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Abstract. The power of predictive modeling for radiotherapy outcomes has historically been
limited by an inability to adequately capture patient-specific variabilities; however, next-
generation platforms together with imaging technologies and powerful bioinformatic tools have
facilitated strategies and provided optimism. Integrating clinical, biological, imaging, and
treatment-specific data for more accurate prediction of tumor control probabilities or risk of
radiation-induced side effects are high-dimensional problems whose solutions could have wide-
spread benefits to a diverse patient population—we discuss technical approaches toward this
objective. Increasing interest in the above is specifically reflected by the emergence of two nas-
cent fields, which are distinct but complementary: radiogenomics, which broadly seeks to inte-
grate biological risk factors together with treatment and diagnostic information to generate
individualized patient risk profiles, and radiomics, which further leverages large-scale imaging
correlates and extracted features for the same purpose. We review classical analytical and data-
driven approaches for outcomes prediction that serve as antecedents to both radiomic and
radiogenomic strategies. Discussion then focuses on uses of conventional and deep machine
learning in radiomics. We further consider promising strategies for the harmonization of high-
dimensional, heterogeneous multiomics datasets (panomics) and techniques for nonparametric
validation of best-fit models. Strategies to overcome common pitfalls that are unique to data-
intensive radiomics are also discussed. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI.8.3.031902]
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1 Introduction

Radiotherapy is received by approximately half of all cancer patients.1 The development of pre-
dictive models for determining which patients are likely to benefit from radiotherapy and which
are at risk of incurring aberrant toxicities could, therefore, provide benefit to a large population.
Early efforts to capture radiation-induced side effects or assign a probability for achieving local
control consisted principally of dose–volume effect correlations2,3—these approaches yielded
some success with classical treatment modalities, but are now recognized to be intrinsically
limited due to patient heterogeneity at the biological level.4–6 Two distinct but complementary
strategies have emerged in recent years to overcome this limitation: (i) the integration of patient-
specific biological risk factors into dose–volume-based outcome models, which we refer to
herein as radiogenomics,7 and (ii) the integration of imaging correlates together with treat-
ment-related and biological data for outcomes prediction, radiomics.8 We note that an alternative
definition of radiogenomics exists in literature entailing the exclusive use of imaging correlates
and genomic data;9 however, given our focus on radiotherapy outcome modeling, we forgo this
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definition in preference of the above. Taken together, there is renewed interest in the develop-
ment of personalized radiotherapy treatment plans and, eventually, their integration into auto-
mated treatment planning systems.10,11

We review radiogenomic and radiomic modeling strategies herein first by discussing the
types of data and derivative metrics (correlates) commonly used, including next-generation data-
sets. Classes of outcomes associated with either tumor control or normal tissue toxicity are then
reviewed. We consider conventional dose–volume-based approaches for outcomes modeling,
which sets the stage for discussion of radiogenomic and radiomic modeling approaches and
furthermore highlight techniques for the augmentation of classical models allowing them to
incorporate biological and/or clinical risk factors. Both conventional and deep learning strategies
are reviewed in the context of radiomics. Given the emergence of next-generation technologies
and large datasets obtained from unique sources, we discuss potential outcome modeling strat-
egies using the integration of heterogeneous and high-dimensional multiomics datasets (pano-
mics).12 As they are critical for any modeling approach, we conclude by discussing common
pitfalls for data-intensive radiomics or panomics and validation methods that can be used to
maximize reproducibility and robustness of best-fit models.

2 Definition of Risk

Predicting outcomes for radiotherapy necessitates a definitive understanding of risk (that is to be
predicted). In the case of radiotherapy, there are two main categories:6 (i) tumor control prob-
ability (TCP) and (ii) normal tissue complication probability (NTCP). TCP refers to the prob-
ability of success for the treatment procedure defined over a time period. Ideally, TCP models
would also take into account the possibility of recurrence at longer times after treatment, but data
for this can be sparse and furthermore depend on factors that significantly increase model
complexity.5 NTCP by contrast defines the risk of specific aberrant toxicities induced as a con-
sequence of ionizing radiation and are generally attributed to damage of healthy tissues.6 It has
become recognized that better performing NTCP strategies necessitate the inclusion of data
beyond dose–volume metrics, such as the functional statuses of genes that significantly modulate
normal repair processes, or the use of other biologically relevant data, to better capture inter-
patient variabilities.13,14

3 Radiotherapy Outcomes (Endpoints)

Ionizing radiation induces effects that span nanoseconds (free radical production) to years after
delivery (late side effects). Upon delivery, free radicals diffuse and induce a complex cascade of
molecular and cellular processes that may only become manifest and clinically detectable days,
weeks, months, or years later.15,16 Every effort is made to spatially target radiation to cancer cells;
however, normal cells and critical structures adjacent to target volumes unavoidably receive a
portion of the therapeutic dose.17 Herein, we refer to toxicity from radiotherapy as dose-limiting
and this may include acute effects or late adverse events as detailed below.

3.1 Early Side Effects

Acute side effects from radiation therapy are often transient, self-limiting events that can typ-
ically resolve within a few weeks post-treatment and do not induce severe or long-term morbid-
ity, although this might vary patient-by-patient. An example is the acute inflammation or
ulceration of mucosal membranes inducing mucositis in head and neck cancer treatment.18

Notably, a difficulty in assessing early side effects is the interpretation of data from independent
sources that may use different grading schemas or endpoints.19

3.2 Late Toxicity Events

Late radiation-induced damage to normal tissue occurs empirically>90 days after completion of
radiotherapy. Late toxicities can often be difficult to assess, as no quantitative physiological
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evidence exists or can readily be obtained, and include mild, moderate, severe, and life-threat-
ening morbidities, sometimes requiring additional intervention to be mitigated. Grading schemes
have been developed to classify such morbidity by physicians assigning integer values to the
induced side effects. These could be self-scoring questionnaires or grades assigned by an attend-
ing physician. The correlation between different scoring schemes using a single set of data can be
explored utilizing various machine learning (MI) techniques that rely on the accuracy of outcome
measures.20–22

3.3 Local Control Endpoints

Reporting of local control is usually specific to a given site. For instance, in prostate cancer,
clinical studies typically report local control according to the ASTRO-RTOG Phoenix definition
of biochemical failure.23 Nondichotomized metrics such as prostate-specific antigen (PSA)
doubling time or PSA scores over time could also be used as endpoints in modeling frameworks
if continuous outcomes measures are required but may be less reliable.24

4 Modeling Workflow

The overarching objective of both radiogenomics and radiomics is to prospectively assess the
suitability of a patient for a particular treatment regimen; however, the two approaches have
unique requirements. Radiogenomics leverages genetic and/or other biological information for
improving the prediction of dose–volume-based models, such as in Fig. 1. Radiomics, however,
further requires the processing of imaging records to derive metrics that can be used as input data
for modeling (Fig. 2). Herein, we consider radiomics to include all aspects of radiogenomics, but
strive to discriminate between the two strategies when required as the introduction of imaging
features restricts suitable modeling approaches.

Fig. 1 Example of radiogenomic modeling framework. Clinical, dosimetric, and biological data
are regressed using a logistic transformation. Internal resampling is used as internal validation.
A recommendation of dose escalation, de-escalation, or no recommendation can be generated
according to desired thresholds for risk.
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4.1 Retrieval of Nonimaging Input Data

Dose and volume metrics can be quickly extracted from dose–volume histograms at the treat-
ment planning stage. Clinical data are important in outcomes modeling and can be parameterized
as a covariate of interest.13 An example where clinical information may be key is the use of
anticoagulants and the reporting of aberrant bleeding, for instance. The spatial dose–volume
histogram (z-DVH) can also be used to compare spatial treatment planning information with
outcomes and many resources exist for their derivation.25,26 Biological variables generally refer
to single-nucleotide polymorphisms (SNPs) but can also include copy number variations
(CNVs)—these mutations can be quantified by genotyping/sequencing as per our previous work
and input into frameworks as dichotomous factors.27 We discuss each of these in more detail in

Fig. 2 Image processing steps for radiomics modeling. Extracted features from a variety of clinical
imaging modalities can be used for radiomics, but typically include one or more of MRI, CT, and
positron emission tomography (PET). Segmentation entails the delineation of ROI, which could
make use of multimodality acquisition. Features are extracted and used as input data for modeling.
Predictive modeling is then performed using a selected framework or strategy before validation
and assessment of model generalizability.
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the next major section with the exception of datasets that consist of next-generation sequencing
(NGS), or similar high-throughput approaches (high-dimensional datasets), which are discussed
as panomics strategies later.

4.2 Modeling Framework

NTCP or TCP modeling can be divided into two overarching methods: analytical or data-driven.
Analytical approaches are based on simplified versions of the underpinning biochemical effects
that treatment has on different tissues—analytical models are, therefore, also referred to as
quasianalytical due to their recognized limitations discussed in detail elsewhere.6 In contrast,
data-driven models, or multimetric, are phenomenological in nature such that modeling frame-
works based on them will seek to find the best performing model to capture the underlying
effects regardless of the constituents of the model itself (unbiased).28 Each of these methods is
described in detail in Sec. 6.

