 
Lindley, Thomas, & Fernandez, 2006; Quinn & Deriso, 1999)—or 
“prospective,” as with models used to forecast population trend or 
viability (e.g., Beissinger & McCullough, 2002; Caswell, 2014).

Unfortunately, knowledge of life-history parameters is frequently 
lacking in many species and populations, often because they are 
cryptic, elusive, or logistically challenging to study, but also because 
life-history parameters can be difficult to estimate with adequate 
precision. For instance, the productivity of fish stocks (a product of 
fecundity and early stage survival) is a notoriously difficult parame-
ter to estimate using data from a single population (Conn, Williams, 
& Shertzer, 2010). In such situations, it is sensible to leverage the 
strength of multiple datasets within a joint analysis to specify rea-
sonable means and variances for imprecise or missing life-history 
parameters. Joint analyses allow researchers to combine findings of 
related, but independent, studies and aggregate information in order 
to achieve higher precision than would be possible using data from a 
single dataset (Greenland & O’Rourke, 2008). However, considerable 
variation in estimates among studies can arise through differences 
in study design, biases due to methodological flaws and through 
random noise (Higgins, Thompson, & Spiegelhalter, 2009). Such 
differences are readily accommodated using Bayesian hierarchical 
models. The advantages of Bayesian analysis include full allowance 
for all sources of parameter uncertainty, the opportunity to “borrow 
strength” from multiple studies when estimating individual effects, 
and the ability to make predictions for future studies (Higgins et al., 
2009). Bayesian methods also offer increased flexibility for perform-
ing more complex analyses (Rhodes et al., 2016), can incorporate 
missing or unbalanced data, and can be used to estimate prior proba-
bility distributions in cases where initial information is scarce or does 
not exist (Ogle, Barber, & Sartor, 2013; Ogle et al., 2014).

Hierarchical analysis has been used in fisheries, where critical 
life-history information on individual species is often lacking or is 
poorly estimated (Myers & Mertz, 1998). It has been successfully em-
ployed to estimate a number of life-history parameters or functions 
thereof, including fish stock productivity (steepness; Dorn, 2002; 
Forrest, McAllister, Dorn, Martell, & Stanley, 2010; Michielsens & 
McAllister, 2004; Shertzer & Conn, 2012), and natural mortality 
rates (Hewitt et al., 2007; Jensen, 1997; Pauly, 1980). In such analy-
ses, investigators often relate life-history parameters to more easily 
measured quantities such as size, age at maturity, or maximum age 
(Gislason, Daan, Rice, & Pope, 2010). In this study, we suggest using 
hierarchical Bayesian analysis (hereafter, HBA) to analyze variation 
in life-history parameters. However, instead of morphological met-
rics, we propose using taxonomic relations among species to guide 
construction of alternative models and using model selection to 
identity an appropriate level of taxonomic resolution.

Although our basic modeling framework could be applied to 
multiple life-history parameters, we concentrate here on quantify-
ing natural morality. Natural mortality is crucial for population man-
agement, but is also difficult to estimate, particularly for exploited 
populations subject to both natural and harvest mortality (Pauly, 
1980). It is also one of the most critical and important parameters 
that both shapes life histories through natural selection (Jørgensen 
& Holt, 2013). Being subject to considerable evolutionary constraint, 
we might expect it to be amenable to an analysis where variation in 
natural mortality curves is structured taxonomically.

Conducting a hierarchical analysis of natural mortality from dif-
ferent data types requires conducting inference on a common scale. 
We propose using the survival and hazard functions (Cox & Oakes, 
1984) as a common currency for analyzing mortality data reported 
for different time periods or age ranges. In mammals, Caughley 
(1966) recognized three major life stages including a juvenile stage 
characterized by a relatively high mortality rate, an adult stage char-
acterized by a relatively low mortality, and a senescent stage where 
mortality increases again. These three stages can be represented 
with a U-shaped hazard rate curve.

