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Abstract

Introduction

Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating neurologic condition with

high mortality rates and long-term complications for surviving infants. Mesenchymal stem/

stromal cells (MSCs) have emerged as novel therapeutic agents with promising results in

experimental studies of HIE. The purpose of this study is to (a) methodically review the cur-

rent preclinical literature describing MSC therapy in animal models of HIE, (b) quantify the

effect size in regards to functional neurologic outcome, and (c) identify research gaps/limita-

tions that should be addressed prior to future preclinical and clinical studies.

Methods

Adhering to the Systematic Review Protocol for Animal Intervention Studies, a systematic

search of English articles was performed. Eligible studies were identified and data regarding

study characteristics and outcome measures was extracted. After quality assessment,

meta-analysis and meta-regression were performed to generate random effect size using

standardized mean difference (SMD). Funnel plots and Egger’s tests were utilized to evalu-

ate for the presence of publication bias.

Results

A total of 19 studies met inclusion in the current systematic review. Meta-analysis revealed

that MSCs have a significant positive effect on neurobehavioral outcome following HIE

injury. Sensorimotor function was improved by 2.25 SMD (95% CI; 2.04–2.46) in cylinder

rearing and 2.97 SMD (95% CI; 2.56–3.38) in rotarod. Likewise, cognitive function was

improved by 2.76 SMD (95% CI; 2.53–2.98) on the water maze and 2.97 SMD (95% CI;
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2.58–3.35) in object recognition. Stratification demonstrated an increased effect size

depending on various study characteristics.

Conclusions

Overall, these results suggest a promising role for MSCs in preclinical studies of HIE. MSC

treatment demonstrates improved functional outcomes that are encouraging for future

translational studies. While risk of bias and heterogeneity limited the strength of our meta-

analysis, our results are consistent with those seen in this field of research.

Introduction

Neonatal encephalopathy is a devastating constellation of symptoms resulting from wide-

spread central nervous system dysfunction. Affected infants are born with low Apgar scores,

severe acidemia, evidence of acute brain injury on neuroimaging, and multi-system organ fail-

ure [1]. Hypoxic ischemic encephalopathy (HIE) is a specific subset of neonatal encephalopa-

thy caused by ischemic/anoxic brain injury in the perinatal period. The incidence of HIE

ranges from 1.0 to 8.0 per 1,000 live births [2]. If not fatal, the vast majority of affected neo-

nates will demonstrate long-term neurologic deficits such as hearing and visual impairment,

developmental delay, cerebral palsy, and/or seizures [3–5].

The neurologic insult is caused by maternal, placental, or fetal conditions that result in

impaired tissue perfusion, leading to a reduction in oxygen and nutrient transport to tissues

[6]. On a cellular level, decreased oxygen delivery results in a primary energy failure that neces-

sitates anaerobic metabolism. Decreased activity of the ATP-dependent Na+/K+ pump leads to

intracellular Na+ accumulation, cytotoxic edema, and membrane depolarization that triggers

release of the excitatory neurotransmitter glutamate [7]. Glutamate binds at postsynaptic N-

methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

(AMPA) receptors and increases cytosolic Ca2+ [7]. Through a cascade of events, mitochon-

drial dysfunction and accumulation of reactive oxygen species ultimately cause necrotic and

apoptotic cell death in the affected region [8,9].

The mainstay of treatment for HIE is therapeutic hypothermia, which is neuroprotective

rather than neurorestorative. Literature suggest that cooling the deep brain structures to 32˚C

to 34˚C within the first six hours of primary injury can prevent the sequlae leading to oligo-

dendrocyte loss [10,11]. Although this therapy has been shown to improve survival and neuro-

developmental outcome, the neuroprotective response is limited by timing of initiation and

severity of encephalopathy [12–14]. Duration of therapy has also been found to play a signifi-

cant role in treatment outcome. Current standard of care in neonatology recommends a cool-

ing period of 72 hours for maximum efficacy. In aged brains, hypothermic treatment for less

than 48 hours actually accelerates inflammation, resulting in a larger overall area of infarct and

edema [15]. Furthermore, therapeutic hypothermia of any duration has been associated with

pancytopenia, coagulopathy, worsening acidosis, electrolyte imbalance, pulmonary hyperten-

sion, and arrhythmias [16]. Despite advancements in care, the overall mortality and burden of

disability remains high. Thus, there is significant need for novel therapeutic measures in this

area of neonatology.

In the past decade, mesenchymal stem/stromal cells (MSCs) have emerged as a promising

new therapy in the management of HIE. MSCs are of particular clinical interest because they

pose no ethical issues and can be harvested from many sources [17]. MSCs are non-
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immunogenic, easy to proliferate, and have the unique ability to differentiate into multiple cell

types, including neurons [17,18]. They migrate to sites of inflammation where they exert anti-

inflammatory effects and reduce reactive oxygen species [19]. Adult clinical trials have already

demonstrated the regenerative potential of MSCs in orthopedic injury, cardiovascular disease,

liver disease, autoimmune conditions, and graft-versus-host disease [20–24].