4.3 Model Validation

The importance of crafting a modeling framework itself is critical, but internal performance
evaluation prior to testing on unseen data has increasingly become recognized as an important
step in predictive modeling—this is especially the case for more complex models whereby the
opportunities for overfitting a particular dataset is significant.

There are several strategies that can be applied to quickly ascertain whether the results of
a modeling exercise are suitable to proceed to the next steps or whether the framework
requires fine-tuning. Most commonly used are nonparametric statistical measures, such as the
Spearman’s rank correlation (rs, or ρ).28 Used in combination with Chi-squared (χ2) statistical
analyses, the degree of fit between each model parameter and the observed outcomes can be
assessed without a need for increased computational power. As we discuss, information theory
approaches and, more commonly, resampling techniques (e.g., cross-validation through jack-
knifing or bootstrapping) can be used to evaluate a model’s complexity relative to its fit to assess
the performance of the model on unseen data (generalizability).29

4.4 Image Processing for Radiomics

Radiomics approaches typically include steps similar to radiogenomic modeling (data retrieval,
modeling, validation), but with added caveats relating to image acquisition, tumor segmentation,
and feature extraction before predictive modeling and model validation (Fig. 2).5,9 Because of
the amount of data generated in radiomics, the most common approach for modeling is MI.
Moreover, in contrast to dose–volume metric modeling, no analytical associations of imaging
correlates or derivatives and clinical endpoints currently exist, thus restricting radiomics to
data-driven techniques.

4.4.1 Image acquisition

Various imaging modalities such as computed tomography (CT), magnetic resonance imaging
(MRI), and 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET) are used in the
clinics to provide visualize and evaluate the underlying anatomical or physiological properties,
which vary intrapatient and interpatient. Unfortunately, there is often a lack of standard methods
for image investigation and acquisition, which can represent a barrier to the pan-applied radio-
mics approach.30 From the radiomics point of view, it is crucial to have homogeneous data (albeit
through preprocessing or standardization during acquisition) when dealing with multicenter
sources, as it is a necessity for validation. Recent developments in high-performing computing
can help by mitigating variability and with harmonizing data.31,32

4.4.2 Tumor segmentation

Segmentation is the step of distinguishing the tumor area from the acquired images. Treatment
plans in radiotherapy patients already provide a tumor delineation that can be used
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retrospectively in the radiomic analysis. However, this human-based approach can also present
variations among different oncologists or institutes. Radiomic modeling allows testing models
for such variations by introducing tumor region perturbations.9 An alternative to such an
approach would be the use of segmentation algorithms, e.g., deep-learning techniques, which
can learn the features along with the classification task.33–36

4.4.3 Feature extraction

To fully characterize the tumor area, both semantic and agnostic radiomic features can be used.
The first is existing radiology tumor descriptors. The latter is purely computational features,
which can describe shape, density, and texture to define intertumoral.

5 Input Data for Modeling Frameworks

A plethora of metrics exist for use as inputs to modeling frameworks. These can be of different
natures and can add complexity to the model to virtually an endless number of degrees. However,
larger datasets can introduce high amounts of complexity, which can make it challenging to
produce an accurate model. The main data types are described below.

5.1 Physical

Outcome modeling starts from dose–volume metrics, i.e., dose to a given volume or volume of
tissue receiving a particular dose. Already at the stage of treatment planning, it is possible to
derive such parameters. Other variations, such as physiological changes and changes in tumor
composition or anatomy, may take place during treatment. For this reason, often, the delivered
dose may not necessarily reflect the actual biologically absorbed dose. Intrafractional computed
tomography (CT) scan changes could be included to improve predictive accuracy.37

The equivalent uniform dose (EUD) can be used to describe inhomogeneous dose distribu-
tions [Eq. (1)]38 and an extension of the EUD for include normal tissue dose is the generalized
EUD (gEUD) [Eq. (2)]

EQ-TARGET;temp:intralink-;e001;116;367EUD ¼
�X

i
viD

1∕a
i

�
a
; (1)

EQ-TARGET;temp:intralink-;e002;116;310gEUD ¼
�X

i
viDa

i

�
1∕a

; (2)

where vi represents fractional volume for the tissue exposed to a dose Di, and the parameter a
refers to the volume effect of a chosen tissue type. These two metrics serve as excellent tools to
summarize dose–volume distributions.

5.2 Clinical

Other than demographic data, clinical data can impact significantly the outcome modeling and
should be parameterized and used to define the covariates. Anything that might have an impact
on patients’ health can be incorporated and can potentially extend the model to any degree of
complexity.

Covariates of interest can be extracted from clinical data. For example, follow-up therapies
such as anticoagulants or androgen deprivation therapy can induce effects that are difficult to
distinguish from late toxicities.

5.3 Spatial

When comparing spatial treatment planning information with clinical outcomes, z-DVHs can be
used.25,26,39,40 This approach carries the advantage of incorporating spatial information about
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the physical location of dose extremes and does not rely solely on volume-averages (or gEUD)
approaches. This reduces the risks of undervaluing the contribution of hot or cold spots.

5.4 Biological

The most popular class of biological variable found in literature today is related to genetic
mutations, but frameworks can be augmented to include epigenetic and transcriptomic data—
especially pertinent to long-term radiotherapy outcomes.41,42

5.4.1 Genetic variables

Radiotherapy efficacy and toxicity is a fine balance regulated by a number of biological variables
and mechanisms. With the aim of maximizing prospective classification performance, modeling
frameworks will need to incorporate several genetic variables. Known variables of biological
data are related to genetic mutations. The role of epigenetics and transcript expression levels
in long-term radiotherapy outcomes should also be taken into account.43–46 Consider even that
recent hypotheses have been raised about the role of the microbiota as a key player in cancer
therapy response.47

For data-driven modeling, genetic parameters can be included as independent variables and
regressed alongside other factors such as clinical risk and dose–volume metrics. For analytical
models, genetic parameters are integrated in different ways; dose-modifying factors (DMFs)
obtained from clinical risk factors can be used to stratify standard analytical models and generate
“mixed” data-type model.48 To maximize prospective classification performance, this approach
can be expanded to include SNPs resulting in significantly improved classification
performance.49 This approach can be further extended using clinical risk factors for logit and
EUD models.50 Further to SNPs, CNVs can represent an effector of radiotherapy outcomes, and
therefore, be included.27,51

Augmenting Dose–Volume Models with Genetic Variables. Genetic features re-
present independent variables in data-driven modeling together with dose–volume metrics and
clinical risk factors. DMFs obtained from risk factors can be used for standard analytical model
stratification to generate mixed data-type models.52 This approach can be further developed to
include clinical risk factors for logit and EUD modeling.50

5.4.2 Epigenetics and transcriptomics

Additional biological variables include epigenetic alterations, with the extra complications of
these including therapy intervention as well as an effector of the epigenetic landscape.53 An
epigenetic code is under development54 and may facilitate the ability to perform and interpret
the epigenome-wide association studies results and provide a new class of input data for outcome
models.55

Even with supervised learning algorithms to preprocess the data, the number of messenger
ribonucleic acid (mRNA) transcripts from a single microarray experiment can be challenging
and often requires large-scale validations. In such a big-data environment, machine-learning
techniques in artificial intelligence (AI) have the ability to process highly structured, high-
dimensional data, and control for over- and underfitting at the same time.

5.4.3 Next-generation data

In the big-data era, numerous methods used to quantify large numbers of biological factors have
been pioneered and introduced into mainstream biology research within the last decade. These
technologies include well-characterized microarrays and proteomic analysis technologies that
can quantify the levels of expression of up to tens of thousands of mRNA transcripts or proteins
in a single sample.

After generating large quantities of data, high-throughput modeling frameworks can be used
that are able to deal with large numbers of variables.56 This approach has been used successfully
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in clinical oncology to stratify tumor phenotypes and estimate prognoses to help guide optimal
therapeutic regimens.57

5.5 Imaging

There are a variety of textures that can be extracted from medical images and used as
correlates.58–61 Perhaps the most common are qualitative features (semantic) that otherwise can
be used to identify potential lesions. In contrast, quantitative features are algorithmically derived
from images. These two classes of features can vary widely in complexity; however, both pro-
duce metrics that describe the shape and intensity of the voxel histogram and the spatial arrange-
ment of the voxels themselves, i.e., textures.5 Notably, features can be directly extracted from
the images or extracted after transforming the raw imaging data.

There are several types of quantitative features that can be derived: shape features and
statistics that are first order, second order, or higher order.

5.5.1 Shape features

These delineate the geometry of the regions of interest (ROI) in addition to other related proper-
ties such as volume, diameter, surface area, and sphericity. First-order statistics are features
agnostic to spatial information and describe individual voxel values. Considering a summation
of individual voxels represented as a histogram these might include, for instance, mean, min,
max, median, skew, and kurtosis.