This study is structured as follows. First, we introduce the sur-
vival and hazard functions mathematically, showing how these func-
tions are related to age-specific survival probabilities, and introduce 
our preferred hazard rate formulation based on a reduced additive 
Weibull (RAW) formulation (Choquet, Viallefont, Rouan, Gaanoun, & 
Gaillard, 2011; Xie & Lai, 1996). Next, we introduce a generic hierar-
chical model that can be used to simultaneously analyze data from 
multiple disparate sources, including (a) the age structure of har-
vests, (b) survival-at-age data (i.e., survival associated with a single 
age), and (c) survival estimates for age-ranges (e.g., “adult” survival; 
ages 1–5 survival). We also address strategies for coping with esti-
mates that do not have accompanying estimates of precision. Next, 
we describe how to incorporate phylogenetic structure into natu-
ral mortality parameters. We then use our approach to conduct an 
analysis of 39 datasets from 11 phocid seal species that inhabit polar 
or subpolar seas, areas of relevance to our research programs. Our 
analysis includes models structured hierarchically by subfamily, spe-
cies, study, and dataset. High-latitude phocid seals are often difficult 
to study given their wide range and natural history. In addition to 
providing insights into patterns of taxonomy-based variation, HBA 
thus has potential to be extremely useful for providing prior distribu-
tions for population modeling and analysis of data-poor populations. 
We provide an example of estimating such a prior for a population of 
ribbon seals Histriophoca fasciata.

2  | MATERIALS AND METHODS

2.1 | Survival models

Before describing a HBA model for natural mortality, it is useful 
first to describe a common currency for modeling. For instance, one 
might have access to two point estimates from the literature, one of 
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which gives survival probability for a specific age, and another which 
gives cumulative survival over the first several years of life. How can 
both estimates be used as data points within the same analysis given 
the difference in scale?

To get around this dilemma, researchers in medical fields have 
long appealed to survival analysis using failure time distributions 
(e.g., Cox & Oakes, 1984). Specifically, let T be a non-negative con-
tinuous random variable representing the age of an animal when 
it dies. This “waiting time distribution” can be characterized with 
probability density function ft and cumulative distribution func-
tion (CDF)

Then the complement of the CDF, the survival function

is the probability of surviving until t. Note that St is the “survivor-
ship schedule” familiar to ecologists as the life table quantity l(x) (see 
Gotelli, 2001, p. 53).

In many instances, it is more straightforward to work with the 
hazard function than the survival function or related probability dis-
tributions. In the case of mortality, the hazard function is the instan-
taneous death rate and can be defined as follows:

The relationship between the hazard and survival functions can 
also be specified as follows:

so that, for instance, a constant hazard c leads to a survivor func-
tion (survivorship schedule) of

Under this framework, the conditional probability of surviving to 
age t + 1 given that an animal has already survived to age t is simply

Similar calculations can be made to model natural mortality over 
different age ranges; hazard and survival functions thus provide a 
unified basis for modeling survival data on different scales (Ergon, 
Borgan, Nater, & Vindenes, 2018).

There are a variety of hazard functions that have a U shape appro-
priate to mammalian (and other species) life histories with prior use 
in ecology, including Siler (1979) and various Weibull (Bebbington, 
Lai, & Zitikis, 2007a,b) functions. Choquet et al. (2011) studied the 
performance of different survival curve formulations, preferring a 
reduced additive Weibull (RAW) survival function (Xie & Lai, 1996) 
which has the added advantage of only requiring three parameters. 
This formulation is specified using survival and hazard functions 
given as follows:

where a > 0, b > 1, c ≥ 0 are parameters to be estimated. We use 
this formulation in all subsequent modelling efforts.

2.2 | Hierarchical modelling framework

We describe a HBA modelling framework specific to analysis of nat-
ural mortality. As with all Bayesian analyses, this involves combining 
prior information with a likelihood (or product likelihood in our case) 
to generate a posterior distribution for the parameters of interest. 
Symbolically, we can write the posterior as

where θ denotes the set of all parameters in the model, Y de-
notes all data, and the subscript d indexes these quantities by data-
set. The form of the likelihoods Pr (Yd | θ) depends on the type of data 
being analyzed; ultimately the goal is to probabilistically relate data 
or reported estimates to RAW survival functions employing param-
eters θ. We propose to include taxonomy-based structure within the 
joint prior distribution, Pr(θ). We now describe these two modelling 
components in turn.

2.2.1 | Likelihoods of common data types

We describe likelihood functions for three major types of 
mortality-related data encountered in the literature, namely: sur-
vival probability by age (often annual), survival probability by age 
range, and age structure of harvests (i.e., cohort or life table data). 
Since survival probabilities are naturally bounded by the interval 
(0, 1), we propose to model survival on the logit scale. Probit scale 
could be another possible choice in situations when convergence 
improvement is needed. We also make allowances for harvested 
populations by incorporating study-specific prior distributions for 
harvest rates.