Preclinical studies using animal models of HIE have demonstrated that MSCs improve

functional outcome in treatment groups. The therapeutic potential of MSCs for neurologic

disease lies in their capacity to restore cellular energy, blunt the inflammatory response, pro-

mote neurogenesis, and enhance angiogenesis in the hypoxic region [19]. Investigators have

recently demonstrated feasibility and safety in the use of autologous cord blood for treatment

of human infants with HIE, paving the way for future randomized controlled trials [25].

Despite this progress, there has been no effort to synthesize the current literature exploring

stem cell therapy for the treatment of HIE. The focus of our paper will be to systematically

examine the efficacy of MSCs as a therapeutic agent in preclinical models of HIE. The results

of this study are intended to help guide methodology of future preclinical studies and clinical

trials in this area of research.

Methods

Our methods adhere to the guidelines established by the Systematic Review Centre for Lab-

oratory Animal Experimentation (SYRCLE) and are described in S1 Table [26]. The SYRCLE

protocol was recently published as a high-quality and standardized method of analyzing pre-

clinical animal intervention studies. Our protocol was registered through the Collaborative

Approach to Meta-Analysis and Review of Data from Experimental Studies (CAMARADES)

on January 23rd, 2017.

Literature search

To summarize, we performed a literature search using MEDLINE’s database PubMed, Web of

Science, Google Scholar, and Cumulative Index to Nursing and Allied Health Literature

(CINAHL) through June 9th, 2017. Search terms included “mesenchymal stem cells,” “hypoxic

ischemic encephalopathy,” “neonatology,” “preclinical,” and any of their synonyms (refer to

S2 Table). Duplicate studies were manually removed from the search results prior to the

screening process. Screening by title/abstract and subsequent full-text review were conducted

independently by two investigators (JA and AM). A third investigator (DM) was consulted to

resolve differences of opinion in either phase. Reference lists of included studies and relevant

reviews were hand-searched in an effort to obtain additional studies for inclusion.

Inclusion and exclusion criteria

In the current study, HIE is defined as an acute interruption of blood flow, oxygen, and nutri-

ents to the brain. In preclinical models, HIE is typically induced via ligation or occlusion of the

carotid artery, middle cerebral artery, maternal uterine artery, or umbilical cord. Studies were

included if they reported the effect of MSC intervention on functional neurologic outcome in

validated preclinical in vivo models of neonatal HIE. For rodents specifically, a neonatal model

refers to less than ten days of age [27]. In our review, a MSC will be defined per the Interna-

tional Society for Cellular Therapy (ISCT) [28]. Papers with MSC intervention were included

regardless of dosage, timing, frequency, and source, but were excluded if the investigators used

modified MSCs or those combined with other therapies. However, labeled MSCs (green fluo-

rescent protein, iron oxide particles, etc.) for tracing and locating distribution of cells were

allowed. The treatment group received MSCs following HIE induction, while the control
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group underwent the HIE injury but was treated with vehicle/placebo (e.g. normal saline,

phosphate buffered saline).

Primary and secondary endpoints

We defined our primary endpoint as functional neurologic outcome, which is reported

through cognitive or sensorimotor testing following induction of HIE. We included cognitive

(e.g. water maze, object recognition, open field) and sensorimotor (e.g. cylinder rearing,

rotarod, adhesive removal) tests that are routinely used in preclinical studies of neurologic

insult. Studies were excluded from the selection process if data pertaining to our primary out-

come could not be obtained during the data extraction phase of our study.

Our secondary outcome of lesion size was not required for inclusion, but is reported in

many of the selected studies. Lesion size is described as evidence of structural improvement in

either neuroimaging or histologic studies, particularly those utilizing microtubule-associated

protein 2 (MAP2) and myelin basic protein (MBP), which are markers for gray and white mat-

ter, respectively.

This review presents the results of the primary endpoint analysis, while results from the sec-

ondary endpoint analysis will be reported in a future paper.

Data extraction

Data was collected independently by two investigators (JA and AM) and compared for accu-

racy. A third investigator (DM) was consulted to resolve differences of opinion. Extracted data

included general study design (objective, sample size, HIE model, anesthesia), animal charac-

teristics (animal model, gender, age, immune status), intervention characteristics (source,

dose, delivery, timing, frequency), and outcome measures relevant to our primary endpoint.

Original data, including mean with standard error of the mean, was gathered from graphs and

plots using GetData graph digitizer version 2.26 when exact values were not available from the

article. In studies that reported multiple variations (dose, day, frequency) of the intervention,

we regarded these results separately. We also collected the MSC characterization criteria (plas-

tic adherence, differentiation, and positive/negative surface markers) that were reported in

each study.

Risk of bias

Risk of bias for each experiment was assessed independently by two investigators (JA and AM)

based on SYRCLE’s Risk of Bias tool [29]. A third investigator (DM) was consulted to resolve

differences of opinion. The SYRCLE tool contains ten assessment domains related to selection,

performance, detection, attrition, and reporting biases. Each domain was scored as low, high,

or unclear risk of bias based on signaling questions provided by the tool. A response of “yes”

indicates low risk of bias and a response of “no” indicates high risk of bias. Studies that did not

explicitly state their methods were scored as “unclear.”