5.5.2 First-, second-, and higher-order statistics

These can also be referred to as textural features since they pertain distinctly to the relationship of
voxels to one another rather than the individual voxels themselves.62 They, therefore, provide
information on the geometry or arrangement of voxels for use in describing intratumoral hetero-
geneity. Deriving second-order statistics can be done from the gray-level co-occurrence matrix63

or the gray-level run-length matrix,64 which both describe voxel intensity distributions across
fixed directions. Beyond first- or second-order statistics, there are higher-order statistics,
which overarchingly group features that are extracted after filtering or transforming images.
Preprocessing of images may involve simple denoising or more complex transformations such
as wavelet65 or Laplacian.66

Given the above, it, therefore, becomes apparent that there exist many correlates that can be
derived from any one single image. Importantly, however, a majority of extracted features will
be redundant or interdependent.67 As such, it is important to first identify endpoints that are
clinically relevant to inform what correlates may be most relevant.

Radiomics does not stop here, however, as it may furthermore encompasses the use of -omics
data to augment the predictive value of such imaging correlates. Together, the integration of
NGS data together with imaging correlates should provide a better opportunity to capture under-
lying biophysical effects of radiation therapy in an unbiased way. Techniques for the integration
of -omics data with imaging correlates typically entail the use of MI approaches (see Sec. 6.4).
Indeed, applications of panomics in the clinic are expected to be transformative.68,69

6 Modeling Strategies

6.1 Dose–Volume Approaches

Outcome modeling typically consists of the evaluation of dose to a given volume of tissue (dose–
volume metrics). These parameters already can be used at the treatment planning stage and
extracted from dose–volume histograms. However, because physiological changes are expected
to occur during treatment as therapeutic effect and as morbidity, the delivered dose does not
necessarily reflect biologically absorbed dose. To induce an improved predictive accuracy, intra-
fractional CT scan changes can be incorporated.37 Typically, to summarize dose distributions
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across volumes, inhomogeneous dose distributions are modeled as EUD or gEUD if considering
the normal tissue of interest.38,70

6.1.1 Analytical

Models of the analytical class, also known as mechanistic models, are based on theoretical mech-
anisms of action of radiobiological intervention. They include growing-in-complexity levels of
mechanistic insight into a specific mechanism by which radiotherapy outcomes become evident.

Linear-quadratic formalisms. Nearly all analytical dose–volume TCP models make use
of the well-known linear-quadratic (LQ) formulation for predicting cell-kill:

EQ-TARGET;temp:intralink-;e003;116;604SF ¼ e−αD−βD2

; (3)

where SF is the surviving fraction for a given radiation fraction of size D. The coefficients α and
β relate to tissue-specificity of single- and dual-track cellular deactivation. More commonly,
these coefficients are reported as a ratio (α∕β). When formulated as per Eq. (3), the LQ model
has been shown to prove valuable for predicting cellular responses in vitro and with particular
qualities of radiation only. Consequently, reformulations to the canonical LQ model have been
done extensively to take into account multifraction regimens, repopulation kinetics, high linear
energy transfer radiation, increased dose rates, and stereotactic-body radiotherapy delivery, just
to name a few.6 Previous works can readily be consulted for further details of LQ formulations71

but have, to a degree, fallen into disuse on account of data-driven approaches but also because
normal tissue toxicities are dose-limiting in modern treatment regimens.

Lyman–Kutcher–Burman. The Lyman–Kutcher–Burman (LKB) model is the most used
analytical method for predicting NTCP [Eqs. (4) and (5)]

EQ-TARGET;temp:intralink-;e004;116;416NTCPðD;D50; mÞ ¼ 1ffiffiffiffiffi
2π

p
Z

t

−∞
e

�
−u2
2

�
du; (4)

EQ-TARGET;temp:intralink-;e005;116;355t ¼ D − TD50ðvÞ
m · TD50ðvÞ

and TD50ðvÞ ¼ TD50ð1Þ × v−n; (5)

where m is the slope of the best-fit NTCP sigmoid, TD50ð1Þ is the dose at which NTCP ¼ 50%

for a specific endpoint, and TD50ðvÞ is the tolerance dose for a given partial volume with tissue-
specific volume exponent n. The canonical LKB model allows to stratify patient risk based in
their EUD relative to the dose at which NTCP is 50% for a specific endpoint.

The canonical LKB model has been shown to be fairly consistent toward different data types
and to be able to provide reliable first-order calculations. These calculations are straightforward
and the model is able to obey the boundary conditions without additional constraints being
needed.72

Despite its success in modeling some of the risk factors associated with radiotherapy, the
LKB model still has room for improvement, for example, in the case of radiation pneumonitis
(RP). Clinical evidence can show that almost all patients undergoing radiotherapy have an RP
risk of <50%. However, it is likely that this is a strong underestimation of the actual risk of RP.49

Binomial Models. This class of analytical NTCP model arises by modeling tissues as com-
posed of function subunits (FSUs). The arrangement of the FSUs in a given tissue is based
partially on physiological modeling and partly on empirical evidence. The classical example
is that of the gastrointestinal tract, wherein the tissue is considered to have a more parallel archi-
tecture such that irradiation of one subsection of the tract does not directly compromise the
integrity of the crypt cells that received a subtherapeutic dose.73 Conversely, the spinal cord
is more serial in nature whereby irradiation of one section may compromise inferior
compartments.4 In this way, differences in response according to architecture can better be cap-
tured. The most often used formalization is the critical volume (CV) model
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EQ-TARGET;temp:intralink-;e006;116;735Pi ¼
�
N
t

�
Pt
FSUð1 − PFSUÞN−t; (6)

where the first term of the right-hand side of the equation is the binomial coefficient for N and t,
PFSU is the probability that t ofN subunits will be deactivated by ionizing radiation, N is the total
number of subunits, and t is the number deactivated. The use of the term CV arises since some
tissues can be deactivated by a volumetric effect (as discussed). Using binomial statistics, which
arise naturally from the consideration of radiation deactivation and the underlying tissue as more
parallel or more serial, then the probability thatM subunits will be deactivated can be calculated

EQ-TARGET;temp:intralink-;e007;116;628P ¼
XN

t¼Mþ1

Pt ¼
XN

t¼Mþ1

�
N
t

�
Pt
FSUð1 − PFSUÞN−t: (7)

Importantly, the CVmodel and the FSU concept do not preclude tissues that may exhibit both
parallel and serial effects to one degree or another. These arrangements of FSUs are termed
complex, but may similarly be modeled using Eqs. (6) and (7).

Notably, the CV model has been shown to yield the LKB model with specific factors set as
constant, suggesting the latter may be a specific case of the former.73

Before extensive use of data-driven modeling, CV models and the FSU concept were widely
applied. For instance, applications in prostate cancer yielded some success to predict late
toxicities, but were never widely clinically adopted. Indeed, while better incorporating tissue
architecture, the CV model does not directly consider biological mutations that predispose indi-
vidual patients to aberrant toxicities. Nor can CV models readily take advantage of NGS data.

6.1.2 Data-driven

Data-driven approaches, also known as phenomenological or statistical techniques, are based on
empirical observations and are typically more robust than the analytical approach counterparts.
It is not uncommon for this type of modeling to require preprocessing of data as the number of
variables to take into account can be large.

Regression-based approaches. To fit TCP or NTCP, it is possible to use functions such
as logit

EQ-TARGET;temp:intralink-;e008;116;336πðXiÞ ¼ Φ½gðXiÞ�; (8)

and probit

EQ-TARGET;temp:intralink-;e009;116;293πðXiÞ ¼
egðXiÞ

1þ egðXiÞ ¼
1

1þ e−gðXiÞ ; (9)

often used in sequence. The mathematical simplicity of the logit function makes it the most
used one.

Regression-based techniques represent to date the most frequently used approaches to data-
driven modeling in radiotherapy. Regression link functions are typically sigmoidal to achieve the
nonlinear dose–responses seen experimentally and advanced methods in AI that are able to han-
dle nonlinear data complexity more readily are becoming increasingly popular due to superior
prospective classification performance in many areas of medicine.8,74

The main problem that could arise with phenomenological multivariable models is that many
different conceivable models can be developed to be consistent with the used data set. These can
describe the present data accurately, but may later turn out to be inconsistent with new data sets.75

Overfitting can occur when a model is fitted to a dataset in such specific detail that the result
loses its general validity for different datasets.76 Furthermore, multiple alternative phenomeno-
logical models exist and choosing which one and why is more appropriate can be challenging
and not theoretically solid. This induces a model selection uncertainty or instability.28 More
generally, it is challenging to guarantee how good the model predictions will be without making
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strong assumptions; models that rely on variations and relations of the training data cannot
guarantee accuracy in subsequent datasets with a different statistical structure. Statistically,
a correlation does not always imply causality. As such, it is important to note that phenomeno-
logical models are, therefore, not strictly guaranteed to describe causal relationships.

Kernel-based methods. As an alternative to regression-based methods, kernels can be
applied to classification problems that depend on the deconvolution of nonlinear datasets.
Kernels operations can be applied to generate classifiers such as hyperplanes that differentiate
(classify) higher-dimensional datasets accordingly. In radiology, kernels are particularly useful
given the nonlinear interaction of input data. Mechanistically, they attempt to maximize the dis-
tances between groups (clusters) and so kernels can be considered as extensions to Fischer linear
discriminants or principal component analysis (PCA).77,78

PCA is a well-known approach used widely both within and outside of radiology and
so further details can be found in previous works.62,79

Support-vector machines (SVMs) are the most often encountered kernel variant.80 An SVM
seeks to redefine classification steps into maximization problems through the use of quadratic
programming. Using such an approach, a computationally inexpensive SVM can be formulated
as follows:

EQ-TARGET;temp:intralink-;e010;116;521fðXÞ ¼
Xni
i¼1

αiyiKðSi; XÞ þ ao; (10)

wherein n is the number of support vectors, K is the kernel transformation, and αi is the coef-
ficient that is to be optimized by quadratic programing. SVMs are, therefore, nonparametric and
are robust tools for higher-dimensional data classification.

