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Abstract: COVID-19 evolution imposes significant challenges for the European healthcare system.
The heterogeneous spread of the pandemic within EU regions elicited a wide range of policies, such
as school closure, transport restrictions, etc. However, the implementation of these interventions
is not accompanied by the implementation of quantitative methods, which would indicate their
effectiveness. As a result, the efficacy of such policies on reducing the spread of the virus varies
significantly. This paper investigates the effectiveness of using deep learning paradigms to accurately
model the spread of COVID-19. The deep learning approaches proposed in this paper are able to
effectively map the temporal evolution of a COVID-19 outbreak, while simultaneously taking into
account policy interventions directly into the modelling process. Thus, our approach facilitates
data-driven decision making by utilizing previous knowledge to train models that predict not only
the spread of COVID-19, but also the effect of specific policy measures on minimizing this spread.
Global models at the EU level are proposed, which can be successfully applied at the national level.
These models use various inputs in order to successfully model the spatio-temporal variability of
the phenomenon and obtain generalization abilities. The proposed models are compared against the
traditional epidemiological and Autoregressive Integrated Moving Average (ARIMA) models.

Keywords: COVID-19 policies; deep learning; time-series prediction; COVID-19 reported cases;
data-driven pandemic interventions

1. Introduction

At the end of 2019, China reported to World Health Organization (WHO) several
cases of unusual pneumonia [1]. On January, 2020, COVID-19 (Coronavirus disease 2019
caused by Sars-Cov-2) was identified as a new disease and announced to the public, and by
the end of January, WHO had declared a worldwide health emergency. By the following
weeks, COVID-19 was spread to several countries around the globe. By the end of March
2019, the epidemic had already turned into a pandemic [2], and most countries were
applying restrictive measures, such as lockdowns [3], as over 1,000,000 cases and more
than 50,000 deaths were reported worldwide [4]. Nowadays, the national health agencies
have developed response plans and tools for fighting the pandemic crisis. The COVID-19
outbreak demonstrates a significant heterogeneity on how it has been spread over different
EU regions. This heterogeneity is mostly attributed to the management of the health
crisis, including the way that regional authorities impose and monitor implementation of
restrictions. The efficacy of the imposed restrictive measures, such as social isolation and
lockdowns, has been evaluated worldwide and seems to vary significantly based on: (i) the
strictness of government policies and (ii) the monitoring of their implementation. Classical
epidemiological modelling of COVID-19 outbreaks, i.e. the calculation and mapping of the
virus’ reproduction rate, has been an effective tool in monitoring similar past outbreaks,
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but mostly works when the spatial granularity of the analysis is small enough to disregard
other socio-economic parameters.

Beyond the classical epidemiological approach, different time series predictive models
have been applied in the literature to tackle the pandemic situation. Most of these proposed
models exploit the temporal dynamics of the pandemic and suggest auto-regressive models
to model the situation. However, it is noted that the time series trend for the infection differs
between the countries depending on the strategies adopted by the healthcare organizations
to decrease the spread. In particular, the unprecedented infection rate of COVID-19 led local
authorities worldwide to adopt multiple and varying mitigation strategies as: (a) school
closures; (b) workplace closures; (c) cancelling public events; (d) restrictions in gatherings;
(e) closing public transportation; (f) stay-at-home requirements; (g) public information
campaigns; (h) restrictions in internal movements; (i) international travel controls; and
(j) facial coverings. These preventive measures vary per country, per severance level,
and per time duration. Each country imposes a different set of measures that affect the
transmission rate of the COVID-19 to a different extent. Thus, there is a need to create a
COVID-19 time series modelling with the following characteristics: (i) autoregressive: to
model the temporal dependencies, (ii) non-linear: to model the high variability between
the different regions, (iii) to be able to incorporate exogenous data that affect the progress
of the virus. Deep learning approaches are adopted here due to their inherit capability to
model such scenarios [5].

This work aims at testing the efficacy of different deep learning models as tools for
health care agencies to take data driven decisions in their interventions towards minimising
a COVID-19 outbreak. The aim is to create tools that inherently take into account pol-
icy interventions, combine them with the current epidemiological status, and effectively
provide quantifiable predictions that will help health authorities devise optimal action
plans. Generalisation of the models, so that it will be able to work across borders and
cover larger areas, is also very critical, as it will allow the transfer of knowledge between
jurisdictions, enabling an as early as possible data driven response to the outbreak. To
this end, two models are presented here, focusing on the human and resource costs of a
COVID-19 outbreak, respectively. The first model predicts the new cases per million and
deaths per million for the next seven days, while the second model predicts intensive care
units (ICU) patients and the hospitalized (HOSP) patients for the next seven days. Taking
into account the non-linearity and time-sequence of the dataset, various deep learning
models are used, combining recurrent and/or convolutional structures to the non-linear
character for both models. In particular, our models utilize 1D convolutional, recurrent
neural network (SimpleRNN), long short term memory (LSTM), and gated recurrent unit
(GRU) schemes. The models are being trained on a total of 12 European Union countries
using the time period from 1 January 2020 to 15 September 2021. The estimation of the
accuracy and the comparison of the methods were achieved using the Maximum Error
(MaxError), the Root Mean Squared Error (RMSE), and the Mean Absolute Error (MAE).
For better visualization, the predicted values of the test dataset were scattered in QQ-Plots,
as well as, plotted as curvatures along with the real values.