Data analysis

Meta-analysis was conducted using a random effects model to generate forest plots. The esti-

mated effect size of MSCs on functional neurologic outcome after HIE was determined using

standardized mean difference (SMD) and a 95% confidence interval (CI). SMD, an ideal mea-

sure for continuous data, is calculated by dividing the mean difference in each study by that

study’s standard deviation. Stratified effect size was measured individually for sensorimotor
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function and cognitive function. Pooled data from all neurobehavioral studies was also exam-

ined to determine overall effect size.

Statistical heterogeneity between studies was calculated using the I2 metric, with I2 >50%

suggesting obvious heterogeneity. Potential sources of heterogeneity, if significant, were fur-

ther investigated by meta-regression and subgroup analysis. The presence of publication bias

was evaluated using funnel plots and Egger’s tests. Funnel plots were visually assessed for

asymmetry. For Egger’s tests, p< 0.05 was considered significant to confirm the presence of

small study size.

All statistical analyses were performed using the program STATA version 13 (College Sta-

tion, TX, USA). All statistical tests were two-sided and difference was considered significant

when p< 0.05.

For certain measures of functional outcome (staircase test, electrical measures), either

incomparable data points or a low number of comparisons prevented quantitative analysis.

Rather than incorporating this data into the meta-analysis, we have provided a narrative sum-

mary of significant results.

Results

Study selection

Our literature search generated 161 results based on the utilized search terms. A total of 141

studies remained after duplicates were manually removed. After preliminary screening by title

and abstract, 113 studies investigating the therapeutic potential of stem cells in HIE were iso-

lated for full-text review. From this, 19 publications met the pre-defined eligibility criteria and

reported our primary endpoint of functional neurologic outcome (Fig 1). All of these studies

were reported in the review, however only 18 were included in the meta-analysis.

Study characteristics

All studies included in this review were published between the years 2010 and 2016. Among

the included articles, nine are from Netherlands, seven are from China, two are from South

Korea, and one is from New Zealand. Relevant characteristics are described briefly in Table 1

and more thoroughly in S3 Table. Rodents were the most commonly studied animal model,

with 58% (n = 11) of studies using either Sprague-Dawley or Wistar rats and 37% (n = 7) of

studies using C57Bl/6 mice. One study investigated the effects of seizure burden on ovine

fetuses, but was not included in the final meta-analysis. The gender was not reported in 68%

(n = 13) of studies. All studies induced HIE by postnatal day ten, the rodent age consistent

with a human neonate. Carotid artery occlusion followed by hypoxia was the HIE model

employed in 79% (n = 15) of studies. The remaining studies utilized either middle cerebral

artery occlusion or umbilical cord occlusion. Intracerebral injection was the most common

route of delivery with doses ranging from 100,000 cells to 3,000,000 cells. Regarding interven-

tion timing, 43% (n = 9) of studies administered MSCs within 72 hours of HIE. MSCs were

administered after day three but before day ten in 33% (n = 7) of studies. Multiple doses were

administered in 24% (n = 5) of studies, with most studies giving only two doses.

Functional neurologic outcome was assessed in all studies per our inclusion criteria (S4

Table). The cylinder rearing and rotarod tests were the most frequently used methods of

assessing sensorimotor function, while the water maze and novel object recognition tests were

the most common for cognitive function. Composite scores such as the modified neurological

severity score (mNSS) and Longa score were only mentioned in two studies. Seizure burden

and field excitatory postsynaptic potentials (fEPSPs) were measured in one and two studies,

respectively. However, these measures were not included in the meta-analysis.
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Fig 1. Flow diagram demonstrating study selection process.

https://doi.org/10.1371/journal.pone.0189895.g001
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Table 1. Summary of study characteristics.

Animal characteristics n (%)

Animal type

Rat 11 (58)

Mouse 7 (37)

Sheep 1 (5)

Rat (n = 11)

Sprague-Dawley 9 (82)

Wistar 2 (18)

Mouse (n = 7)

C57Bl/6 7 (100)

Gender

Male 3 (16)

Mixed 3 (16)

Not reported 13 (68)

Age

Fetal 1 (5)

3 days 1 (5)

7 days 7 (37)

9 days 7 (37)

10 days 2 (11)

Not reported 1 (5)

Mesenchymal stromal cell characteristics

Source

Bone marrow 10 (53)

Umbilical cord 5 (26)

Placenta 1 (5)

Not reported 3 (16)

Origin

Allogeneic 11 (58)

Xenogeneic 8 (42)

Dose (n = 24;>1 dose per study included)

�250,000 cells 9 (37)

>250,000 cells—�500,000 cells 5 (21)

>500,000 cells—�1,000,000 cells 5 (21)

>1,000,000 cells 5 (21)

Experimental characteristics

HIE model

Carotid artery occlusion + hypoxia 15 (79)

Middle cerebral artery occlusion 2 (11)

Umbilical cord occlusion 1 (5)

Not reported 1 (5)

Delivery

Intracerebral 9 (47)

Intranasal 5 (26)

Intravenous 2 (11)

Other 3 (16)

Timing after HIE injury (n = 21;>1 administration per study included)

�72 hours 9 (43)

(Continued )
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MSC characteristics

S5 Table summarizes the characterization of the cells used in the HIE experiments. Using the

ISCT criteria, 74% (n = 14) of the publications specified that the utilized cells were indeed

MSCs [28]. Plastic adherence was reported in 68% (n = 13) of these studies. The ability of

MSCs to differentiate into various cell lineages (e.g. adipocytes, chondrocytes, osteocytes,

fibroblasts) was reported in 37% (n = 7) of studies. Positive and negative markers specific to

MSCs were confirmed in 79% (n = 15) of studies. However, five of the studies that reported

negative markers identified them simply as myeloid and hematopoietic cell lineage specific

antigens, rather than naming specific markers.