6.2 Radiogenomics

In data-driven modeling, genetic parameters can be considered as independent variables and,
for example, regressed alongside clinical risk factors and dose–volume metrics. For analytical
models, genetic parameters can be integrated using different model-dependent methods.

6.2.1 Augmented analytical models

Dose and volume-based TCP or NTCP models can be augmented by the integration of biological
variables to enhance their prediction performance. The most frequently used example for this is
the LKB model, which can be modified to include dichotomous clinical or genetic risk factors
using δk as DMF

EQ-TARGET;temp:intralink-;e011;116;278NTCPðD;D50; mÞ ¼ 1ffiffiffiffiffi
2π

p
Z

t

−∞
eð−u22 Þdu; (11)

EQ-TARGET;temp:intralink-;e012;116;222t ¼ D − TD50ðvÞ · eδ1R1 · eδ2R2 · : : : · eδkRk

m · TD50ðvÞ · eδ1·R1 · eδ2R2 · : : : · eδkRk
; (12)

where δk is the weighted risk-factor coefficient for risk-factor k. The Rk parameter is binary and
indicates the presence (Rk ¼ 1) or absence (Rk ¼ 0) of the risk‐factor for a given patient.

In our previous work, we used a modified LKB model to integrate clinical risk factors
together with SNPs and CNVs for predicting late effects of hypofractionated prostate
radiotherapy.27 We found there to be benefit in the inclusion of select deoxyribose nucleic acid
(DNA)-repair associated genetic mutations, but no clinical parameters improve the fit of either
severe late rectal bleeding (RB) or late erectile dysfunction models. Similarly, a separate group
demonstrated the value of including a clinical risk factor related to abominable surgery (yes/no)
for the prediction of late RB toxicity in prostate cancer patients that underwent surgery.81

Imaging information can similarly be used as per the above examples. For example, in the
context of patients with hepatocellular carcinoma having undergone liver irradiation, the
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addition of imaging information related to perfusion of their portal veins was found to improve
the classification performance of the dosimetric LKB model for predicting severe (grade ≥ 3)
enzymatic changes.82 Such parallel approaches are often overlooked in favor of more complex
modeling strategies, but are recommended in the first instance since they may be powerful yet
robust. Indeed, understanding of the physiology at-hand is crucial for their coherence and it is
possible that data-driven approaches may eventually lead to the identification of similar models
but at the cost of time and effort.

While the above approaches have provided benefit in the context of statistical validation,
we found the robustness of augmented analytical models to be reduced when compared directly
with data-driven models of similar complexity.27

6.2.2 Data-driven

Data-driven radiogenomic models function similarly to data-driven dose–volume models – see
dose-volume-based approaches, data-driven for further details. They are most often based on
regression (Fig. 1) so as to be able to handle almost any type of data, but kernel approaches
can also be used. Regression frameworks allow stratification of risk factors through the use of
dichotomous labels. For instance, the presence or absence of a genetic mutation for each patient
can be incorporated into the input data as a 1 or 0, respectively.83 There is furthermore no limit to
the number of such factors that can be included.

6.2.3 Application of radiogenomics

Radiogenomic modeling consists of diverse approaches, making radiogenomic specific tech-
niques difficult to define beyond the common integration of dosimetric, clinical, and biological
data. We suggest to readers a prior work in which we directly compared the improvement in
prospective classification achieved for predicting late side effects of prostate radiotherapy using
dosimetry versus dosimetry plus common genetic risk factors.27 We also compared the improve-
ment in regression-based models’ classification performance with those in quasianalytical mod-
els, such as the LKB, which thus provides an elegant introduction to the core principles of
radiogenomics (dosimetric models, radiogenomic models, data-driven techniques, and analytical
approaches).

An example of radiogenomics in the clinical setting is one that sought to identify predictive
biomarkers of radiosensitivity in breast cancer patients toward classifying patients that are most
likely to benefit from radiotherapy.84 The authors developed a signature for radiotherapy benefit
based on two distinct biological processes: antigen processing/presentation (immune compo-
nent) and intrinsic radiosensitivity. Using a validation cohort of 1439 patients, they found that
radiation-sensitive patients who did not receive radiotherapy had a worse prognosis than other-
wise. Patients in the immune-effective group that did receive radiotherapy had better disease-
specific survival. To extend this study, the authors could have included treatment-related metrics
in their analysis vis-à-vis radiotherapy treatment plan information; however, it is noted that there
are relatively few critical structures adjacent to their target volumes and so may be unlikely to
provide addition insight.

6.3 Machine Learning for Radiomics

Imaging-based approaches for outcome modeling typically take advantage of AI and ML tech-
niques, which are able to mimic selected human behaviors to a degree, but must first be trained to
be able to learn the patterns of interest.61,85 After training, such frameworks need to be tested on
recognizing the pattern in a prospective setting (testing phase). Broadly speaking, there are two
categories of frameworks that can be used: supervised (with labeled outcomes) and unsupervised
(without labeled outcomes)—typically it is considered that validation is crucial for either
approach but more so for the former.86 The use in oncology of conventional ML techniques,
such as artificial neural networks (ANNs), has been successful87–91 but remains very much
in its infancy in light of its potential.
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6.3.1 Conventional

Classical MI techniques in radiomics typically follow a top-down approach,92 where knowledge
of interactions of radiation with tissue and biological systems is often ignored and radiotherapy
outcomes are modeled through complex statistical analysis. For this reason, supervised learning
would be preferred, i.e., models aimed at constructing a genotype–phenotype relationship by
learning such genetic patterns from a labeled set of training examples. Nevertheless, an unsu-
pervised approach (e.g., PCA or clustering) is sometimes used to reduce the dimensionality of
datasets, extract a subset of relevant features, or construct features to be later included in the
chosen learning method.93 The best way to model large datasets such as those containing
genomic information is through support vector machines (SVMs).80 SVMs are tailored to iden-
tify a potentially complex unknown correlation structure between the phenotyping outcome and
high-dimensional genotyping data.

Feedforward neural networks (FFNNs) are used frequently to train AI to basic pattern rec-
ognition problems. FFNNs do not include any recurring nodal inputs (memories) and are fully
defined by their architecture such that arrangements of nodes into different topologies can induce
different system responses. FFNNs have been used in radiation oncology due to their
robustness.94,95 Typical activation functions are logit or probit functions, but also the radial basis
function. Outputs from nodes are stratified by weights. Weights are the elements of the FFNN
that are trained when building an FFNN. To adjust node input and output weights, the delta rule
can be used via backpropagation until classification performance is optimized.96 Datasets for
training can be used all at once (batch) or can be segregated into pattern-based subgroups
(sequential).

6.3.2 Deep learning

Deep learning can be contrasted with conventional learning by the fact that it does not require
engineered features to be used as input to the framework.97 In other words, if found to be valuable
for optimizing the objective, such inferences or associations can be synthetically derived by the
framework itself and used to improve classification performance without declaring them a priori.
In terms of probabilities, deep learning strategies can be categorized as either generative,
whereby the joint probability ðx; yÞ is used to estimate the posterior probability of ðx; yÞ, or
as discriminative, wherein estimates of the posterior probability are made without calculating
the joint distribution (direct mapping).

The decision to use one or the other is contingent upon the nature of the question (objective)
of the framework itself. If the classification of data according to specific labels is all that is
required, then discriminative approaches may be most relevant. However, if the dataset requires
manipulation (e.g., is incomplete), then a generative approach would be indicated to manipulate
the data into an acceptable form. Moreover, generative models, as the name suggests, allow
higher-order parameters to be synthesized and used as input to the framework, or used to capture
internal relationships of variables within the dataset. Extending the above to radiomics specifi-
cally, an example of discriminative learning may be the categorization of a volume as benign or
malignant while the evaluation of intratumoural heterogeneity may warrant the use of generative
strategies.

Discriminative deep learning. Convolutional neural networks (CNNs) are the most
common type of network architecture in use today for image-intense processing,98 which is
likely a consequence of increased accessibility to platforms that can generate such models
(e.g., MATLAB®). They are used preferentially for the processing of especially large
images.99 CNNs use local weights to control adjacent connections and then pooling to generate
features that are spatially invariant. An important characteristic of CNNs is a fewer number of
parameters that are trainable compared with an equal-sized ANN. Local filters can be used to
further reduce the number of independent weights that are required. Transfer learning can be
used to train a many-layered CNN to a rough approximation either to extract features or as
a basis for an entire modeling process.100 As is the case with conventional learning, CNNs can
make use of supervised or unsupervised methods (or a mix).
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Another class of discriminative deep learning model is the autoencoder. Autoencoders are
unsupervised neural networks that reconstruct underlying data through identification of intrinsic
relationships between the input variables.101 Consequently, autoencoders reduce the dimension-
ality of input to a lower dimensional representation than is then input. When used alongside
supervised frameworks, autoencoders offer a robust method to parse incomplete datasets.
Similarly, encoders offer a way to resolve issues pertaining to sparseness when variance within
training data is significantly increased compared with testing. Autoencoders can also be used in
various architectures for classification or denoising of image data. We discuss in the next section
a method for the use of autoencoders as generative models.