The contributions of the paper are summarized below:

• Implementing a robust deep learning model with global coverage that approximates
the non-linear character of the multi-variable model of COVID-19 evolution. Each
country has different timeseries data related to the COVID-19 pandemic. These
timeseries do not follow the same distribution, and it is thus challenging to create a
unique model that incorporates all this information into a unique model, achieving
good performance for every single country. The contribution of our model is that
except for the timeseries cases per country, we have added additional features in our
analysis to help the model gain the domain knowledge for each country and boost the
performance of the deep learning model;

• Aiding policy makers and researchers in understanding the evolution of the COVID-19
pandemic and thus acting as a supporting tool for health management. In literature,
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there are various techniques for COVID-19 cases and deaths predictions, however,
techniques that are applied for hospitalizations and ICU management are limited, yet
they are the most important for crisis management scenarios. This study proposes
models that predict all the above information at the EU level;

• Assessing the impact of the policy measures on the COVID-19 progression. Policy
measures are incorporated as input variables into the model. Their variability and
the different response strategies are included in the model and affect the COVID-
19 progression.

2. Related Work

Adding intelligence in the health management related processes has been a very active
research trend lately with researchers proposing data-driven adaptations from individual
processes such as blood donations [6], to full-scale platforms that encompass the work of
multiple organisations from various levels of health service provisioning [7]. Currently,
there are various studies that propose predictive models based on mathematical modelling,
infectious disease models, and machine learning models that are designed to predict the
trend and patterns of COVID-19 progression [8]. Predicting the way diseases spread
in different societies has thus far been documented as one of the most important tools
for control strategies and policy-making during a pandemic. One of the most effective
time-series methods lies in ARMA (Auto-regressive moving average) [9] and ARIMA
(Auto-regressive integrated moving average) [10] modelling approaches in the COVID-
19 forecasting studies. In literature, there are many country-based applications that use
ARIMA models in the COVID-19 pandemic [11–13] and provide satisfactory results for
COVID-19 prediction. However, we should highlight that ARIMA models are performed
at country level, creating separate models per country and they do not adopt a unified
approach. Thanks to the increased number of COVID-19 timeseries data with daily records
at worldwide level, deep learning architectures for timeseries modelling have recently
gained increased interest from the scientific community. The researchers use deep learning
methods to model the temporal dependencies in timeseries data related to COVID-19.
Recurrent neural networks (RNN) and their variants, such as Long short term memory
(LSTM), Gated Recurrent Unit (GRU), and bidirectional LSTM networks are explored for
modelling COVID-19 timeseries data [14–18]. In particular, Arko Barman in his study [19],
proposed an LSTM model and comparatively analyzed its performance, using traditional
ARIMA methods, for forecasting the number of confirmed COVID-19 cases. Barman’s
study showed that the LSTM methods slightly underestimated while the ARIMA methods
slightly overestimated the numbers in the forecasts, although both methods can be used in
time series analysis for forecasting the COVID-19 cases. Chimmula et al. [20] implemented
in their work a deep learning model using LSTM methods to forecast the future COVID-19
cases. In addition, Abbasimehr et al. [21], applied a time series model to forecast the
number of infected cases using different RNN variants including LSTM and GRU models.
Except for recurrent layers, convolutional layers are also applied in various studies [22].
Ketu et al. [23] proposed a hybrid CNN-LSTM deep learning model for correctly forecasting
the COVID-19 epidemic across India (29 states). This model uses several convolutional
layers (CNN), for extracting meaningful information and learning from a time series dataset,
while also using LSTM layers to identify long-term and short-term dependencies.

In most of these studies the researchers analyse the temporal dynamics of the world-
wide spread of COVID-19, assuming that the phenomenon has an autoregressive character.
The main limitations in all the aforementioned studies is that they have regional character
and do not take into consideration the spatial influence between the different countries.
Most of the above mentioned studies create separate models for each country, such as
in [9,12]. Some of them, have regional character, including their study adjacent regions.
An example is the work of Rauf et al. [24], which explores the impact of COVID-19 pan-
demic for the near future in Pacific countries, particularly Pakistan, Afghanistan, India, and
Bangladesh. An early attempt for a global pandemic model is the work of Khan et al. [25].
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However in their analysis they do not include deep learning schemes but only shallow
learning techniques.

An other limitation is that most of these studies do not consider additional features
in their models to improve their performance. Work from Wang et al. [26] is an early
attempt to consider the effects of preventive policy measures. This work adopts a rolling
update mechanism that is applied to constantly update the input data of the model with
the current prediction results, thus achieving robust predictions for the epidemic trends
of COVID-19 using an improved LSTM deep learning method. Moreover, there are a few
studies, such as the works of [27,28], which, except for COVID-19 cases and deaths time
series, are also incorporating spatial information to improve the model’s performance at a
country level. In particular, they identify relationships between geographical parameters
such as latitude and longitude with the number of confirmed cases. However, these studies
are limited in the literature, and to our knowledge there is no EU model for COVID-19
timeseries prediction with the use of deep learning schemes that incorporate additional
feature information of the preventive measures and their effects on COVID-19 evolution.

3. Sequential Models for COVID-19 Evolution
3.1. Mathematical Formulation

COVID-19 spread results form complex dynamics in time and space. The proposed
models predict the impact of COVID-19 transmission outcomes at a country level, spanning
from moderate- to confirmed cases and hospitalizations, to severe outcomes—including
ICU admissions and deaths—in a week ahead. In particular, we propose two deep learning
models: (i) a deep learning model that predicts the daily cases and deaths due to the
COVID-19 pandemic and (ii) a deep learning model for hospitalization and intensive care
unit admissions. The deep learning models are trained using historic timeseries data of the
COVID-19 spread in order to find a map that captures the complex trend of this spread.
Furthermore, the proposed models fuse data about restrictions and policy response mea-
sures, achieving improved predictions in COVID-19 evolution. At a worldwide level, the
effects of preventive measures, such as gatherings restrictions, have been reported. These
preventive measures alter the spatial distribution of the reported cases across countries and
differentiate the spread of the virus. Modelling analysis of COVID-19 outbreaks may help
national health agencies to develop response plans.