In harvested populations, a major challenge is that survival es-
timates reported in the literature often reflect total mortality and, 
as a result, natural mortality must be separated from human-caused 
mortality to quantify the relative effects of harvest versus natural 
causes of animal death. To separate the two processes, it will often 
be necessary to have a point estimate or prior distribution for har-
vest rate. In analyses that include both harvested and non-harvested 
populations, one can presumably get away with an imprecise prior, 
although this means that non-harvested populations will contribute 
more to inferences about natural mortality.

Any approach for simultaneously modelling natural and harvest 
mortality must make assumptions about the temporal distribution 
of mortality. For instance, if natural and harvest mortality operate 
at constant rates throughout a year, one might use a formulation 

Ft=Pr(T< t)

St=Pr(T≥ t)=1−Ft

λt= ft∕St

St=exp

(
− ∫

∞

t

λxdx

)
,

St=exp (−ct)

(1)ϕt=
St+1

St

(2)St=exp
(
−(at)b− (at)

1

b −ct
)

λt=ab(at)b−1+
a

b
(at)

1

b
−1+c,

Pr(�|Y)∝Pr(�)
∏

d

Pr(Yd|�),
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for total survival based on the Baranov catch equation, which as-
sumes constant, overlapping hazards for both processes (Miller & 
Andersen, 2008). In contrast, if harvest operates as a “pulse,” one 
might use a model where harvest mortality operates before, in be-
tween, or after natural mortality. In likelihoods described below, we 
use the latter specification, as it is most relevant to our phocid seal 
example. We also make harvest rate age and time invariant, although 
this constraint can certainly be revisited in specific applications.

Age-specific survival
Let

ϕ̃t,d denote the annual survival probability of age class t from 
dataset d as reported in the literature. We model these data using a 
logit-normal distribution, such that

where τt,d is a precision value representing observation error and 
ϕt,d is a function of natural and harvest mortality. Specifically, we set

where hd is the harvest rate associated with dataset d and St,d 
is the survival function value for age t and dataset d (see the next 
section for more information on how these are formulated for spe-
cific datasets). In all applications in this study, we use a diffuse prior 
distribution on harvest, where

and h̃d is a rough estimate based on information from the liter-
ature (see Supporting information Appendix S1 for a description of 
how such rough estimates can be calculated). Note that h̃d can be set 
to an arbitrarily small value for unharvested populations.

We have encountered several ways in which authors report pre-
cision in peer-reviewed literature and scientific reports. In a best 
case scenario, standard errors are reported along with estimates, 
and these can be used directly to set precision as

This formulation uses the delta method to approximate the pre-
cision of estimates on the logit scale. In other cases, one may not be 
so fortunate; for instance, sometimes researchers report sample size 
(but no standard error), a confidence interval instead of a standard 
error, or simply just an estimate with no indication of sample size or 
precision. We have developed procedures for producing τt,d values for 
each of these data types. In particular, we use properties of the bino-
mial distribution to calculate precision where possible. In the absence 
of any information about likely standard error, we used a conservative 
procedure that assigned relatively imprecise values; see Supporting 
information Appendix S2 for more information on these procedures.

Survival for age-ranges
Another way survival data are reported in the literature is over age 
ranges. For instance, an author might report a “subadult” survival 

rate that pertains to ages 1–4, or a single adult survival probability 
that applies to ages 5+. We still desire to use such data in analysis, 
even though our survival and hazard functions are age specific.

To incorporate these data, we suggest matching the reported 
estimate to a weighted average of survival probabilities, where the 
weight is proportional to the expected number of individuals alive in 
each age class. For instance, let t1 be the beginning of the age range 
and t2 be the last age represented. Note that if the final age is not 
specified (e.g., ages 5+), a “large” age can be used for t2, such that 
the probability of living past t2 is negligible. In this case, we suggest 
modeling reported survival as

logit(ϕ̃[t1,t2],d
)∼Normal

(
logit

(
ϕ[t1,t2],d

)
,τ−1
[t1,t2],d

)
, where

ϕ[t1,t2],d
=
∑t2

t=t1
ϕt,dπt,d, and

Note that we use the same definition of survival probability as 
the previous section (i.e., Equation 3). If a standard error for the age 
range estimate is provided, this can be applied as in Equation 4 to 
produce a value for τ[t1,t2],d. Otherwise, alternative procedures will 
be needed (see Supporting information Appendix S2).