Bone marrow was the most common source of MSCs, followed by umbilical cord and pla-

centa. Fifty-eight percent (n = 11) of studies performed allogeneic transplant, while 42%

(n = 8) of studies performed xenogeneic transplant. Dulbecco’s Modified Eagle Medium +/-

Fetal Bovine Serum were used to expand cells in the majority (74%) (n = 14) of studies. Six of

these studies also included an antibiotic solution in their culture media. A passage number less

than five was reported in 37% (n = 7) of studies, with an additional two studies reporting pas-

sage number less than ten. Approximately half (n = 10) of the publications utilized MSCs pur-

chased or supplied by another commercial manufacturer.

Risk of bias

Risk of bias was assessed using the SYRCLE Risk of Bias Tool for all 19 studies that met inclu-

sion criteria for our review (S6 Table) [29]. None of the experiments were judged as low risk of

bias across all domains. All studies reported similar experimental and control groups at base-

line, which reduces the risk of selection bias based on animal characteristics. Despite stating

that allocation of subjects to experimental and control groups was random, none of the studies

explicitly described a method of random sequence generation. For this reason, risk of bias in

the sequence generation domain was judged as “unclear” in all studies. Similarly, only 5%

(n = 1) of studies adequately described the method used to conceal allocation. None of the

studies stated that animals were randomly housed, but 11% (n = 2) of studies endorsed blind-

ing of caregivers and investigators from knowing which intervention each animal received.

Only 5% (n = 1) of studies reported random outcome assessment, but 26% (n = 5) of studies

documented blinding of the outcome assessor. Using the signaling questions provided, all

studies were scored as low risk of attrition and reporting bias. Furthermore, we did not identify

Table 1. (Continued)

Animal characteristics n (%)

>72 hours 7 (33)

Multiple doses 5 (24)

Survival periods

Duration of study

�30 days 11 (58)

>30 days—� 3 months 7 (37)

> 1 year 1 (5)

Mortality rate after HIE induction

<10% 3 (16)

10% 6 (31)

>10% 3 (16)

Not reported 7 (37)

https://doi.org/10.1371/journal.pone.0189895.t001
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any additional sources of bias not already covered by the SYRCLE Risk of Bias Tool, such as

industry funding, conflict of interest, or failure to publish in a peer-reviewed journal. Of note,

none of these studies documented a calculation for sample size.

Stratified meta-analysis: Functional neurologic outcome

Sensorimotor. Sensorimotor outcomes were assessed under two points: (1) cylinder rear-

ing test and (2) rotarod test. Overall performance on the cylinder rearing test was improved by

2.25 SMD (95% CI, 2.04–2.46; 12 studies and 40 comparisons; Fig 2A). However, the heteroge-

neity between groups was significant (I2 = 95.2%; p<0.001). Six out of 14 interventions had

effect sizes greater than 5.0 SMD, with 8.11 as the largest. Rotarod test performance was

improved by 2.97 SMD (95% CI, 2.56–3.38; 4 studies and 12 comparisons; Fig 2B) with signifi-

cant heterogeneity (I2 = 85.9%; p<0.001). Half of the studies resulted in an SMD greater than

3.0, with the largest effect size of 8.99.

Stratification by animal model, study design, and intervention characteristics revealed sig-

nificant differences in effect size, seen in Table 2. For instance, groups exposed to hypoxic-

Fig 2. Effect size of MSCs across functional neurologic assessments from included studies. Forest plots demonstrating SMD and 95% CI for (a)

cylinder rearing test, (b) rotarod test, (c) water maze test, and (d) novel object/object in place test.

https://doi.org/10.1371/journal.pone.0189895.g002
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Table 2. Stratification of estimated effect size for sensorimotor function.

Variable # Studies # Comparisons SMD

(95% CI)

% Weight I2 p* p**

Animal model

Species

Rat 7 25 0.99 (0.72–1.27) 44.62 94.5% 0.000 0.002

Mouse 7 29 3.19 (2.94–3.44) 55.38 93.6% 0.000

Strain

Sprague-Dawley 6 16 0.57 (0.25–0.89) 32.70 93.4% 0.000 0.000

C57/Bl6 8 38 3.01 (2.78–3.23) 67.30 94.1% 0.000

Gender

Male 3 14 0.40 (0.05–0.75) 27.99 93.9% 0.000 0.000

Mixed 3 8 3.09 (2.60–3.58) 13.96 92.5% 0.000

Not reported 8 32 2.87 (2.62–3.11) 58.05 94.4% 0.000

Age (at HIE)