3.1.1. A Non-Linear Sequential Model to Predict Daily Confirmed Cases and Deaths Due to
COVID-19 Pandemic

Our model leverages the temporal character of COVID-infections and mortality rates.
Also, the model fuses information about the policy measures among with the timeseries
regarding the spread of the virus at country level. Table 1 presents the list of input variables.

Table 1. Description of input variables into the deep learning model for daily cases and deaths.

Index Variable Column Data

1 xSchClo School Closures
2 xWorClo Workplace Closures
3 xCanPubEve Cancel Public Events
4 xResGat Restriction in Gatherings
5 xCloPubTra Close Public Transport
6 xStaHomReq Stay Home Requirements
7 xPubIn f Cam Public Information Campaigns
8 xResIntMov Restrictions Internal Movements
9 xIntTraCon International Travel Controls
10 xFacCov Facial Coverings
11 xNewCasPerMil New Cases per Million
12 xNewDeaPerMil New Deaths per Million
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In Equation (1), f (·) is modelled as a non-linear relationship between the inputs and
the outputs of the model:

ŷNewCasPerMil(t), ŷNewDeaPerMil(t) = f (xSchClo(t), xWorClo(t), xCanPubEve(t), xResGat(t),

xCloPubTra(t), xStaHomReq(t), xPubIn f Cam(t), xResIntMov(t),

xIntTraCon(t), xFacCov(t), xNewCasPerMil(t), xNewDeaPerMil(t)) + ε

(1)

where the term ŷNewCasPerMil stands for the predicted confirmed cases, whereas the term
ŷNewDeaPerMil is for the predicted deaths. The proposed model also includes the restrictions
and lockdown measures that each country applied.

As indicated in Figure 1, the input to the model is a stack of sequences. Each sequence
stands for a different variable. Every element in a sequence shows the daily value of the
variable covering a time period of a week, thus in each sequence there are seven elements.
The model predicts two sequences each time spanning a week, one for the daily confirmed
cases and another for the estimated daily deaths. The model predicts daily cases and deaths
over the next week.

𝒇(∙)

…
𝑡1 … 𝑡𝑁

𝑥𝑆𝑐ℎ𝐶𝑙𝑜

𝑥𝑊𝑜𝑟𝐶𝑙𝑜𝐶𝑙𝑜

𝑥𝐶𝑎𝑛𝑃𝑢𝑛𝐸𝑣𝑒

𝑥𝑁𝑒𝑤𝐶𝑎𝑠𝑃𝑒𝑟𝑀𝑖𝑙

𝑥𝑁𝑒𝑤𝐷𝑒𝑎𝑃𝑒𝑟𝑀𝑖𝑙

𝑦𝑁𝑒𝑤𝐷𝑒𝑎𝑃𝑒𝑟𝑀𝑖𝑙

𝑦𝑁𝑒𝑤𝐶𝑎𝑠𝑃𝑒𝑟𝑀𝑖𝑙

𝑡𝑁+1 … 𝑡𝑁+7

Figure 1. A non-linear sequential model to predict daily confirmed cases and deaths due to the
COVID-19 pandemic.

3.1.2. A Non-Linear Sequential Model to Predict Intensive Care Admissions and
Hospitalizations due to COVID-19

The COVID-19 pandemic put a massive strain on hospitals, thus, tools for guiding
hospital planners in resource allocation during the pandemic are necessary. Here, we
propose a machine learning model to predict the intensive care requirements for a fixed
number of days into the future.

In Equation (2), g(·) is modelled as a non-linear relationship between the hospitaliza-
tion and severe hospitalization of the COVID-19 patients with the restrictions and lockdown
measures that each country applied.

ŷIcuPatPerMil(t), ŷHosPatPerMil(t) = g(xSchClo(t), xWorClo(t), xCanPubEve(t), xResGat(t),

xCloPubTra(t), xStaHomReq(t), xPubIn f Cam(t), xResIntMov(t),

xIntTraCon(t), xFacCov(t), xIcuPatPerMil(t), xHosPatPerMil(t)) + ε

(2)

where the term ŷIcuPatPerMil stands for the predicted intense care unit admissions (severe
cases), whereas the term ŷHosPatPerMil is for the predicted hospitalizations. The proposed
model also includes the restrictions and lockdown measures that each country applied.

As indicated in Figure 2, the input to the model is a stack of sequences. The model
predicts two sequences each time, spanning a week; one for the daily admissions in ICUs
and another for the estimated daily hospitalization.
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g(∙)

…

𝑡1 … 𝑡𝑁
𝑥𝑆𝑐ℎ𝐶𝑙𝑜

𝑥𝑊𝑜𝑟𝐶𝑙𝑜𝐶𝑙𝑜

𝑥𝐶𝑎𝑛𝑃𝑢𝑛𝐸𝑣𝑒

𝑥𝐻𝑜𝑠𝑃𝑎𝑡𝑃𝑒𝑟𝑀𝑖𝑙

𝑥𝐼𝑐𝑢𝑃𝑎𝑡𝑃𝑒𝑟𝑀𝑖𝑙

𝑦𝐼𝑐𝑢𝑃𝑎𝑡𝑃𝑒𝑟𝑀𝑖𝑙

𝑦𝐻𝑜𝑠𝑃𝑎𝑡𝑃𝑒𝑟𝑀𝑖𝑙

𝑡𝑁+1 … 𝑡𝑁+7

Figure 2. Daily hospitalization and intensive care unit submissions due to the COVID-19 pandemic.