Generative deep learning. Variants of autoencoders can be used in the context of gen-
erative models (deep encoders) and have only recently found applications in feature extraction-
based frameworks as well as for segmentation. The variational autoencoder consists of an
autoencoder that produces latent vectors in a Gaussian distribution. The loss function includes
both the Kullback–Leibler (KL) divergence between the latent vector and the Gaussian distri-
bution as well as the squared error (mean) between the input and output. Other variants of deep
autoencoders include those that make use of Bayesian methods for probability distribution that
represents the data in question or convolutional autoencoders for the preservation of spatial local-
ity, both of which are discussed in further detail in previous work.102

Another type of generative neural network is the deep belief network (DBN), which is several
layers deep and consists of stochastic and latent variables.103 Every internal layer of a DBN
serves as a hidden layer for the proceeding layer and as input to the successive layer.
Consequently, a DBN can also be defined as an unsupervised rendition of a restricted
Boltzman machine (RBM) or autoencoder. Importantly, DBNs are trained in a greedy manner
using input from each previous layer. Relatedly, RBMs use both hidden and visible layers with
forward passes learning the activation probability and backward passes the probabilities of inputs
according to activations. In contrast to autoencoders, RBMs use stochastic units according to
specific distributions rather than deterministic units. In other words, RBMs estimate joint prob-
ability distributions for inputs and activations and DBNs can, therefore, be defined as a stack of
RBMs. In radiomics, labeled datapoints are often unavailable, and therefore, a combination of
supervised and unsupervised techniques is often selected. For instance, a supervised network can
be trained with the loss component estimated from unsupervised models such as RBMs.

Reinforcement learning (RL) is defined by an algorithm that seeks to maximize defined cri-
teria leading to a reward given specific tradeoffs.102,104 The requirements for the use of RL in the
context of deep learning include adequate knowledge of the environment, a defined reward, a
defined value function, and governing policies (rules). In other words, RL approaches are goal
oriented. For instance, RL approaches could be used to maximize the local control probability for
a patient weighing the relevant risks of aberrant normal tissue damage. In this sense, RL learning
provides an avenue for the integration of TCP and NTCP models. The use of RL in the context of
deep learning has been used successfully to a degree for imaging-based landmark detection and,
to a more limited degree, for radiotherapy treatment response predictions.105 While the case for
the use of RL in the context of landmark detection in imaging is relatively straightforward pro-
vided one has an adequate training set, radiotherapy responses are an intrinsically more complex,
multiscale phenomenon subject to inter- and intrapatient heterogeneity. Attempts to improve
response predictions in radiomics, therefore, may necessitate the use of multiomics strategies,
for which deep RL may provide benefit.

6.3.3 Applications of radiomics

We briefly consider here three examples of radiomics applied clinically. The first example byWu
et al. sought to identify breast cancer subtypes.106 The authors retrospectively analyzed dynamic
contrast-enhanced MRI data of breast cancer patients at their institution and extracted features
from their dataset. Using an outside, multiinstitutional validation cohort, a gene expression-
based classifier of imaging subtypes was developed and further tested against publicly available
datasets. The result was a three-way classifier for stratifying recurrence-free survival of breast
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cancer patients. Indeed, in such a case, radiomic analysis would likely prove complementary to
classical clinical histologic/molecular subtype categorization.

The second, more recent example by Jiang et al. developed a noninvasive radiomic signature
predictive of gastric cancer ImmunoScore, which is a classifier of 27 immune cell features shown
previously to effectively predict reoccurrence.107,108 Using four independent cohorts consisting
of N ¼ 1778 patients, the authors extracted >500 quantitative features from contrast enhanced
CT images. To correlate imaging features/metrics with the ImmunoScore results, a logistic
regression model was then used. The result was a relatively robust signature of 13 imaging fea-
tures that was found to strongly correlate with ImmunoScore, thereby providing a noninvasive
surrogate marker.

The third example we discuss using radiomics incorporates deep learning for the prediction
of survival in patients with glioblastoma.109 In this work, the authors used transfer learning to
extract deep features and thereupon build signatures for survival. Using nearly 100,000 deep
features alongside a handful of handcrafted features extracted from preoperative multimodality
MR images, a six-deep-feature was constructed using least absolute shrinkage and selection
operator (LASSO) Cox regression. The proposed signature was found to have significantly better
classification performance of patients (prognostically). At the same time, the work demonstrated
the feasibility of using transfer learning with deep features, a now frequently used technique for
clinical radiomic studies.110–112

6.4 Panomics

The term panomics encompasses the use and integration of datasets relating to the multiomics
technologies, such as genomics and proteomics,12 but also for our purposes here includes im-
aging correlates, clinical data, and data produced from other NGS platforms not specifically
mentioned (Fig. 3). Given the heterogeneity of such datasets, their potential sparseness, and
inconsistencies in their constituent data (missing values), working with them can pose unique
challenges but also provide valuable insight. The favored approach for leveraging panomics
datasets is, for now, one of systems biology.113

A systems biology approach recognizes that radiotherapy occurs at the intersection of physi-
cal processes and biological and clinical effects, each of which can take place over very different
timescales. For instance, atomic-level effects of free radicals induced by ionizing radiation
through to clinical scoring of late radiotherapy responses can span 10−9 to 107 s, for which
the entirety of events are unlikely to adequately captured by any one single approach.114

Radiotherapy is also data intensive in that it encompasses functional imaging data and requires
anatomical information, which, when coupled with biological markers from tumor and peripheral
bloods, lends itself to the use of informatics approaches that can copewith high-dimensionality and
heterogeneity.115

Fig. 3 Workflow for panomics modeling. (a) Significant data can be generated in the clinical
setting for patients undergoing radiotherapy through the careful analysis of specimens collected
from certain sites and at certain times (pre/posttreatment). (b) Specimens can be used to generate
data such as transcriptomics, genomics, proteomics, metabolomics, imaging correlates, and
more. These datasets are usually high-dimensional and generated through NGS techniques.
(c) Together with dosimetry and other clinical risk factors used in radiotherapy, datasets are
preprocessed (normalization, filtering, for instance) and (d) applied to modeling of treatment
outcomes (e.g., tumor response, toxicity).
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6.4.1 Systems biology

The use of systems biology approaches for prediction of radiotherapy outcomes has to date been
limited, but as discussed, remains a promising avenue for future works that make use of pano-
mics datasets. Here, we review strategies for the integration of unique datasets but recognize that
this list is by no means complete. In truth, the strategies adopted for working with panomics
datasets are likely to vary to a degree between applications owing to the specific differences of
each dataset at hand; however, several approaches described below can be used in the first
instance.

Graph networks. In the case of the integration of proteomic and genetic data, graphical
networks can be used wherein nodes represent genes/proteins and network edges their inter-
actions. Such approaches make use of Bayesian networks, which our team has previously
applied to the prediction of radiation-induced pneumonitis.

Similarity network fusion. The similarity network fusion (SNF) approach uses a network
fusion method to integrate multiomics datasets (align datasets).116,117 In the first instance,
an individual network is created for each dataset and then a nonlinear fusion network is used
to combine them. The resulting network is coined a similarity network and the step by which
the networks are combined (fusion step) uses belief propagation to accomplish this.118,119 The
advantage of using an SNF approach is that noise can readily be identified as specific to each
dataset and dissolves through the integration of the networks. On the other hand, true signals that
are identified are propagated through the similarity network.

Joint Bayesian factor. This approach is nonparametric and uses joint Bayesian factors
(JBFs) to integrate multiple data sets. Using this approach, the entire feature space is factorized
into shared and unique components using a beta-Bernoulli process.120,121 The product is a joint
factor model with two constituents: individual factors unique to each dataset and shared features,
both of which can include noise (noise specific to a dataset and noise common to multiple data-
sets).122 Relative sparseness of each dataset can be evaluated and included in the analysis using a
Student’s t-test sparseness factor. The advantage of using a JBF approach to integrate datasets is
that it allows identification of a subset of factors that maximizes the overall objective function of
the framework in an unbiased way.