< 7 days 1 1 1.11 (0.20–2.01) 4.09 0.0% 0.000 0.001

7 days 3 11 0.31 (-0.06–0.68) 24.35 94.9% 0.000

> 7 days 10 42 2.92 (2.70–3.13) 71.56 94.9% 0.000

Study Design

HIE model

CAO + hypoxia 11 45 2.41 (2.21–2.60) 87.08 95.0% 0.000 0.081

MCAO 3 9 0.87 (0.36–1.38) 12.92 92.4% 0.000

Anesthetic

Isoflurane 10 42 2.92 (2.70–3.13) 71.56 93.9% 0.000 0.000

Halothane 1 2 1.03 (-0.05–2.10) 2.91 0.0% 0.463

Ether 2 2 1.57 (0.73–2.42) 4.71 87.1% 0.000

Ketamine 1 8 0.83 (-0.32–0.49) 20.82 96.1% 0.000

Intervention

Source

Bone marrow 8 34 2.39 (2.16–2.62) 63.77 95.1% 0.000 0.420

Umbilical cord 4 6 1.55 (0.94–2.16) 8.96 84.8% 0.000

Not reported 2 14 2.00 (1.65–2.35) 27.27 95.7% 0.000

Origin

Allogeneic 8 38 2.81 (2.60–3.04) 67.35 94.1% 0.000 0.003

Xenogeneic 6 16 0.95 (0.63–1.27) 32.65 94.9% 0.000

Dose

�250,000 5 20 3.76 (3.41–4.10) 28.11 90.3% 0.000 0.002

>250,000 -�500,000 4 15 2.55 (2.23–2.88) 31.48 95.1% 0.000

>500,000 -�1 million 4 18 0.70 (0.41–0.99) 39.17 94.7% 0.000

>1 million 1 1 5.97 (4.32–7.62) 1.24 0.0% 0.000

Delivery

Intracerebral 5 19 4.39 (4.01–4.77) 23.63 85.9% 0.000 0.001

Intranasal 5 23 2.19 (1.93–2.46) 47.93 95.1% 0.000

Intraperitoneal 1 1 1.11 (0.20–2.01) 4.09 0.0% 0.000

Intracardiac 1 8 0.83 (-0.32–0.49) 20.81 96.1% 0.000

Subcutaneous 1 2 1.03 (-0.05–2.10) 2.92 0.0% 0.463

IV 1 1 4.67 (2.33–7.01) 0.62 0.0% 0.000

Timing

(Continued )
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ischemic insult on postnatal day seven or later had improved sensorimotor performance (2.92;

95% CI; 2.70–3.13). Effect size was larger in studies that used mice (3.19; 95% CI, 2.94–3.44), a

carotid artery occlusion model of HIE (2.41; 95% CI 2.21–2.60), and isoflurane as the chosen

anesthetic agent (2.92; 95% CI 2.70–3.13). Effect size was maximum when MSCs were alloge-

neic (2.81; 95% CI, 2.60–3.04), bone marrow-derived (2.39; 95% CI, 2.16–2.62), delivered

intravenously (4.67; 95% CI, 2.33–7.01), and administered >72 hours after induction (2.01;

95% CI, 1.71–2.33) in multiple doses (4.22; 95% CI, 3.81–4.63).

Cognitive. Cognitive outcomes were assessed under two points: (1) water maze and (2)

object recognition (combines NORT and object in place test). Water maze performance was

improved by 2.76 SMD (95% CI, 2.53–2.98; 5 studies and 33 comparisons; Fig 2C) with signifi-

cant heterogeneity (I2 = 80.9%; p<0.001). Twenty out of 33 interventions were greater than 3.0

SMD, with the largest effect size of 6.96. Similarly, performance on variations of the object rec-

ognition test improved by 2.97 SMD (95% CI, 2.58–3.35; 4 studies and 8 comparisons; Fig

2D). Heterogeneity was again significant across these studies (I2 = 88.9%; p<0.001). In this

comparison, four out of eight interventions were greater than 3.0 SMD.

Stratification by the aforementioned characteristics was performed for the cognitive results

as well, seen in Table 3. Effect size was largest in studies that used mice (3.19; 95% CI, 2.74–

3.63), a carotid artery occlusion model of HIE (2.66; 95% CI, 2.46–2.85), and chloral hydrate as

the chosen anesthetic agent (6.76; 95% CI, 3.22–10.29). Intervention was most effective when

MSCs were allogeneic (2.73, 95% CI, 2.47–2.98), placenta-derived (6.76; 95% CI, 3.22–10.29),

delivered intraperitoneally (3.69; 95% CI 3.05–4.33), and administered <72 hours after induc-

tion (3.08, 95% CI, 2.81–3.36) in multiple doses (4.39; 95% CI, 3.61–5.18).

Overall efficacy. When all studies and comparisons were combined, overall functional

neurologic outcome improved by 2.42 SMD (95% CI, 2.29–2.56; 18 studies and 100 compari-

sons). More than 50% of these comparisons had effect sizes greater than 3.0 SMD. Heterogene-

ity remained high, which was expected when combining all comparisons and assessing

variation in SMD (I2 = 92.6%; p<0.001).