3.2. Approximating Non-Linear Relationships Using Deep Learning Architectures

Equations (1) and (2) describe two non-linear relationships that cannot be easily
calculated. However, a neural network can approximate such relationships in a way that
minimises the error [29]. Our model maps the input sequences to an output sequence
using a nonlinear approximation function. Our model adopts the so-called sequence-to-
sequence (Seq2seq) modelling framework. Seq2seq models is a family of machine learning
algorithms that map a sequence into another sequence. They have been originally applied
in machine translation applications [30], but recently they have been adopted in a wide
range of timeseries problems [31]. By utilising a Seq2seq modelling approach we are able
to model the spread of the virus not only for the next day but for a sequence of days in a
time period of a week. Our method uses deep learning structures to model non-linearity
and to map the input sequence to a vector of a fixed dimensionality, and then applies layers
to decode the target sequence from the vector.

3.2.1. Recurrent Neural Networks

Recurrent models are designed to learn patterns in temporal sequences. Recurrent
neural networks adopt the structure of the standard multi-layer perceptron. The difference
of an RNN with a traditional neural network model is that, RNNs allow connections
between hidden units associated with a time delay, thus allowing to model temporal
dependencies. The RNN model approximates a non-linear operation between the inner
product of the recurrent weights and output values of other neurons as well as the weighted
inputs of the model.

3.2.2. Long Short Term Memory Networks

LSTM structure is introduced to improve the vanishing and exploding gradient prob-
lems that appear in RNN models. The single neuron of the RNN structure is replaced by
the memory cell, which is a more complex structure compared to RNN’s single neuron [32].
The memory cell contains the following mechanisms: (i) the forget gate f (t), (ii) the input
gate i(t), (iii) the cell candidate g(t) and (iv) the output gate o(t), as shown in Figure 3.

During the learning process, a non-linear relation to the inner product between the
input vectors and weights is applied. The sigmoid σ(·) and the hyperbolic tangent function
tanh(·) are the most commonly used activations. The role of the gate f (t) is to forget the
unnecessary information and to separate the worth-remembering information from the
useless one [33]. Input gate i(t) keeps irrelevant information from being applied in future
steps, thus improving the estimation of the output values. Cell candidate g(t) activates the
respective state, using the tanh activation with the range values between −1 and 1. Output
gate o(t) regulates whether the response of the current memory cell is “significant enough”
to pass the information to the next cell.
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Figure 3. Comparison between the LSTM and GRU structures.

3.2.3. Gated Recurrent Networks

The GRU network is a different variant of the wider class of the recurrent neural
networks and is a simpler form compared to the previously mentioned LSTM. As shown
in Figure 3, GRU has two gates that are called the reset gate rl(t) and the update gate ul(t).
The reset gate rl(t) mechanism determines how much of the past information to forget,
whereas the update gate ul(t) decides the worth-remembering information of the previous
time steps that should pass in the future states.

3.2.4. Hybrid Networks

Recurrent layers model the temporal dependencies and the sequential patterns for
tasks dealing with timeseries modelling. Here, we further discuss the hybrid architecture
that integrates recurrent and convolutional layers. At first, each sequence vector passes
through a convolution layer with feature transformation parameters, mapping the initial
input vector to a fixed-length representation vector. The output vector of the convolution
layer is then passed into a recurrent sequence learning module. The core of our approach is
depicted in Figure 4.
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Figure 4. Deep learning architectures for COVID-19 predictions. The notation n is used for the n-th
input that is ingested into the model.
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3.3. The Proposed Deep Learning Architectures

The case specific topology, for the above-described DL architectures is described in
Figure 4. All proposed schemes utilize a 12 (features) × 7 (timestep) = 84 sequential
input. Then, the recurrent layers follow, as described above. In the case of the hybrid
Conv-LSTM model, a one dimensional convolutional layer precedes the recurrent ones.
A dropout layer is adopted during training, which relies on stochastically “dropping out”
neurons during training in order to avoid overfitting. The dense layer with a linear function
following another dense layer with linear function is applied after the feature learning and
the recurrent layers to perform regression.

For the purpose of this research, a hyper-parameter tuning analysis was performed
for the proposed architectures (Figure 4). Multiple experiments were implemented. The
accuracy of these experiments were significant low, however these experiments indicated a
selective trend for the parameters. Thus, the proposed models were built using the most
selected parameters of these results.

In addition, the architecture needed a Reshape Layer in the start of the model to
transform the shape of the input tensor in an acceptable shape for the next layers, as well
as at the end of the model to reshape the output tensor into a more sophisticated shape. To
be more precise, the Input shape of (n × 84) needs to be reshaped as (n × 7 × 12), which is
the correct shape for a time-series analysis. Accordingly, the output Reshape is needed to
transform the (7 × 2) shape into a (1 × 14) shape, which is the desirable output shape for
further analysis. The code is available at: https://github.com/JohnCrabs/CrabsMLearning
(accessed on 20 March 2022).

4. Experimental Results
4.1. Dataset Description and Performance Evaluation Metrics

The COVID-19 dataset has been downloaded from Our World in Data, which is
updated regularly [34]. The performance metrics are the Mean Absolute Error (MAE) and
the Root Mean Squared Error (RMSE). These metrics are defined as follows:

MAE =
∑n |ŷi(t)− yi(t)|

n
(3)

RMSE =

√
∑n (ŷi(t)− yi(t))2

n
(4)

where y is the outcome of the deep learning models and t is the time instance and n is
the whole time period of the measurements. The i− index stands for the values of the
daily cases (i = NewCasPerMil) and the values for the daily deaths (i = NewDeaPerMil)
in the case of the first model. As regards the second model, the index represents ei-
ther the daily hospitalizations (i = HosPatPerMil) or the intense care unit admissions
(i = IcuPatPerMil). In the MAE metric, the errors between the prediction and ground
truth values are equally weighted and averaged over the whole set, whereas RMSE is
more sensitive to large errors. Both metrics are selected because they are commonly used
evaluation metrics in regression based models.