Age structure of harvests
For harvested fish and wildlife populations, there are often data on 
the age structure of harvests. Such data represent a number of pro-
cesses that are difficult to fully disentangle, including recruitment, 
natural mortality, harvest mortality, and reporting rates. However, 
when used in conjunction with other data sources, catch-age data 
provide the backbone of most modern fisheries stock assessment 
models (Quinn & Deriso, 1999) and many wildlife monitoring pro-
grams (Skalski, Ryding, & Millspaugh, 2010).

We propose to use age-structure data in a slightly less nuanced 
manner, as historical records often do not include the auxiliary in-
formation that would be necessary to estimate time- or age-specific 
sampling probabilities (although incorporating these into our mod-
eling framework would be highly desirable if extra data were avail-
able). Let Ct,c,d represent the number of animals from dataset d and 
cohort c that are aged a when harvested (a cohort denotes a group 
of animals all born in the same year). Then, assuming harvest rates 
are approximately equal for all ages and time periods, we model

where the multinomial cell probabilities, πt,c,d, can be calculated 
as in Equation 5. See the Discussion for possible extensions allowing 
age- or time-specific harvest rates.

2.2.2 | Taxonomy-­based structure of 
natural mortality

So far we have described likelihoods for common data types that 
are written in terms of dataset-specific survival functions. We will 

logit(ϕ̃t,d)∼Normal
(
logit

(
ϕt,d

)
,τ−1
t,d

)
,

(3)ϕt,d= (1−hd)∕St+1,d,

hd∼Uniform
(
0,2h̃d

)
,

(4)τt,d=ϕ̃2
t,d

(
1−ϕ̃t,d

)2[�SE
(
ϕ̃t,d

)]−2
.

(5)πt,d=

∏t

i=t1
(ϕi−1,d)

∑t2
j=t1

∏j

i=t1

�
ϕi−1,d

� .

[C1,c,d,C2,c,d ,⋯ ,CT,c,d]∼multinomial
(∑

t
Ct,c,d;π1,c,d,π2,c,d,⋯ ,πT,c,d

)
,
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now describe how to impart greater structure on these functions, 
thereby allowing information to be shared across studies. Initially, 
we thought to impart variation in survival by imposing hierarchical 
structure on the a, b, and c parameters of Equation 2. However, such 
models were often unstable (I. Trukhanova, unpublished data), re-
sulting in multimodal solutions and MCMC convergence problems. 
Instead, we report on application of a proportional hazards modeling 
framework (Cox & Oakes, 1984, section 5.3), whereby hazard rates 
are multiplied by dataset-specific adjustment terms. Specifically, the 
proportional hazards model can be written as follows:

In our applications, λt is as in Equation 2, and the adjustment 
term ψd is a function of covariates. To impart taxonomic structure, 
we specify a log-Gaussian hierarchical model for ψd, writing it as

where Kd≡{sub− family, species, study, dataset}. For a visual de-
piction of a possible model structure, see Figure 1. Importantly, we 
can include variance components for all desired taxonomic levels, as 
well as levels particular to a given population, study, or dataset. This 
ability can help discriminate between taxonomic effects, phenotypic 
plasticity (e.g., effects associated with different populations), and 
sampling artifacts (e.g., effects associated with different datasets).

We specify a Gaussian structure for each of the components in 
Equation 6, and conjugate gamma priors for the precision of Gaussian 
errors to complete our hierarchical specification. Specifically,

Note that values for τk, αk, and βk need to be specified by the 
analyst. In the example below, we set τk = 0.1, αk = 1.0, and βk = 0.1, 
which are weakly informative so as to promote shrinkage towards 
the mean, but flexible enough to allow priors to be overwhelmed 
when there are sufficient data.

One consequence of using a nonlinear transformation is that sur-
vival at higher levels of the model hierarchy (e.g., survival at the spe-
cies level when a model also includes dataset-level effects) will be 
biased if transformed directly to the real scale. In such situations it 
is common to employ a lognormal bias correction (e.g., Dorn, 2002). 
For instance, if our model includes species and dataset effects, and 
we are interested in predicting survival at the species level on the 
real scale, we need to calculate it using

as the additional variation associated the dataset level effect will 
increase the mean response.