Narrative findings

Only one study investigated the effects of MSCs on staircase testing following HIE [30]. Out-

comes were highly variable, making it difficult to include this measure in the meta-analysis. It

is important however to mention that this study found a trend towards improvement in

Table 2. (Continued)

Variable # Studies # Comparisons SMD

(95% CI)

% Weight I2 p* p**

< 72 hrs 7 25 1.45 (1.18–1.73) 44.66 94.7% 0.000 0.003

> 72 hrs 6 16 2.01 (1.71–2.33) 35.16 95.4% 0.000

Multiple doses 5 13 4.22 (3.81–4.63) 20.18 88.7% 0.000

Expansion media

DMEM 8 34 1.93 (1.70–2.16) 63.51 94.9% 0.000 0.400

HPL 1 2 5.37 (4.28–6.45) 2.86 0.0% 0.341

Commercial 1 1 4.67 (2.33–7.01) 0.61 0.0% 0.000

Not reported 4 17 2.43 (2.11–2.74) 33.02 4.9% 0.000

Note

*p value for subgroup differences.

**p value for heterogeneity between subgroups with meta-regression analysis.

https://doi.org/10.1371/journal.pone.0189895.t002
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Table 3. Stratification of estimated effect size for cognitive function.

Variable # Studies # Comparisons SMD

(95% CI)

% Weight I2 p* p**

Animal model

Species

Rat 9 40 2.53 (2.33–2.73) 82.89 84.0% 0.000 0.637

Mouse 2 6 3.19 (2.74–3.63) 17.11 91.6% 0.000

Strain

Sprague-Dawley 7 35 2.34 (2.12–2.56) 69.84 83.3% 0.000 0.253

C57/Bl6 2 6 3.12 (2.74–3.63) 17.11 91.6% 0.000

Wistar 2 5 3.57 (3.06–4.08) 13.05 81.5% 0.000

Gender

Male 7 35 2.34 (2.12–2.60) 69.84 83.3% 0.000 0.000

Mixed 2 6 3.19 (2.74–3.63) 17.11 91.6% 0.000

Not reported 2 5 3.57 (3.06–4.08) 13.05 81.5% 0.000

Age (at HIE)

< 7 days 1 1 4.17 (2.63–5.71) 1.44 0.0% 0.000 0.396

7 days 6 34 2.50 (2.29–2.72) 72.24 86.1% 0.000

> 7 days 2 6 3.19 (2.74–3.63) 17.11 91.6% 0.000

Not reported 2 5 2.50 (1.89–3.11) 9.21 0.0% 0.682

Study Design

HIE model

CAO + hypoxia 9 41 2.66 (2.46–2.85) 90.79 87.0% 0.000 0.264

Not reported 2 5 2.50 (1.89–3.11) 9.21 0.0% 0.682

Anesthetic

Isoflurane 2 6 3.19 (2.74–3.63) 17.11 91.6% 0.000 0.658

Halothane 3 6 1.64 (1.15–2.13) 14.30 79.1% 0.000

Ether 2 19 2.94 (2.62–3.26) 33.47 85.5% 0.000

Chloral 1 1 6.76 (3.22–10.29) 0.27 0.0% 0.000

Not reported 3 9 2.47 (1.26–2.78) 34.85 83.7% 0.000

Intervention

Source

Bone marrow 2 6 2.70 (2.30–3.09) 21.42 88.4% 0.000 0.961

Umbilical cord 5 30 2.55 (2.29–2.82) 47.76 84.7% 0.000

Placenta 1 1 6.76 (3.22–10.29) 0.27 0.0% 0.000

Not reported 3 9 2.71 (2.38–3.05) 30.55 88.9% 0.000

Origin

Allogeneic 6 16 2.73 (2.47–2.98) 52.24 87.5% 0.000 0.670

Xenogeneic 5 30 2.55 (2.29–2.82) 47.76 84.7% 0.000

Dose

�250,000 5 11 1.78 (1.48–2.90) 36.38 0.0% 0.001 0.054

>250,000 -�500,000 3 25 2.92 (2.64–3.20) 42.54 88.1% 0.000

>500,000 -�1 million 1 1 4.17 (2.63–5.71) 1.44 0.0% 0.003

>1 million 2 9 3.53 (3.11–3.95) 19.64 67.8% 0.000

Delivery

Intracerebral 6 16 2.54 (1.99–2.52) 49.42 82.8% 0.000 0.047

Intranasal 2 6 3.19 (2.74–3.63) 17.11 91.6% 0.000

Intraperitoneal 2 6 3.69 (3.05–4.33) 8.31 7.9% 0.366

IV 1 18 2.69 (2.33–3.06) 25.16 87.3% 0.000

Timing

(Continued)
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number of pellets eaten and lowest stair level reached by the MSC-treated group. Though not

significant, the contralateral forelimb performance in the treated cohort was similar to that of

the uninjured control group, suggesting a potential therapeutic effect.

MSCs are known to be neuroprotective against white matter injury. Three of the included

studies assessed electrical findings in comparison groups. These results were not included in

our meta-analysis given the limited number of studies that investigated electrical changes. Jel-

lema et al. documented a significantly reduced number of electrographic seizures in the MSC

treatment group following global HIE [31]. Two additional studies measured fEPSPs in hippo-

campal slices as a way of assessing long-term potentiation (LTP) recording. Zhou et al. found

that LTP was significantly increased in the MSC-treated group, based on incremental mean

slope of fEPSPs in response to high frequency stimulation [32]. Similarly, Gu et al. noted a

trend towards increased LTP following MSC therapy. Together, these results support the idea

that MSCs may be protective against the electrical consequences of HIE.