Multiple coinertia analysis (MCIA). MCIA attempts to capture relationships across
high-dimensional datasets and has previously been used for gene expression and
transcriptomics.123,124 One advantage of MCIA is that features do not need to necessarily
be present for all subjects; however, the number of samples in each dataset must match.
Covariance optimization criterion is used to transform the individual datasets and normalize
them to the same scale. The datasets are projected onto the same unit space, which can then
be searched. Applications of graph theory can facilitate this process and allow the extraction
of heterogeneous features that are partial members of multiple datasets.125

6.4.2 Challenges specific to panomics

The heterogeneity of large panomics datasets, their size, the requirement for intensive computa-
tional power, and also the lack of clarity as to the most appropriate methodology for their analy-
sis makes working with such datasets challenging.12,126 Indeed, efforts have been made to resolve
these challenges, but few have yet been widely adopted. For instance, the use of specific dataset
formats for analysis is critical and Feature X Sample matrices have emerged as candidates for
this purpose,127 but successive steps in processing panomics datasets remain unclear. Indeed,
preprocessing and batch effect interrogation is paramount to the reliability of input data, and
therefore, to the entire framework. Further processing prior to modeling includes normalization,
filtering, and quality assurance, any one of which may perturb or obscure the underlying signal
being sought. In a broader sense, panomic analyses must first strive to use the appropriate data-
sets and formats as they pertain to the question at hand. For example, it is straightforward to
normalize datasets that originate from very different sources, but it is more difficult to take into
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account unequivocal outcomes or assay readouts.128 Moreover, interpretation of clinical infor-
mation in the context of panomic datasets poses a unique challenge such that clinical metadata
may be less easily quantified compared with NGS-generated data, both of which may change
over time.

6.5 Evaluation of Model Performance

There is a diverse list of techniques that can be used to evaluate the performance of a model prior
to independent validation on unseen data, which is typically the final step in a modeling frame-
work. The techniques discussed herein are some of the most commonly employed methods but
are by no means exhaustive. While they classically are applied to non-MI techniques, they can
occasionally be found integrated into MI-based frameworks throughout radiology.39,129,130

6.5.1 Estimation of error, optimal parameters, and model order

Statistical resampling. Resampling can be used to estimate optimal model order, best-
fitting parameters, and/or error.29 Regardless of when it is used, statistical resampling divides a
dataset into smaller sets in the first instance. When done with replacement, this can be repeated
to produce a much larger pseudoset that can then be used to provide estimations of parameters
without having to fully elucidate the true underlying distributions of the individual parameters
themselves. The method is, therefore, nonparametric. Certain variations can be extremely
quick as well, serving as easy-to-implement internal validations throughout the modeling
process.

Jack-Knifing. Jack-knifing is a special case of cross-validation, whereby the first datapoint
(e.g., patient) is left out and modeling is performed on the remaining cohort (N-1). The datapoint
is then replaced and the second datapoint is removed and a new model is fit using all but the
second datapoint. This is repeated until each successive datapoint is removed, generating a new
model at each turn for a total ofN. By examining the resulting models, insight into the robustness
of the best-fit model obtained using all of the training data can then be analyzed. Jack-knifing is
quick, but provides only an estimate of the more computationally intensive bootstrap technique.
A more general version is to use k-fold cross validation.

Bootstrapping. Similar to jack-knifing, bootstrapping is a resampling technique done with
replacement that can provide estimation of parameters, model orders, and errors. In contrast to
jack-knifing, however, bootstrapping randomly resamples a select number of parameters. These
subgroups can then be used to generate estimates of interest—a technique known as bagging. By
analyzing their relative variability or averaging them, estimates for best-fit values can be pro-
duced. As a resampling technique, bootstrapping is nonparametric and especially finds use when
analytical estimation of errors is not feasible. However, it should be noted that bootstrapping
assumes independence of each datapoint from one another—this is usually not an issue for out-
comes modeling given the independence of each patient from one another.

Applied information theory. In contrast to resampling techniques, information theory can
be used to provide insight into the balance of model complexity and its fit. These approaches are
quick but do not provide insight into the quality of a model nor of its interpretability.131

Akaike information criterion (AIC)
The AIC is a technique based on goodness of it and penalizes a model for underfitting or

over-fitting

EQ-TARGET;temp:intralink-;e013;116;148AIC ¼ 2k − lnðLÞ; (13)

where the parameter k is the number of variables in a model and L is the log-likelihood. By using
the KL distance to quantify the relative proximity between the two real and predicted probability
distributions, an estimate of the divergence can be made. The optimal AIC value is found by
minimizing the log-likelihood term on the right-hand side. AIC rewards models with fewer
parameters that can adequately explain the data over those with increased complexity. The
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2k is the penalty factor, which increases the AIC and whose contribution to the AIC cannot be
overcome with better fit (lower log-likelihood). A drawback of the AIC is that it fails to perform
adequately when k is large and numerous comparisons are being made. For instance, in the
context of radiomics models that use NGS data, AIC would likely not to be suitable for
the evaluation of goodness-of-fit.

Bayesian information criterion (BIC)
The BIC is a method similar to that of the AIC but differs in the arrangement of the con-

stituent variables132 and furthermore includes a parameter n, which is the number of datapoints
contained within the input data (sample size)

EQ-TARGET;temp:intralink-;e014;116;628BIC ¼ k · lnðnÞ − 2 · lnðLÞ: (14)

The penalty term of the BIC is larger than that of the AIC and so penalizes overfitting more.

6.5.2 Model performance evaluation

There exist numerous methods in literature to evaluate the ability of a given model to classify
data in a prospective sense. Oftentimes, frameworks will employ more than one validation tech-
nique to explore the shortcomings of outputted models.

Validation coefficients and metrics. Metrics and coefficients are the most readily avail-
able tools for calculating the prediction or classification performance of outcome models. Their
simplicity is amenable to quick understanding of model behavior and, when several are used
together, can yield insightful information. The linear Pearson’s correlation is an example of a
nonparametric coefficient that is used frequently for estimating the linearity of a relationship
between two variables. More often employed in outcome models is the Spearman rank coef-
ficient, which does not assume linearity and instead yields an estimate on the direction of trend
between two parameters. Alternatively, receiver-operating characteristic (ROC) values can be
summed from ROC plots to readily convey classification performance alongside sensitivity and
specificity for the desired classification cut-off value. The selection of such cutpoints can be
optimized using Youden indices, for instance.

Cross-validation by resampling. Resampling with replacement can be used to quantify
the classification performance of models as well as estimate confidence intervals on model per-
formance or provide estimates on the error of classification statistics. In our experience, leave-
one-out cross-validation on finalized models serves as an excellent method to quickly estimate
how robust a given model is without having to rely on more computationally expensive methods,
such as bootstrapping.

7 Common Challenges and Pitfalls in Radiogenomics

Radiogenomics modeling requires the accurate processing, analysis, integration, and interpre-
tation of large data sets, often simultaneously. Therefore, there are many challenges that need to
be addressed to avoid errors and their propagation. Each set of data can involve a wide range of
data types, including nominal, ordinal, and quantitative data. As a result, radiogenomic analysis
demands efficient and objective dissection of image features (radiomics) so that relevant features
and information can be extracted reliably and measured.133,134 Current challenges include AI
interpretation often compared with the expert opinion and image interpretation.135 Therefore,
the understanding and representation of each input data type is of great importance to be able
to perform any accurate analysis.

7.1 Curse of Dimensionality

The curse of dimensionality refers to the difficulty associated with analyzing and characterizing
large data sets where potential data space increases nonlinearly with the number of dimensions
(exponentially increasing sparsity).136 This is a difficult to avoid cost associated with the ability
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of working with large datasets and can lead to the overgeneralization of results from the
unjustified application of certain methods. For this reason, appropriate methods must be applied
with judicious interpretation of the results. For example, the false discovery rate represents
the expected rate of the inappropriately rejected null hypothesis (the expected proportion of
false-positive results) and is frequently used in genomic analyses. The most commonly recog-
nized challenge in the analysis of large data sets is the need for multiple hypothesis testing
corrections, of which the Hochberg–Bonferroni P value correction is the simplest and perhaps
the most well-known.137

The challenges of utilizing a large number of variables in outcome models are well summa-
rized by the multiple testing dilemma: too few samples relative to a large number of variables
being tested can lead to spurious correlations. Even after utilizing simple supervised learning
algorithms to preprocess the data, the number of mRNA transcripts that a single microarray
experiment can yield is often in the thousands.81 This issue can be mitigated by large-scale val-
idation studies, but these are expensive, time-consuming, and patient accrual can limit achieving
the necessary sample size.

Alternatively, methods in AI are becoming increasingly popular to explore the complex,
hidden relationships between outcomes and biological variables.82 In contrast to brute-force esti-
mating of correlations, machine-learning techniques have the ability to process highly structured,
high-dimensional data while controlling for over- and underfitting by drawing on methods from
control, probability, and information theory. Outside the applied field of radiomics, one group
has provided a mathematical formulation to guide the detection of dimensionality anomalies as
they are applied to deep learning and can be visited for further details.138

An important point is that neural networks and especially deep network learning strategies
may be impervious to the curse of dimensionality by virtue of their architecture.139 Instead, they
may suffer from challenges relating to dimensionality reduction during the data representation
process.

7.2 Dimensionality Reduction

While complex methods are often needed by large data sets analysis, there is often a dangerous
temptation to overfit the data to inordinately complex or overly parameterized models.140 The
most common statistical tests assume normal distributions for measured variables. Despite this
possibly being a fair assumption, nonparametric approaches can be used when the variables are
being analyzed as an alternative. These include Bayesian-based approaches, which can prove
particularly useful, given that clinical data are often complex and nonlinearly distributed. It is of
paramount importance to note that just because a modeling calculation can be performed does
not mean that it should be performed, and that underlying assumptions for use of the methods
always need to be satisfied by the data to which they are being applied. We again note that
validation is always the most important test to avoid under- or overfitting.