The COVID-19 dataset has been downloaded from the “Our World in Data”
website [35]. This dataset contains the daily mitigation measures of COVID-19 in a scale
of 0 (no measure) to 4 (the strictest form of this measure), worldwide, divided in multiple
files. In addition, this dataset provides the daily COVID-19 cases, deaths, ICU patients,
hospitalized patients, and other useful numeric information (e.g., population, population
density, etc.). The full dataset is, also, available on GitHub https://github.com/owid/
covid-19-data/tree/master/public/data (accessed on 20 March 2022).

For the purpose of this work, the multiple files were merged into a single dataset,
using the country and date as the primary and secondary merging columns. As the next
step, the dataset was divided into five smaller datasets, using the continent information

https://github.com/JohnCrabs/CrabsMLearning
https://github.com/owid/covid-19-data/tree/master/public/data
https://github.com/owid/covid-19-data/tree/master/public/data
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(Africa, Asia, Europe, North America, South America and Oceania). The Europe dataset,
which contains 44 countries in total, was used in this research.

Further data processing includes the calculation of New Cases per Million, New
Deaths per Million, ICU-Patients per Million, and HOSP-Patients per Million, using the
daily columns and the population column. For the model creation, we used the parameters
described in Tables 1 and 2, which were normalized. Finally, the dataset was divided into
training-validation and test subsets. The training-validation subset was composed of 80%
of the final selected dataset, while the remaining 20% was used as the test subset. As a
cross-validation test, we selected 10% of the training-validation subset.

Table 2. Description of input variables into the deep learning model hospitalizations and
icu admissions.

Index Variable Column Data

1 xSchClo School Closures
2 xWorClo Workplace Closures
3 xCanPubEve Cancel Public Events
4 xResGat Restriction in Gatherings
5 xCloPubTra Close Public Transport
6 xStaHomReq Stay Home Requirements
7 xPubIn f Cam Public Information Campaigns
8 xResIntMov Restrictions Internal Movements
9 xIntTraCon International Travel Controls
10 xFacCov Facial Coverings
11 xIcuPatPerMil ICU-Patients per Million
12 xHosPatPerMil HOSP-Patients per Million

The implementation was applied for the full European dataset, in order to perform
the evaluation of these models at an EU level. Except for the proposed deep learning
models, in addition, we have tested the results with traditional epidemiological approaches.
Thus, Arima models were created using this dataset to evaluate the performance at an
European scale.

4.2. Case Study 1: New Cases per Million and New Deaths per Million

The prediction results for the daily cases and deaths during the pandemic period is a
significant factor for policy makers and health caretakers. Case study 1 investigates the
estimation of future new cases and deaths, depending on the current policy measures, as
well as the previous reported values of cases and deaths. Tables 3 and 4 summarise the
estimated performance errors per method for the test set. Our results are shown for each of
the 12 EU countries. The smaller error values indicate better results. The best values per
method and per country are highlighted in bold.

Table 3. Errors for New Cases per Million for each country per method. Bold values showcase the
minimum error achieved in each country.

New Cases per Million

Methods RMSE MAE RMSE MAE RMSE MAE

Austria Belgium Denmark

Conv1D-LSTM 22.25 16.23 99.31 75.02 59.71 46.60
GRU 20.49 14.85 90.62 69.98 60.32 46.72
LSTM 18.80 13.32 91.76 70.94 64.50 49.93

SimpleRNN 22.67 17.02 93.38 66.95 46.20 32.51
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Table 3. Cont.

New Cases per Million

Methods RMSE MAE RMSE MAE RMSE MAE

Estonia Finland France

Conv1D-LSTM 76.43 55.75 36.17 26.10 121.99 82.83
GRU 61.25 44.80 33.45 22.81 108.13 73.20
LSTM 72.71 54.37 34.46 23.75 111.92 76.21

SimpleRNN 41.90 32.10 35.85 24.22 101.62 67.71

Germany Ireland Italy

Conv1D-LSTM 35.97 21.93 62.89 46.35 32.14 24.77
GRU 33.22 19.25 56.96 41.64 27.20 21.20
LSTM 33.16 18.79 62.25 45.02 26.75 20.66

SimpleRNN 37.67 24.71 34.93 25.76 21.53 16.83

The Netherlands Portugal Romania

Conv1D-LSTM 138.46 101.10 68.83 47.10 26.59 18.73
GRU 119.79 88.70 59.81 41.86 17.83 14.15
LSTM 140.93 102.03 60.46 41.34 16.52 12.20

SimpleRNN 85.96 61.99 46.16 32.48 17.22 13.35

Table 4. Errors for the daily deaths per million for each country per method. The minimum MAE
and RMSE errors per country are in bold.