2.3 | Example: phocid seals

To demonstrate our approach, we conducted a HBA of phocid (fam-
ily Phocidae) seal natural mortality. Phocid seals include two sub-
families, Monachinae and Phocinae, and are physiologically and 
ecologically adapted to aquatic environments. Many phocids use sea 

λt,d=ψdλt.

(6)log
(
ψd

)
=
∑

k∈Kd

∈k ,

∈k∼Normal
(
0,τ−1

k

)
,and

τk∼Gamma(αk,βk).

ψspecies=exp(∈species+0.5τ−1
dataset

),

F IGURE  1 Five-level hierarchical 
structure of the models used to estimate 
survival and hazard rate for phocid seals
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ice for at least some parts of their life cycle (e.g., for resting, giv-
ing birth, nursing, or molting). These high-latitude phocid seals are 
long-lived cryptic species inhabiting remote regions that are difficult 
to access, especially for those with ice-associated breeding strate-
gies. For such species, direct estimates of abundance and population 
trends are difficult to obtain but are of conservation interest due 
to vulnerability of these species to external threats such as climate 
change and overexploitation.

An indirect way to estimate population growth is from life-history 
data. For instance, estimates of age of sexual maturity, fecundity, 
survival, and maximum life length can be compiled in a Leslie matrix 
(Leslie, 1945) or similar model, which can then be used to estimate 
the rate of population increase or decrease. Researchers can also 
use sensitivity and elasticity analyses to examine consequences of 
hypothesized changes in vital rates on population trajectories, for 
instance as a function of different climate or management scenarios 
(e.g., Hunter et al., 2010).

One of the main obstacles for conducting such analyses for 
high-latitude seals is the lack of direct data on natural mortality 
rates. So far, only a few species have been amenable to survival es-
timation, usually from mark–recapture studies of individuals recog-
nizable from tags, unique scars, or other markings. However, these 
studies are rare because they require a high degree of philopatry 
in order to have requisite detection probabilities and to ensure 
estimates of mortality do not also include permanent emigration. 
There are also numerous historical datasets that documented the 
age structure of commercial and subsistence harvests that might 
be used to inform natural mortality rates. However, these historical 
datasets are difficult to interpret individually, as one cannot readily 
separate harvest and natural mortality. As such, phocids represent 
a well-defined case study for use of HBA, as the data available are 
quite heterogeneous and borrowing strength from some datasets 
can help extract information from others (the “Robin Hood effect”; 
Punt, Smith, & Smith, 2011). Although our analysis focuses on pho-
cid seals, our models should be applicable to survival of other large 
mammal species.

2.3.1 | Data and modelling framework

We conducted a HBA of 39 datasets representing 11 high-latitude 
seal species from both sub-families (Weddell Leptonychotes wed-
dellii, crabeater Lobodon carcinophaga, southern elephant Mirounga 
leonina, northern elephant Mirounga angustirostris, ringed Phoca 
hispida, ribbon, bearded Erignathus barbatus, spotted Phoca largha, 
hooded Cystophora cristata, gray Halichoerus grypus, and harbor 
Phoca vitulina seals) for which the data were found in the published 
sources (Supporting information Appendix S1: Table S2). These data 
were gathered from 25 different studies; however, when sexes were 
differentiated or data were collected in different time periods we 
treated data from each sex and/or time period as a separate data-
set. The modeled data included three different types of inputs (age-
specific estimates, estimates of age ranges, and cohort data), and 
considerable heterogeneity in covered ages (Figure 2). We fitted a 
total of 16 hierarchical models to these data, using likelihoods and 
prior distributions as previously described. The models differed 
based on the specification of natural mortality: specifically the 
amount of taxonomy-based and data-level variance components in-
cluded in the proportional hazard model. In particular, we included 
all combinations of the following variance components: subfamily, 
species, study, and dataset. We then used deviance information cri-
terion (DIC; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002) to 
compare support for alternative models.