7.3 Data Preparation

Preprocessing of input data for radiomics frameworks can be critical, especially in the context of
MI and panomics techniques.141 Data preparation can have a significant effect on the resulting
classification result and so cannot be taken for granted. During this phase, several steps must be
considered, which may include randomization, controls for under/oversampling, discretization
of continuous data, scaling of features, and so on. As they pertain to all datasets, we focus our
discussion here on randomization, feature scaling, and class balancing (sampling artifacts).

Features that are extracted from images during radiomic modeling can have very different
scales, which, if not properly considered, may preclude interrogation of a subset of the feature
space in any reasonable amount of time and furthermore risks destabilizing the framework.
Specific examples of this include the weights in neural networks, which should be tuned to
common scales across all nodes. By using a shared numerical scale, distortion of distributions
through the networks can be avoided. It is, however, important to distinguish normalization from
standardization. The former specifically refers to a scaling of between 0 and 1 while the latter is
typically used to refer to Z-scoring of a dataset, that is, setting the mean to 0 and the standard
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deviation to 1. Ultimately, the choice of one or the other (or both) is highly context dependent
and should be considered ahead of time.

Randomization is similarly important for modeling in radiomics since the overall perfor-
mance of the algorithm may have local optimums that can be mistaken for global extrema.
These instances are typically straightforward to overcome using pseudorandom seeding factors
or start points for initiation. When coupled with normalization, the scales of parameters within
a framework can be contained to within reasonable values. In the event that randomization
techniques are not applied at the outset of modeling, certain motifs within the dataset may
overwhelmingly influence the resulting model.

Class balancing is critical to ensure that the resulting model does not overtly misrepresent the
signal of interest vis-à-vis under- or overfitting. Resampling techniques can resolve this chal-
lenge. In the context of radiogenomics, bootstrapping and jack-knifing provide quick and robust
methods to achieve this, but for MI strategies, solutions can be computationally expensive and
more complex. The preferred technique for class balancing with MI approaches is the synthetic
minority oversampling technique (SMOTE). SMOTE generates subsets of underrepresented data
with added variances to facilitate interrogation of what effect their increased representation may
have on the model in question. A more recent version of SMOTE, coined adaptive synthetic
sampling approach for imbalanced learning (ADASYN), also exists specifically for the learning
from imbalanced datasets.142 In addition, generative adversarial network (GAN)-based approaches
are becoming more widely used for generating synthetic compensations for such imbalances.

7.4 Roadblocks to Translation and Explainable Artificial Intelligence

A limitation in the ability to broadly apply radiomics/radiogenomics to the wider field of radi-
ology/oncology is translatability. Without a comprehensive understanding of how and why an
algorithm performs a classification, hesitation to adopt it as a standard approach is likely to be
very real and enduring. Interpretability of deep learning algorithms in particular is often ques-
tioned and, indeed, many have shown how such networks can be tricked into misclassifying
relatively straightforward cases. For radiomics, such misclassification could eventually be lethal.
Oftentimes, deep learning strategies are referred to as black boxes; however, this is likely unhelp-
ful and probably dissuades many seeking to understanding the reasoning behind certain deci-
sions that are made. Some efforts to tackle this problem—that is, to open the black box—have,
however, yielded some success in recent years. For instance, through techniques such as
deconvolution networks, network inversions, and activation maximization, we increase our
understanding of how relationships among variables are managed internally. Nonetheless, trans-
latability of deep learning strategies remains a challenge and an area of active research may be
critical for widespread adoption. From a different perspective, ML approaches can broadly be
classified into interpretable and noninterpretable. 135 While techniques of the former are con-
ducive to understanding, and therefore, adoption, their performance is often limited, necessitat-
ing the use of the more abstruse (noninterpretable) methods. One of the most active cores
researching explainable artificial intelligence (XAI) is at the Defense Advanced Research
Projects Agency (DARPA).143–145 In this context, explainable rather than interpretable AI was
chosen to highlight their desire to maximize human interactivity of their platforms. Medical XAI
(mXAI) is a more recent development with a similar objective of opening the black box.146,147

In turn, mXAI seeks to provide discrete, high-level accountability, and therefore, transparency of
deep learning algorithms in the medical sciences.

7.5 Rare Variants Role

The inclusion of biological risk factors can generate challenges for outcome modeling, regard-
less of their value for classification performance.148 In the case of variants that are uncommon
across a dataset but valuable for classification purposes, an imbalance can manifest itself during
the modeling process if identified as important factors during the modeling process. This may be
especially true when dichotomous biological risk factors are included within a framework as they
risk overperturbing the real increase in risk for the variant (0% or 100% additional risk). By
definition, deleterious genetic mutations are rare variants when compared with the much larger
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number of noncoding and innocuous mutations. The role of rare variants is particularly chal-
lenging to study because MI approaches are often used to try to identify them, but they would
ideally be known a priori and compensated for once the relevant pattern has been identified
(chicken and egg). Currently, no techniques are widely adopted to take into account challenges
associated with rare variants.

7.6 Echo Chamber Effect

The echo chamber effect occurs when working with large datasets, such as for radiomics, when
an internal relationship in the data is cyclically amplified through the process of data aggregation
and is, therefore, considered a variation of selection bias such that the training dataset is not
representative of the population.149,150 An example is a meta-analysis, which, when performed
in the context of biomarkers, has an implicitly lower probability of a negative result and thus
deviates from real-world conditions.151

The opposite of the echo chamber effect is the Yule-Simpson paradox whereby true asso-
ciations are identified and reported in smaller cohorts, but are lost in larger datasets.152 Example
and issuing controversies from real-life instances of both the above are described in our previous
work.149

7.7 Data Injustices (Bias and Mitigation)

Biased decision making is not a trait inherently unique to MI nor to radiomics, but is none the
less a real risk.153 Dissecting the origin of biases that are observed in testing and validation is
likely to point toward unrepresentative biases within the training dataset itself. Unfortunately, as
a result, cross-validation techniques and resampling methods discussed earlier cannot overcome
these hurdles and independent validation on unseen data is usually required. Within and outside
the field of radiomics, these training data biases can occur due to geography of cohort data or any
other number of ways, but similarly converge to produce suboptimal models, especially in the
context of learning algorithms with memory. Injustices within datasets differ from small sample
sizes by passing internal validation and potentially even on unseen data. Rather, they are more
cryptic, and therefore, more challenging to resolve. For example, geographical biases may
overexpose a training dataset toward specific ethnic or racial backgrounds, and therefore, be
unapplicable on a wider population. These challenges can similarly be institutional or social.
One method to overcome this challenge is the annotation of the methodology used for the aggre-
gation of datasets in questions. This produces yet another challenge for standardization of, for
example, experimental protocols, and may be challenging if identifiable patient metrics are
necessitated. An alternative strategy is the use of dedicated MI algorithms to seek out biases
unknown to operators. This could either be interpreted or fed directly into the core modeling
framework to systemically audit the underlying strategy and maximize its applicability.

8 Conclusion and Perspectives

In this work, we discuss two complementary but distinct strategies for predicting radiotherapy
outcomes: radiogenomics and radiomics. Both techniques take advantage of biological variables
to augment dosimetric risk factors; however, radiogenomics entails the integration of biological,
dosimetric, and clinical factors whereas we considered radiomics to further include the use of
imaging correlates. As discussed, radiomics quickly necessitates the use of MI strategies for
implementation since it is not evident which textures or features may be relevant to a given
outcome (nor even in which dimensions they reside). Conversely, radiogenomics consists
of a more diverse set of strategies, some more straightforward than others. For this reason,
it is often practical to first familiarize oneself with techniques for radiogenomic modeling before
generating and integrating imaging correlates for use alongside biological data in predicting
radiotherapy outcomes.

Going forward, we feel it is likely that these two techniques (radiomics and radiogenomics)
will intersect, but for this to occur will necessitate the use of high-throughput amenable methods—
high dimensional datasets from diverse sources can provide unique insight to a broad patient
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population but often present a multitude of challenging hurdles at the analysis stage. Thus, we
expect that clinically viable predictive frameworks for radiotherapy will trend toward panomics
strategies, which are designed to shift through highly heterogeneous/incomplete datasets inclusive
of imaging correlates and multiscale biological data. It is our opinion that the noninvasiveness
of imaging and the potential capabilities of next-generation platforms together with high spatial
resolution will continue to motivate and support the use of radiomics/panomics going forward.

More broadly, we expect that AI and MI techniques will overhaul most aspects of radiation
oncology, from delivery, treatment planning, and optimization to outcomes. The integration of
such strategies will necessitate further training for physicians and physicists alike as well as
development of quality assurance strategies and culpability schemas. Given the complexity
of such modeling frameworks, it is possible that poorly trained personal or avoidable misinter-
pretations may do more harm than good. Thus, continuing to draft and refine policy for potential
clinical pipelines using radiomics/panomics is critical. In the interim, we expect imaging bio-
markers to continue to be useful for diagnosis and treatment.
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117. V. Gligorijević, N. Malod-Dognin, and N. Prulj, “Fuse: multiple network alignment via
data fusion,” Bioinformatics 32, 1195–1203 (2016).

118. X. Cheng, L. Zhang, and Y. Zheng, “Deep similarity learning for multimodal medical
images,” Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 6, 248–252 (2018).