New Deaths per Million

Methods RMSE MAE RMSE MAE RMSE MAE

Austria Belgium Denmark

Conv1D-LSTM 0.42 0.33 0.56 0.43 0.61 0.56
GRU 0.41 0.32 0.48 0.37 0.50 0.45
LSTM 0.45 0.38 0.50 0.39 0.60 0.55

SimpleRNN 0.43 0.34 0.49 0.38 0.49 0.44

Estonia Finland France

Conv1D-LSTM 0.99 0.80 0.43 0.37 0.77 0.60
GRU 0.96 0.77 0.44 0.37 0.63 0.48
LSTM 1.00 0.81 0.45 0.39 0.67 0.53

SimpleRNN 0.97 0.74 0.39 0.30 0.64 0.50

Germany Ireland Italy

Conv1D-LSTM 0.57 0.39 1.08 0.77 0.40 0.28
GRU 0.54 0.36 1.02 0.66 0.36 0.25
LSTM 0.55 0.38 1.08 0.67 0.39 0.30

SimpleRNN 0.58 0.43 1.03 0.69 0.41 0.31

The Netherlands Portugal Romania

Conv1D-LSTM 0.75 0.62 0.46 0.35 2.47 1.44
GRU 0.68 0.54 0.39 0.29 2.31 1.30
LSTM 0.69 0.58 0.46 0.37 2.36 1.38

SimpleRNN 0.75 0.61 0.46 0.37 2.29 1.33

4.2.1. New Cases per Million Analysis

Table 3 presents the errors for new cases per million for each country per method.
SimpleRNN appears to have smaller error values in terms of MAE for Belgium, Denmark,
Estonia, France, Ireland, Italy, Netherlands, and Portugal. LSTM has the minimum error
compared to the other techniques for Austria, Germany, and Romania. As regards the
RMSE evaluation metric, this metric is more sensitive to large errors when compared to
MAE, which measures the average magnitude of the errors in a set of predictions. Denmark,
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Estonia, France, Ireland, Italy, Netherlands, and Portugal show the minimum RMSE values
for SimpleRNN network. The GRU network shows the minimum RMSE values for Finland
and Belgium. For the rest countries LSTM shows the minimum RMSE error values. The
best fitted countries appear to be Austria, Romania, and Italy, while the Netherlands and
France estimations indicated the highest errors.

Figure 5 depicts the Quantile–Quantile (Q-Q) plots for Austria. The Q-Q plots is a
graphical method used to compare the distributions of the real ground truth data and the
estimated data from the deep learning structures. Assuming that these two distributions
are similar, the points in the Q-Q plot will lie on the diagonal line, which is indicated with a
red colour in Figure 5. The less the distance of the data points from the red line is, the better
the accuracy. For all methods, the dominant trend is that the estimations are more accurate
when the number of cases are lower (closer to 0). The QQ-Plots also indicate that the best
results for Austria was observed in GRU and LSTM methods because the scatter-plot is
closer to the red line. The same observation also appears also in Figure 6, where the real
(blue lines) and predicted (green lines) values of new cases per million for each method are
presented, using the whole time-series dataset for Austria. The red hashed line divides the
train-validation (left side) and the test (right side) sets.

Figure 5. Austria new cases per million QQ-Plot for each method.

Figure 7 depicts the QQ-Plot of the new cases per million of each method for France
for the test set. QQ-Plot analysis indicates that the test set range is between 0 and 600 cases
per million and the higher predicted values appear to be closer to the red line (real values).
Figure 8 depicts the new cases per million real (blue line) and predicted (green line) values
of each method for the full dataset. The curve of the real values for France has a lot of peaks
(outliers), which affects the overall accuracy of the models. However, the deep learning
models recognize the general trend of the time-series and the predictions are smoother.
SimpleRNN estimations were better than the estimations of the other methods, in this case.
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Figure 6. Austria’s new cases per million real (blue line) and predicted (green line) values for each
method, using training, validation and test datasets. The red line divides the train-validation (right
size) and the test (left side) datasets.

Figure 7. France new cases per million QQ-Plot for each method.
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Figure 8. France new cases per million real (blue line) and predicted (green line) values for each
method, using the training, validation, and test datasets. The red line divides the train-validation
(right size) and the test (left side) datasets.

4.2.2. Daily Deaths per Million Analysis

Table 4 describes the errors for the daily deaths per million, for each country per
method. The MAE and RMSE errors show as smaller values for the GRU method in the cases
of Austria, Belgium, France, Germany, Ireland, Italy, Netherlands, and Portugal. Overall,
Denmark shows the best performance. In this case, the model predicts the daily deaths per
million with an error smaller than 1 person (MAESimpleRNN = 0.44, RMSESimpleRNN = 0.49).
As regards the other countries, Italy, Finland, and Austria appear to have the best results,
while Ireland and Romania have the highest errors.

The QQ-Plots of daily deaths per million for the test set period, for each method, for
Italy are displayed in Figure 9. As shown in the x- and y- axis, the values of the daily deaths
per million have a range between 0 and 6 deaths during the test set period. Figure 10 shows
the real (blue line) and predicted (green line) values for the whole period, including the
training-validation period as well as the test period. These two periods are divided in the
diagram with a vertical red-dotted line. For all the examined methods, the predicted line
follows the general trend, however it is observed that all the models underestimate the
deaths in their highest values. The GRU and SimpleRNN models seems to be slightly better
than the other methods, especially in the predictions of the test dataset.
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Figure 9. Italy’s new deaths per million QQ-Plot for each method.

Figure 10. Italy’s new deaths per million real (blue line) and predicted (green line) values for each
method, using the training, validation and test datasets. The red line divides the train-validation
(right size) and the test (left side) datasets.

The QQ-Plots for Romania, as shown in Figure 11, reinforces our previous observation,
in which all models underestimate the higher values. Figure 12 depicts the real (blue line)
and predicted (green line) values of Romania for the full dataset. GRU and SimpleRNN
estimations are better than Conv1D-LSTM and LSTM. However, the overall accuracy in
Romania is low, due to the high values of deaths per million.
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Figure 11. Romania’s new deaths per million QQ-Plot for each method.

Figure 12. Romania’s new deaths per million real (blue line) and predicted (green line) values for
each method, using the training, validation, and test datasets. The red line divides the train-validation
(right size) and the test (left side) datasets.