2.3.2 | Parameter estimation

We used JAGS ver. 4.2.0 (Plummer, 2003) to simulate posterior sam-
ples from our Bayesian hierarchical model via Markov chain Monte 
Carlo (MCMC). For each model, we simulated three Markov chains; 
the length of the chain, number of burn-in iterations, and thinning 
rate were set so as to achieve reasonable convergence diagnostics 
while ensuring at least 1,000 draws from the posterior distribution 
(Table 1). Convergence was assessed visually and by verifying that 
the Gelman-Rubin statistics (R̂) were less than 1.1, as recommended 

F IGURE  2 Structure of datasets used in meta-analysis reflecting age- and data type-specific distribution of missing values
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by Brooks, Gelman, Jones, and Meng (2011). We checked R̂ for all 
other parameters to make sure they were within the 1.1 limit. Given 
that the DIC has problems counting parameters in missing data mod-
els (Celeux, Forbes, Robert, & Titterington, 2006), we also examined 
parameter counts (pD) to ensure that they were reasonable (Table 1). 
Data manipulation and model coding was performed in the R pro-
gramming environment (R Core Team 2017), using the R2jags pack-
age (Yu-Sung & Yajima, 2015) to pass data between R and JAGS.

2.3.3 | Estimating a prior distribution for a ribbon 
seal population

One of the advantages of a HBA is the ease to which one can com-
pute a prior distribution of natural mortality. Such a distribution 
could be used in demographic modeling exercises of a population 
for which survival data are unavailable, or to help anchor mortal-
ity when conducting survival estimation with a sparse dataset. We 
construct such a prior for a ribbon seal population in the Sea of 
Okhotsk, Russia, where aerial surveys have recently been conducted 
(Chernook et al., 2014) but no recent mortality data are available. 

The population was heavily exploited during the 20th century but 
currently there is only a small-scale subsistence harvest (Fedoseev, 
2000). Hence, we used a 0.001 harvest rate as an input for our mod-
els. Using the highest ranked DIC model, we constructed a prior by 
simply including an extra ribbon seal dataset in the JAGS analysis, 
but setting all survival data to “NA.”

3  | RESULTS

In total, we fit 16 different models to phocid survival data, including 
all possible combinations of subfamily, species, study, and dataset 
level variance components (Table 1). All models appeared to con-
verge to their stationary distributions. The highest-ranked model 
according to DIC included subfamily, species and dataset param-
eter variance components (M3; see Table 1). Several other models 
including dataset, species, and/or study-level variance components 
had DIC scores close to that of the top model. However, a dataset ef-
fect was present in all eight highest ranked models. Estimates of the 
number of effective parameters for DIC computations (pD; Table 1) 
generally increased as the number of variance components in the 
model increased, suggesting that conducting model selection with 
DIC scores was likely reasonable in this instance.

Using the highest ranked DIC model (M3), posterior means and 
95% credible intervals for master-level a, b, and c parameters were 
as follows: a = 0.05402(0.0539, 0.0541), b = 2.6067(2.601, 2.613), 
and c = 0.0057(0.0053, 0.0061). Posterior means and standard er-
rors for all parameters from M3 are provided in Supporting infor-
mation Appendix S3. The expected variation in hazard and survival 
functions increases as one progresses to the species and data-
set levels (Figure 3). Our analysis indicated substantial variation 
in species-specific hazard rates and survival functions (Figure 4, 
Supporting information Appendix S1), with southern elephant 
seals having the lowest survival rates, while ringed seals had the 
highest.

Survival functions exhibited a similar pattern for all 11 phocid 
seal species considered in the analysis, which is to be expected given 
the proportional hazards specification. Yearling survival among all 
species was in the range of 45%–78%. Southern elephant and north-
ern elephant seals were characterized by the highest natural mortal-
ity levels and the earliest senescence, with the cumulative survival 
of only 10.3%–14.2% to age 10 and dropping below 1% by the age 
of 19 and 21, respectively (Figure 4). On the other extreme, ringed 
seals were characterized by the highest survival, with 49% surviving 
to age 10 and 1% surviving to age 28. Similarly, the hazard functions 
suggest that senescence begins at a relatively early age for south-
ern and northern elephant seals, where hazard rates start increasing 
rapidly from ages 12–15. Bearded and ringed seals’ hazard functions 
had the lowest rate of increase compared with other species, sug-
gesting that senescence may not be as pronounced in these species. 
However, the precision of hazard curves is poor at older ages owing 
to decreased sample size in older ages; thus, any conclusions about 
the age of senescence should be made with caution.