Meta-regression analysis

Meta-regression was performed to simultaneously examine the impact of all variables on study

effect. To further investigate the unaccounted heterogeneity across these studies, meta-regres-

sion and subgroup analysis were performed by animal model, study design, and intervention.

For sensorimotor function, animal species/strain, gender, age at HIE induction, anesthetic,

MSC origin, MSC dose, route of delivery, and timing of intervention were the significant

sources of heterogeneity (p<0.05) (Table 2). For cognitive function, only gender and route of

delivery were significant sources of heterogeneity (p<0.05) (Table 3).

Publication bias

Funnel plots were created to examine the effect of study qualities and heterogeneity on publi-

cation bias (Fig 3). Asymmetry was detected in all funnel plots of sensorimotor and cognitive

function, indicating the presence of publication bias in these studies. Egger’s tests were per-

formed to formally detect statistical asymmetry, with a null hypothesis denying the existence

of small study effects. The p value was <0.05 for all tests, indicating strong evidence to reject

the null hypothesis in favor of the alternative (i.e. small study effect does exist).

Table 3. (Continued)

Variable # Studies # Comparisons SMD

(95% CI)

% Weight I2 p* p**

< 72 hrs 3 28 3.08 (2.81–3.36) 45.07 84.2% 0.000 0.158

> 72 hrs 6 15 2.05 (1.78–2.31) 49.36 84.6% 0.000

Multiple doses 2 3 4.39 (3.61–5.18) 5.57 0.0% 0.877

Expansion media

DMEM 5 11 2.60 (2.26–2.95) 28.51 86.1% 0.000 0.716

Commercial 1 18 2.89 (2.56–3.21) 32.03 84.7% 0.000

Alpha 1 1 6.76 (3.22–10.29) 0.27 0.0% 0.000

Not reported 4 11 2.45 (2.15–2.74) 39.19 88.2% 0.000

Note

*p value for subgroup differences.

**p value for heterogeneity between subgroups with meta-regression analysis.

https://doi.org/10.1371/journal.pone.0189895.t003
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Discussion

Systematic reviews play a critical role in applying preclinical data to clinical practice. When

combined with meta-analyses of these experiments, results can be assessed in a more methodi-

cal and objective manner. In preclinical and clinical studies of acute stroke, MSCs have shown

to improve angiogenesis, neurogenesis, and functional outcomes in experimental treatment

groups [33,34]. Investigators using animal models of HIE have demonstrated similarly promis-

ing results for this significant perinatal disorder. Progress in regenerative medicine has led to

the first prospective randomized controlled clinical trial to evaluate the safety of similar treat-

ments [25]. However, to our knowledge this is the first attempt to systematically collect and

evaluate the current preclinical evidence supporting the use of MSCs in animal models of neo-

natal HIE. Based on the results of our meta-analysis, we conclude that there is indeed thera-

peutic potential of MSCs for improving functional neurologic outcome in affected neonates.

Further, these results are applicable across a range of experimental conditions.

MSCs significantly improved overall neurobehavioral outcome in both sensorimotor and

cognitive testing. Our pooled effect size of 2.42 is consistent with studies involving adult

Fig 3. Funnel plots demonstrating publication bias from included studies. Funnel plots for (a) cylinder rearing test, (b) rotarod test, (c) water maze test,

and (d) novel object/object in place test.

https://doi.org/10.1371/journal.pone.0189895.g003
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animal models of neurologic injury. For instance, a meta-analysis done by Peng et al. found an

absolute effect size of 1.86 on overall sensorimotor function after traumatic brain injury [35].

In our study, the cylinder rearing results yielded an SMD of 2.25, which is comparable to the

values obtained by Vahidy et al [36]. Furthermore, our rotarod estimates echoed the findings

by Chen and colleagues, who examined the efficacy of neural stem cell use after ischemic

stroke [37]. Taken collectively, these findings support the potential use of stem cell therapy in

preclinical studies of neurologic disease.

Our meta-analysis suggests that further studies should be performed to elucidate the ideal

MSC dose, as one study suggested quantities between 500,000 and 1,000,000 MSCs while another

showed optimal doses over 1,000,000. Likewise, there was discrepancy regarding the most effective

route of delivery, with sensorimotor results favoring an intravenous route while the cognitive

studies favored intraperitoneal injection. These variables, amongst others, are exceedingly clini-

cally relevant to future patient applications. As such, our findings should be used to guide future

studies when determining the optimal MSC characteristics for successful outcomes.

In all comparisons, significant heterogeneity in treatment effect was found between study

groups. This level of heterogeneity can be expected in studies such as ours based on the limited

number of included studies and potential for bias in study selection. Funnel plots and Egger’s

test for small-study effects confirmed the presence of publication bias. Study quality may also

be affected if functional neurologic outcome, our primary outcome measure, was not the focus

of the preclinical study. Such variations in study design could account for the heterogeneity

found in our analysis.

We performed a meta-regression analysis to assess the effect of these variables and consider

sources of heterogeneity. The results of this analysis suggest that sensorimotor and cognitive

outcome can indeed be associated with moderator variables in the study. However, it is impor-

tant to consider the limitations of meta-regression. In our analysis, there are relatively few

studies, but many possible study characteristics that could explain heterogeneity. Without sig-

nificant power, it is possible to arrive at false positive conclusions. Meta-regression is intended

to generate hypotheses regarding heterogeneity, rather than explain them fully. For this reason,

it is difficult to truly ascertain the variables with the most promising effects given the current

collection of studies.