119. S. Pai and G. D. Bader, “Patient similarity networks for precision medicine,” J. Mol. Biol.
430, 2924–2938 (2018).

120. P. Ray et al., “Bayesian joint analysis of heterogeneous genomics data,” Bioinformatics
30, 1370–1376 (2014).

121. Y. Liu et al., “Multilevel Omic data integration in cancer cell lines: advanced annotation
and emergent properties,” BMC Syst. Biol. 7, 14 (2013).

122. A. Bhattacharya and D. B. Dunson, “Sparse Bayesian infinite factor models,” Biometrika
98, 291–306 (2011).

123. C. Meng et al., “A multivariate approach to the integration of multi-omics datasets,” BMC
Bioinf. 15, 162 (2014).

124. G. Tini et al., “Multi-omics integration: a comparison of unsupervised clustering method-
ologies,” Brief Bioinform. 20, 1269–1279 (2018).

125. Z. Zhou et al., “Novel radiomic features based on graph theory for PET image analysis,” in
Proc.- Int. Symp. Biomed. Imaging (2019).

126. M. Kohl et al., “A practical data processing workflow for multi-OMICS projects,” Biochim.
Biophys. Acta 1844, 52–62 (2014).

127. I. Subramanian et al., “Multi-omics data integration, interpretation, and its application,”
Bioinf. Biol. Insights 14, 117793221989905 (2020).

128. C. Sandhu, A. Qureshi, and A. Emili, “Panomics for precision medicine,” Trends Mol.
Med. 24, 85–101 (2018).

129. J. O. Deasy, A. I. Blanco, and V. H. Clark, “CERR: a computational environment for radio-
therapy research,” Med. Phys. 30(5), 979–985 (2003).

130. I. El Naqa et al., “Dose response explorer: an integrated open-source tool for exploring and
modelling radiotherapy dose-volume outcome relationships,” Phys. Med. Biol. 51(22),
5719–5735 (2006).

131. H. Akaike, “Information theory and an extension of the maximum likelihood principle,” in
Int. Symp. Inf. Theory, pp. 267–281 (1973).

132. D. J. Spiegelhalter et al., “Bayesian measures of model complexity and fit,” J. R. Stat. Soc.
Ser. B Stat. Methodol. 64, 583–639 (2002).

133. E. Segal et al., “Decoding global gene expression programs in liver cancer by noninvasive
imaging,” Nat. Biotechnol. 25(6), 675–680 (2007).

134. O. Gevaert et al., “Non-small cell lung cancer: identifying prognostic imaging biomarkers
by leveraging public gene expression microarray data: methods and preliminary results,”
Radiology 264(2), 387–396 (2012).

135. Y. Luo et al., “Balancing accuracy and interpretability of machine learning approaches for
radiation treatment outcomes modeling,” BJR|Open 1, 20190021 (2019).

136. R. E. Bellman, Adaptive Control Processes: A Guided Tour, Vol. 2045, Princeton
University Press (2015).

137. M. D. Kuo and N. Jamshidi, “Behind the numbers: decoding molecular phenotypes with
radiogenomics–guiding principles and technical considerations,” Radiology 270(2), 320–
325 (2014).

138. A. Zimek, E. Schubert, and H. P. Kriegel, “A survey on unsupervised outlier detection in
high-dimensional numerical data,” Stat. Anal. Data Mining 5, 363–387 2012).

139. B. Bauer and M. Kohler, “On deep learning as a remedy for the curse of dimensionality in
nonparametric regression,” Ann. Stat. 47, 2261–2285 (2019).

Coates, Pirovano, and El Naqa: Radiomic and radiogenomic modeling for radiotherapy. . .

Journal of Medical Imaging 031902-27 May∕Jun 2021 • Vol. 8(3)

https://doi.org/10.18180/tecciencia.2014.17.2
https://doi.org/10.1093/bib/bbw051
https://doi.org/10.1038/nmeth.2810
https://doi.org/10.1093/bioinformatics/btv731
https://doi.org/10.1080/21681163.2015.1135299
https://doi.org/10.1016/j.jmb.2018.05.037
https://doi.org/10.1093/bioinformatics/btu064
https://doi.org/10.1186/1752-0509-7-14
https://doi.org/10.1093/biomet/asr013
https://doi.org/10.1186/1471-2105-15-162
https://doi.org/10.1186/1471-2105-15-162
https://doi.org/10.1093/bib/bbx167
https://doi.org/10.1016/j.bbapap.2013.02.029
https://doi.org/10.1016/j.bbapap.2013.02.029
https://doi.org/10.1177/1177932219899051
https://doi.org/10.1016/j.molmed.2017.11.001
https://doi.org/10.1016/j.molmed.2017.11.001
https://doi.org/10.1118/1.1568978
https://doi.org/10.1088/0031-9155/51/22/001
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1038/nbt1306
https://doi.org/10.1148/radiol.12111607
https://doi.org/10.1259/bjro.20190021
https://doi.org/10.1148/radiol.13132195
https://doi.org/10.1002/sam.11161
https://doi.org/10.1214/18-AOS1747


140. S. E. Viswanath et al., “Dimensionality reduction-based fusion approaches for imaging and
non-imaging biomedical data: concepts, workflow, and use-cases,” BMC Med. Imaging
17, 2 (2017).

141. B. Koçak et al., “Radiomics with artificial intelligence: a practical guide for beginners,”
Diagn. Interv. Radiol. 25, 485–495 (2019).

142. H. He et al., “ADASYN: adaptive synthetic sampling approach for imbalanced learning,”
in Proc. Int. Joint Conf. Neural Networks (2008).

143. J. You, “Darpa sets out to automate research,” Science 347(6221), 465 (2015).
144. D. Gunning, “Explainable artificial intelligence program update,” in DARPA/I2O (2017).
145. D. Gunning and D. W. Aha, “DARPA’s explainable artificial intelligence program deep

learning and security,” in AI Mag. Deep Learn. Secur. (2019).
146. E. Tjoa and C. G. Fellow, “A survey on explainable artificial intelligence (XAI): towards

medical XAI,” IEEE Trans. Neural Networks and Learn. Syst. (2019).
147. A. Holzinger et al., “What do we need to build explainable AI systems for the medical

domain?” arXiv:1712.09923 (2017).
148. M. Schubach et al., “Imbalance-aware machine learning for predicting rare and common

disease-associated non-coding variants,” Sci. Rep. 7, 2959 (2017).
149. I. El Naqa, “Perspectives on making big data analytics work for oncology,” Methods 111,

32–44 (2016).
150. P. Lake and R. Drake, “Information systems management in the big data era,” in Advanced

Information and Knowledge Processing, L. C. Jain and X. Wu, Eds., Springer (2014).
151. F. Andre et al., “Biomarker studies: a call for a comprehensive biomarker study registry,”

Nat. Rev. Clin. Oncol. 8, 171–176 (2011).
152. E. H. Simpson, “The interpretation of interaction in contingency tables,” J. R. Stat. Soc.

Ser. B 13, 238–241 (1951).
153. J. Zou and L. Schiebinger, “AI can be sexist and racist: it’s time to make it fair,” Nature

559, 324–326 (2018).

James T. T. Coates is a research fellow at Harvard Medical School and Massachusetts General
Hospital Cancer Center in Boston. He focuses on developing techniques for the integration of
high-throughput data together with patient-specific treatment metrics on toward improving clini-
cal outcomes. Recently, his interests include the development of deep learning strategies that
integrate highly heterogeneous datasets together for real-time optimization of patient-specific
treatment regimens.

Giacomo Pirovano is a research fellow at Memorial Sloan Kettering Cancer Center in New
York. His main research interests include the development of innovative approaches to improve
radiotherapy with a particular focus on the development of novel methods for targeted radio-
therapy, and radiotheranostics. His research combines different disciplines to allow more per-
sonalized cancer treatment plans.

Issam El Naqa’s research interests are in the areas of oncology bioinformatics, multimodality
image analysis, and treatment outcome modeling. His lab operates at the interface of physics,
biology, and engineering with the primary motivation to design and develop approaches to
unravel cancer patients’ responses to chemoradiotherapy treatment by integrating physical, bio-
logical, and imaging information into advanced mathematical models and by applying tech-
niques of machine learning and complex systems analysis to first principles and evaluating
their performance in clinical and preclinical data. He is currently the Chair of Machine
Learning at Moffitt and is an AAPM and IEEE fellow.

Coates, Pirovano, and El Naqa: Radiomic and radiogenomic modeling for radiotherapy. . .

Journal of Medical Imaging 031902-28 May∕Jun 2021 • Vol. 8(3)

https://doi.org/10.1186/s12880-016-0172-6
https://doi.org/10.1126/science.347.6221.465
https://doi.org/10.1109/TNNLS.2020.3027314
https://doi.org/10.1038/s41598-017-03011-5
https://doi.org/10.1016/j.ymeth.2016.08.010
https://doi.org/10.1038/nrclinonc.2011.4
https://doi.org/10.1111/j.2517-6161.1951.tb00088.x
https://doi.org/10.1111/j.2517-6161.1951.tb00088.x
https://doi.org/10.1038/d41586-018-05707-8