TABLE  1 Details on model fitting and DIC-based model 
selection

Model Survival parameterization pD DIC

3 ~master + subfamily + spe-
cies + dataset

58.6 3767.1

7 ~master + subfamily + dataset 60.7 3768.9

13 ~master + study + dataset 60.2 3770

9 ~master + species + study + dataset 61.6 3770.7

1 ~master + subfamily + spe-
cies + study + dataset

61.9 3770.9

5 ~master + subfamily + study + data-
set

61.6 3770.9

11 ~master + species + dataset 64.5 3774

15 ~master + dataset 67.6 3776.6

10 ~master + species + study 56 4252.3

2 ~master + subfamily + spe-
cies + study

56.8 4253.9

14 ~master + study 58 4254.5

6 ~master + subfamily + study 61.7 4258.8

4 ~master + subfamily + species 41.7 4802.8

12 ~master + species 47.7 4809.8

8 ~master + subfamily 40.5 6682.5

16 ~master 34.4 11729.9

Models are ordered by decreasing DIC. The models were fit with 
niter = 15,000 (the total number of iterations of each MCMC chain); 
burn-in = 5,000 (the number of iterations discarded before convergence 
to the stationary distribution); and thin = 10 (the number of MCMC itera-
tions conducted for every such value that was saved, that is, a value of 
100 indicates that 1 out of every 100 iterations was saved). pD is the 
effective number of parameters as output by JAGS and used in DIC 
computations.
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In addition to species-specific estimates, we also estimated a 
natural mortality prior for a population of ribbon seals not subject to 
commercial harvesting. In particular, the prior distribution included 
simulation of a variance component at the “dataset” level, substan-
tially decreasing precision from the mean natural mortality estimate 
for ribbon seals (Figure 5).

4  | DISCUSSION

Life-history parameters like natural mortality are of considerable in-
terest to evolutionary and applied ecologists, but are often subject 
to considerable imprecision at the population level. In this study, we 
described a HBA framework for analyzing life-history data gathered 
from multiple, independent studies. In particular, we showed how 
taxonomy-based relationships can be embodied within alternative 
models for the relationship of life-history parameters among data-
sets, doing so in a framework that also allows one to account for 
variance components attributable to phenotypic plasticity and ob-
servation error. This framework is useful for studying taxonomic 
variation in life-history traits in that it allows one to infer general 
patterns from multiple, disparate datasets. However, one can also 
infer specific patterns from the general: for instance, one can bor-
row strength from other studies to estimate age-specific survival 
for sparse datasets (the “Robin Hood effect”), and to construct prior 
distributions for populations where data are completely lacking (as 
in the ribbon seal example). Importantly, conducting inference in a 
hierarchical framework using survival and hazard functions (sensu 
Cox & Oakes, 1984) allowed us to combine data from multiple, dis-
parate sources, and to estimate age-specific survival functions even 
for those datasets where survival information was missing for a large 
proportion of age classes (Figures 2 and 5). We were also able to 
incorporate imprecise prior distributions for harvest rates to help 
separate natural and harvest mortality in hunted populations.

Our seal example illustrated how a parametric (in our case, RAW) 
model for natural mortality hazard rates could be used to induce the 
U-shaped mortality curves that are expected of mammal popula-
tions (Caughley, 1966). In order to test whether this three-parameter 
model was flexible enough to describe the shape of survival and haz-
ard curves for different species (and particularly the effect of indi-
vidual senescence), we also fitted an alternative, 5-parameter Siler 
model to the same set of data and found that it produced very similar 
results. Thus, our results were robust to choice of survival model. 
This similarity of results, together with increased convergence issues 
with the Siler model, suggest that the RAW formulation may be a 
good starting place for future analyses.

Estimated variation in the parameters of the RAW model at dif-
ferent taxonomic and data-related levels translated into different 
survivorship schedules among species and populations. Species with 
few mortality data had survivorship schedules that were shrunken 
towards the ensemble mean, while datasets with few data had sur-
vivorship schedules that were shrunken towards species-specific 
means.

F IGURE  3 Posterior density distributions (three MCMC chains) 
for a, b, and c parameters and their associated variances on dataset 
and species levels (all back-transformed to real scale)
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Our analysis indicated that variation in seal natural mortal-
ity could best be explained by species and dataset-level effects. 
Although subfamily appeared in several competitive models, it 
clearly is not as useful a predictor as species was. This is perhaps 
not surprising, given the large amount of variation among species 
in morphology and natural history. Still, the subfamily variation 
was noteworthy because the four monachine species fell at or 
below the middle of the rank order for survival (Figure 4), sug-
gesting a potential taxonomic basis for life-history variation that 
may warrant further investigation. The dataset-level variance 
component was present in most top models, indicating how im-
portant it was to control for population-level and dataset-specific 
factors. This variance component implicitly includes phenotypic 
plasticity as well as differences in methodology and observation 
error.