Use of the SYRCLE Risk of Bias tool highlighted notable deficiencies in reporting across all

studies. None of the 19 studies included in our review were considered low risk of bias based

on the reporting domains included in this tool. As discussed, domains were only scored as a

low risk of bias if the authors specifically stated these details in their published manuscript.

Therefore, it is possible that the studies utilized such methods in their trials but simply failed

to report them. Our review emphasizes this widespread shortcoming and suggests a need for

higher reporting standards when publishing, specifically for preclinical translational studies.

We suggest using a checklist such as the SYRCLE Risk of Bias tool when designing future pre-

clinical studies to minimize internal reporting bias.

Similarly, it is imperative that studies report all characteristics of their animal, experimental,

and intervention models. For instance, one of the studies did not describe their specific

method of hypoxic-ischemic insult or the age at which HIE was induced. Four studies did

not report any of the established MSC characterization criteria. Additional studies were lack-

ing at least one of these criteria. This information, along with information regarding the exper-

imental conditions, is especially important for future study comparisons and meta-analyses.

Without knowledge of these details, it becomes challenging when attempting to optimize

interventions for future translational studies.

Our study has many strengths, primarily in that we conducted a systematic literature search

and followed a published protocol method to ensure a diligent and rigorous review process.

Stem cell therapy for neonatal hypoxic ischemic encephalopathy

PLOS ONE | https://doi.org/10.1371/journal.pone.0189895 December 19, 2017 15 / 20

https://doi.org/10.1371/journal.pone.0189895


Data from multiple studies was combined in the meta-analysis, thus increasing the sample size

and precision when studying effects of interest. Furthermore, our primary outcome of func-

tional neurologic result is widely applicable to future preclinical and clinical studies.

On the other hand, our study has several limitations that are common across systematic

reviews. For instance, included studies are limited to only those that have already been pub-

lished. Unpublished data may exist that would further skew our results. While we made every

effort to thoroughly search the current literature, it is possible that we may have missed rele-

vant studies. Additionally, our meta-analysis is limited by a relatively small data set due to

strict inclusion criteria, with external publication bias across these studies. Our study did not

include experiments that used modified stem cells or those augmented by additional therapies

such as hypothermia or granulocyte colony-stimulating factor. While the addition of these

therapies has not demonstrated significant results in the aged brain, they may enhance the

neurorestorative effect of MSCs in a more pliable neonatal brain [15,38]. Further, many of the

included studies were primarily performed to investigate the histological or structural effects

of MSC intervention on neonatal models of HIE, with functional neurologic outcome as a sec-

ondary measure. It is possible that these variations in study design have altered the results of

our meta-analysis. Finally, we are unable to comment on the clinical safety of MSC therapy, as

none of the included studies thoroughly investigated long-term effects on animal subjects.

While immunogenicity is less of a concern with MSC therapy, other significant risks exist. For

instance, MSCs have been associated with malignant transformation, tumor growth, and a

higher overall degree of metastasis [39–41]. Although complications have been observed in

humans receiving MSCs, meta-analyses have not shown a direct correlation between MSCs

and acute toxicity, systemic failure, malignancy, or death [42–44]. The only noteworthy associ-

ation is between MSCs and transient fever [45]. The long-term consequences of these effects

are of particular concern in the developing preterm neonate. In future preclinical studies, ani-

mal subjects undergoing stem cell therapy for neonatal conditions should be followed into

adulthood to determine the incidence of these and other adverse effects. Upcoming investi-

gations should also examine the safety profile of cell-based products (conditioned media,

exosomes, microRNA, etc.). Despite these limitations, our results reflect the widespread ten-

dencies in this field of research.

Furthermore, this project limited the inclusion of experiments to those focusing on the neo-

natal brain. MSCs derived from both bone marrow and umbilical cord blood have repeatedly

demonstrated the ability to restore neurogenesis and functional outcomes in young (2–3

months) and old rats (12–20 months) exposed to cerebral ischemia [33,34,46]. However, inves-

tigators have found that the age of the rat at the time of cerebral injury may influence the

regenerative/reparative ability of the cell-based products. For instance, the success is limited in

animal subjects with age-related comorbidities such as diabetes and hyperlipidemia [46].

These findings highlight the differences between the neuronal infrastructure and adaptation to

injury in the neonatal versus mature brain. Future studies should be preformed in both adult

and neonatal subjects under common comorbidities to determine if MSC outcomes are appli-

cable throughout life.

Conclusion

In brief, our findings suggest promising therapeutic potential for MSCs in the treatment of

neonatal HIE. This meta-analysis of current preclinical studies demonstrates that MSC admin-

istration positively affects the functional neurologic status in treatment groups, as demon-

strated by sensorimotor and cognitive testing. Results are amplified based on various animal

model, study design, and intervention characteristics. However, further analysis is needed to
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determine the optimal MSC source, dose, timing, and route of administration. While study

reporting, heterogeneity, and publication bias served as limitations to our review, the overall

results are consistent with the current data from the field. These items should be taken into

consideration when designing future preclinical studies and clinical trials.
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