4.3. Case Study 2: ICU Patients Admissions and Hospitalizations per Million of People

Intensive care unit patients and hospitalized (HOSP) patients can also be used, as
metrics in a pandemic. The estimation of these two metrics can help the policy makers,
health takers, and the government, either to reinforce the health system beforehand, or to
take stricter mitigation measures. This can help to unload or prevent the pressure inside
the hospitals, which can minimize the death rate.

4.3.1. ICU-Patients per Million Results

Table 5 describes the performance errors for ICU admissions of the patients per million
of population, for each country per method. Due to the scale of the dataset, the errors have
low values. In this case, GRU and LSTM appears to have the lowest errors in most cases.
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The Denmark, Finland, and Portugal estimation scores are better, whereas Estonia and
Romania have the highest errors; however, there is an accurate overall performance.

Table 5. Errors for ICU admissions of the patients per million of the population for each country
per method. Bold values show the minimum error achieved per country.

Intensive Care Unit Patients per Million

Methods RMSE MAE RMSE MAE RMSE MAE

Austria Belgium Denmark

Conv1D-LSTM 1.44 1.08 2.16 1.59 0.62 0.46
GRU 1.33 1.01 1.82 1.47 0.74 0.60
LSTM 1.50 1.17 3.33 2.72 0.74 0.63

SimpleRNN 1.57 1.27 2.76 2.46 1.34 1.26

Estonia Finland France

Conv1D-LSTM 2.48 1.76 0.90 0.66 2.31 1.80
GRU 2.17 1.65 1.01 0.85 1.89 1.60
LSTM 2.91 2.27 0.79 0.64 3.43 2.66

SimpleRNN 2.74 2.13 2.35 2.26 2.91 2.43

Germany Ireland Italy

Conv1D-LSTM 1.92 1.51 0.92 0.71 1.24 0.91
GRU 1.24 1.05 1.03 0.73 1.52 1.12
LSTM 1.21 0.94 0.91 0.72 1.49 1.17

SimpleRNN 1.54 1.32 1.45 1.34 1.45 1.20

The Netherlands Portugal Romania

Conv1D-LSTM 1.49 1.22 0.94 0.74 3.19 2.44
GRU 1.33 1.12 1.48 1.24 2.19 1.72
LSTM 1.54 1.32 1.16 0.87 3.38 2.99

SimpleRNN 1.32 1.09 1.18 0.99 2.76 2.48

Figure 13 depicts the QQ-Plots for ICU-Patients per million, for each method for
Denmark. Conv1D-LSTM is the best method, in this case, as it is also shown in Table 5 with
bold. GRU, LSTM, and SimpleRNN appear to have an offset. Figure 14 depicts the real
(blue line) and predicted (green line) values for the full dataset. Conv1D-LSTM estimations
are almost the same as the real values. Also, it is observed that the GRU and LSTM methods
follow the general trend of the curve, with a little delay. SimpleRNN is in this case is the
worst model; however, the predicted values, in addition to the time delay, appear to be
overestimated by an inversely proportional amount. Thus, the lower the real value, the
higher the difference (error) between the real and estimated value.
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Figure 13. Denmark ICU-Patients per million QQ-Plot for each method.

Figure 14. Denmark ICU-Patients per million real (blue line) and predicted (green line) values for
each method, using the training, validation, and test datasets. The red line divides the train-validation
(right size) and the test (left side) datasets.

The depicted QQ-Plots for Estonia presented in Figure 15. We can observe a trend,
where, the lower the value, the better the result will be. Additionally, in this case, the GRU
scatter-plot is closer to the red line. However, an offset is observed at all methods. Figure 16
depicts the real (blue line) and the predicted (green line) values. In this figure, it is clearer
that a time delay (offset) exists. Thus, when in reality the curvature changes at time t1, the
prediction curve follows after some days. In the SimpleRNN method, an overestimated
inversely proportional vertical offset is also observed.
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Figure 15. Estonia ICU-Patients per million QQ-Plot for each method.

Figure 16. Estonia ICU-Patients per million real (blue line) and predicted (green line) values for each
method, using the training, validation and test datasets. The red line divides the train-validation
(right size) and the test (left side) datasets.

4.3.2. HOSP-Patients per Million Results

Table 6 presents the errors for the hospitalized patients per million of population,
for each method. In most cases, LSTM appears to have the smaller error values, while
SimpleRNN is the second best. RMSE and MAE scores are almost equally, which means
smooth curvatures, without many outlier values. The countries with the highest errors
(lower accuracy) appear to be France, Finland, and Estonia, while the estimations for
Austria, Denmark, and Romania resulted in small errors (higher accuracy).
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Table 6. Errors for HOSP-Patients per Million for each country per method. Bold values show the
minimum errors per country.

Hospitalized Patients per Million

Methods RMSE MAE RMSE MAE RMSE MAE

Austria Belgium Denmark

Conv1D-LSTM 9.29 8.18 13.23 11.30 10.67 10.05
GRU 10.25 9.15 16.57 14.18 10.67 10.14
LSTM 4.18 3.52 5.41 3.94 5.68 4.72

SimpleRNN 8.71 7.87 7.03 6.20 6.55 5.82

Estonia Finland France

Conv1D-LSTM 12.25 10.02 17.89 17.48 17.21 14.54
GRU 9.15 7.35 19.54 18.10 18.00 13.00
LSTM 15.26 11.85 4.45 3.63 13.14 10.95

SimpleRNN 13.28 8.03 4.39 3.04 10.18 9.33

Germany Ireland Italy

Conv1D-LSTM 11.01 9.74 15.65 15.16 17.26 15.49
GRU 16.56 15.19 15.18 14.70 13.60 12.13
LSTM 3.79 3.50 5.05 3.49 8.62 6.69