Our analysis produced some interesting relationships among 
species. In particular, it appeared that southern elephant seal had 
the lowest survival and earliest age of senescence (mortality rates 
started increasing around age 12–15). This is perhaps not very sur-
prising, given the highly polygynous mating strategy and the ten-
dency of adult males to fight for reproductive access. In the present 
analysis, we have treated males and females as different datasets; 
however, it would be interesting to separately estimate sex-specific 
morality in future work given differences in male and female mor-
phology and exposure to injuries.

Several enhancements to our modeling procedure would likely 
help to increase the precision of our mortality estimates, but would 
likely require richer datasets than we had access to in this paper. 
For instance, it would be useful to include greater realism in har-
vest modeling by using age- or time-specific harvest rates. However, 

F IGURE  4 Hazard and survival 
functions for 11 phocid seal species as 
estimated from the best-fitting model, M3
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estimation of such rates would likely require large-scale mark–recap-
ture–recovery data or enough data to fit an integrated population 
model. Another useful improvement would be to account for perma-
nent emigration. For instance, the models we have used assume that 
reported survival estimates represent true survival instead of appar-
ent survival (true survival adjusted for permanent emigration), an as-
sumption that is likely violated to some degree. For instance, some of 
the estimates in this paper came from mark–recapture studies, and 
it is well known that Cormack–Jolly–Seber mark–recapture models 
cannot differentiate mortality from permanent emigration. To reli-
ably separate the two processes, additional information is needed 
such as hunter recoveries outside the study area (Burnham, 1993) 
or information about the spatial distribution of captures (Schaub & 
Royle, 2014). Permanent emigration might also be dealt with using 
an informative prior distribution if such data are missing.

Our approach in this study was to use a proportional hazards 
modeling framework to model changes in survivorship as a function 
of taxonomic and dataset-level random effects. However, this ap-
proach is somewhat limiting, in that the overall shape of the hazard 
function is constrained to be similar among datasets. In our expe-
rience, such models were considerably more stable than ones that 
seek to model variation at the level of the RAW parameters (i.e., a, 
b, and c), but they can result in lack-of-fit when examining individual 
datasets. However, as one reviewer noted, the overall shape of the 
survival curve (e.g., Figure 4) differs from that reported for several 
well studied populations of Weddell seals and southern elephant 
seals, where there have been no documented senescent increases 

in mortality. When sufficient data are available to model senescence 
for a particular population or species, it may thus be preferable to 
base inference on a restricted set of data to prevent estimation of 
senescent effects that are artifacts from other species or datasets. 
Future research will be necessary to develop formulations that per-
mit greater flexibility in the shape of hazard functions among data-
sets that are numerically tractable.

Although there is clearly room for improvements to our modeling 
framework in specific applications, we are optimistic that our general 
approach will be useful for other taxonomic groups and other life-
history parameters. For instance, a useful next step for seals would 
be to conduct similarly structured analyses for age-at-maturity, inter-
birth intervals, and number of offspring per adult female. Such analy-
ses would be interesting in their own right, but would also help inform 
estimation of recruitment rates for population modeling exercises.

5  | CONCLUSION

HBA provides a flexible framework for incorporating taxonomic 
structure into estimates of life-history parameters while accounting 
for phenotypic plasticity and sampling artifacts. We have shown its 
utility in estimating age-specific natural mortality from a collection 
of datasets, many of which were quite sparse, and for producing prior 
distributions for populations missing natural mortality data entirely. 
We suggest that evolutionary ecologists and conservation mod-
elers consider application of such methods in their own research; 

F IGURE  5 Hazard and survival functions (blue lines) and 95% credible intervals (shaded areas) using master-, subfamily-, species- (ribbon 
seal), and dataset (ribbon seal dataset)-level estimates from model M3 fitted to 39 study datasets. The prior distribution for contemporary 
natural mortality of ribbon seals in the Sea of Okhotsk corresponds to the “test dataset” level (right panels) and includes a dataset-specific 
variance component. As such it is less precise than the mean estimates for ribbon seals (third-column panels) or for the mean survival of all 
seal species (left panels)
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leveraging the combined power of multiple datasets will generally 
lead to greater precision than considering each dataset individually.
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