SimpleRNN 8.77 7.22 8.09 7.08 9.78 8.46

The Netherlands Portugal Romania

Conv1D-LSTM 10.25 8.11 16.31 15.42 10.23 8.41
GRU 12.57 9.84 14.69 13.24 11.87 9.42
LSTM 7.63 6.50 7.30 6.01 12.03 10.25

SimpleRNN 8.33 7.29 8.26 7.35 10.02 7.32

Figure 17 depicts the HOSP-Patients QQ-Plots of Austria, for each method. All models
underestimate the estimations by a vertical fixed amount. The best method appears to be
LSTM, where the amount is smaller. Similar observation can be seen in Figure 18, which
depicts the real (blue lines) and predicted (green lines) curves. In this figure, we can also
observe that SimpleRNN predicted the higher values of the train-validation set better than
the other methods, while LSTM predicted the lower values better.

Figure 17. Austria HOSP-Patients per million QQ-Plot for each method.
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Figure 18. Austria’s HOSP-Patients per million real (blue line) and predicted (green line) values for
each method, using the training, validation, and test datasets. The red line divides the train-validation
(right size) and the test (left side) datasets.

The example for France indicates similar observations. The predicted values are
underestimated by a vertical fixed amount in Conv1D-LSTM, GRU, and SimpleRNN
methods, as shown in Figure 19, which depicts the QQ-Plots. LSTM seems to underestimate
in some cases and to overestimate in other cases, however the distance (MAE) from the
true values (red line) is between a small range. Figure 20 depicts the real (blue line) and
predicted (green line) curves. SimpleRNN and LSTM seems to be the two best methods,
however, SimpleRNN is more accurate in higher values and LSTM is better in lower values.

Figure 19. France HOSP-Patients per million QQ-Plot for each method.
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Figure 20. France HOSP-Patients per million real (blue line) and predicted (green line) values for
each method, using the training, validation, and test datasets. The red line divide the train-validation
(right size) and the test (left side) datasets.

4.4. Average Global European Model Results

Table 7 summarizes the results of this work, including the EU countries, for the period
of 1 March 2020 to 15 September 2021. The average RMSE and MAE errors are presented
in Table 7. For the predictions of New Cases per Million and ICU-Patients per Million,
the GRU models appear to have the best results. In the case of New Deaths per Million
and Hosp-Patients per Million, the LSTM models indicate slightly better results then GRU.
The Conv1D-LSTM models have the highest errors, compared to the other deep learning
approaches, while SimpleRNN is close enough.

Table 7. Averaged RMSE and MAE errors for the global European Model. Traditional approaches,
such as ARIMA, are also included. The minimum MAE and RMSE errors are highlighted with bold.

Global European Model Average Errors

Country
Conv1D-LSTM GRU LSTM SimpleRNN ARIMA

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

New Cases per Million 384.70 214.86 264.03 150.66 332.36 184.50 365.94 191.47 645.13 536.47

New Deaths per Million 6.08 3.26 4.89 2.60 4.13 2.28 5.39 2.91 12.22 11.01

ICU-Patients per Million 8.62 5.94 6.92 4.80 11.90 8.35 10.80 7.23 41.09 36.75

HOSP-Patients per Million 89.05 57.46 87.53 56.05 85.28 50.81 104.44 60.11 318.92 282.08

For completeness of the research, the comparison between the deep learning ap-
proaches and traditional methods is needed. The ARIMA approach is one of the most
common traditional epidemiological approaches for time series analysis and forecasting.
In this work, ARIMA models were trained using the same datasets and tested using the
same complete dataset, as described in the previous paragraph. Table 7 indicates that the
ARIMA models were unable to achieve sufficient predictions at the aggregated EU level,
and performed poorly, compared to the proposed deep learning approaches. This may
be due to the complexity of the transmissibility of the COVID-19, and due to the fact that
the spread of the virus varies from one country to another. The ARIMA model cannot
effectively represent the non-linear behaviour of these variables, thus the ARIMA models
appear to perform poorly in comparison with the deep learning models.
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5. Conclusions

In this work, we propose two sequential models to represent the COVID-19 evolution.
The first model predicts the daily cases and deaths due to COVID-19 virus and the second
one predicts the daily data on hospitalizations and intensive care (ICU) admissions due
to COVID-19 with a weekly range. These models incorporate information about the
restrictions and policy responses applied due to COVID-19. In our experiments, we
test four different deep learning methods: (a) Conv1D-LSTM, (b) GRU, (c) LSTM, and
(d) SimpleRNN. In the first case study, the results showed that all four methods can be used
for the estimation of future cases and deaths, however SimpleRNN gave better results than
the other methods for most of the countries. In the second case study, LSTM is preferable,
because it performed good in both ICU admissions and hospitalized patients predictions.

Our study introduces two models with generalization abilities. The experimental
results are presented for various different countries in EU and show that in most cases
the model achieves good performance. In our future work, we will further investigate the
model’s scalability and applicability by incorporating additional input variables and also
discuss the role of vaccinations in COVID-19 evolution.

The approach presented in this paper showcases significant advantages to classical
epidemiological, or simple time-series approaches, as it is able to generalise in higher
spatial granularity, and inherently takes into account interventions during the modelling
and training procedures. This means that the resulting models are not only able to ex-
ecute knowledge transfer procedures across jurisdictions, but are also able to quantify
interventions during the prediction process, allowing policy makers and health care admin-
istrators to take the optimal course using data driven decision making. Regarding future
work, explainable and interpretable machine learning models will be adopted to rank the
importance of the various features in COVID-19 progression.
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