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Molecular rhythm alterations in prefrontal cortex and nucleus
accumbens associated with opioid use disorder
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Severe and persistent disruptions to sleep and circadian rhythms are common in people with opioid use disorder (OUD). Preclinical
evidence suggests altered molecular rhythms in the brain modulate opioid reward and relapse. However, whether molecular
rhythms are disrupted in the brains of people with OUD remained an open question, critical to understanding the role of circadian
rhythms in opioid addiction. Using subjects’ times of death as a marker of time of day, we investigated transcriptional rhythms in
the brains of subjects with OUD compared to unaffected comparison subjects. We discovered rhythmic transcripts in both the
dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc), key brain areas involved in OUD, that were largely distinct
between OUD and unaffected subjects. Fewer rhythmic transcripts were identified in DLPFC of subjects with OUD compared to
unaffected subjects, whereas in the NAc, nearly double the number of rhythmic transcripts was identified in subjects with OUD. In
NAc of subjects with OUD, rhythmic transcripts peaked either in the evening or near sunrise, and were associated with an opioid,
dopamine, and GABAergic neurotransmission. Associations with altered neurotransmission in NAc were further supported by co-
expression network analysis which identified OUD-specific modules enriched for transcripts involved in dopamine, GABA, and
glutamatergic synaptic functions. Additionally, rhythmic transcripts in DLPFC and NAc of subjects with OUD were enriched for
genomic loci associated with sleep-related GWAS traits, including sleep duration and insomnia. Collectively, our findings connect
transcriptional rhythm changes in opioidergic, dopaminergic, GABAergic signaling in the human brain to sleep-related traits in
opioid addiction.
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INTRODUCTION
Despite the enormous public health impact of opioids, under-
standing of the mechanisms contributing to opioid use disorder
(OUD) is limited. Remarkably, ~90% of patients with OUD relapse
within 12–36 months of beginning treatment [1]. Identifying the
mechanisms that contribute to opioid craving and relapse is
critical for developing effective therapeutics and interventions for
opioid addiction.
Among the most common features associated with OUD are

severe and persistent disruptions to sleep and circadian rhythms
(e.g., altered sleep-wake cycles and sleep architecture, poor sleep
quality, disrupted corticosterone, and melatonin rhythms), which
are speculated to foster craving and relapse [2, 3]. A majority with
OUD (~60%) have comorbid sleep and circadian disorders, and
many with a history of opioid use and dependence experience
poor sleep quality and sleep loss, including insomnia [4, 5].
Further, opioids dose-dependently alter sleep-wake cycles, body
temperature, and hormonal rhythms [5, 6]. Notably, sleep and
circadian disturbances frequently emerge during opioid with-
drawal and accompany intense cravings and negative affective

states [7]. With prolonged opioid use, sleep and circadian
disruptions become more severe [8–10] and may intensify
cravings and mood disturbances [11, 12]. In fact, craving intensity
positively correlates with the severity of sleep and circadian
disruptions [13, 14]. Therefore, alterations in sleep and circadian
rhythms from prolonged opioid use contribute to craving and
vulnerability to relapse in people with OUD.
Opioid addiction is also associated with disrupted rhythms in

molecular clocks. Molecular clocks are present in nearly every cell
in the body, comprised of a series of transcriptional—translational
feedback loops primarily driven by the transcription factors CLOCK
and BMAL1 [15]. CLOCK and BMAL1 form heterodimers to bind
promoters that drive the rhythmic transcription of numerous
genes (~40–80% transcripts are rhythmically expressed depending
on the tissue and cell type). In the brain, the molecular clock
modulates key brain regions that regulate drug reinforcement,
craving, and relapse [16, 17]. For example, repeated administration
of opioids may entrain molecular rhythms in the brain that
ultimately promote drug-seeking and craving at certain times of
day [13, 14]. Blunted molecular rhythms in the brain and other
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tissues are also found following opioid administration in rodents
[6, 18, 19]. Similarly, molecular rhythms in circulating lymphocytes
are significantly blunted in people with OUD [20]. In addition,
certain variants of canonical circadian genes, including CLOCK,
predict substance use risk and sleep and circadian disruptions
associated with substances [21, 22]. Together, these findings
suggest bidirectional relationships between opioids and circadian
rhythms, whereby opioids alter molecular clocks, ultimately
involved in opioid tolerance, craving, and relapse, while disrupted
clocks contribute to the overall risk of developing opioid
addiction.
From human neuroimaging studies, an increased risk for

substance use, including for opioids, is associated with dysfunc-
tion of activity in corticostriatal circuits, including signaling
between the dorsolateral prefrontal cortex (DLPFC) and nucleus
accumbens (NAc) [21, 22]. While the DLPFC is involved in cognitive
and emotional control in humans, the NAc is involved in the
regulation of goal-directed and reward-seeking behaviors. In OUD,
a high degree of dysfunction within the DLPFC and NAc is related
to the severity of cognitive impairment and increased relapse risk
[23]. Accumulating evidence highlights an integral role for
molecular rhythms in opioid-induced synaptic plasticity in
corticostriatal circuits involving the DLPFC and NAc [24–27],
further supporting the involvement of circadian rhythms in the
brain in opioid addiction.
While evidence suggests relationships between altered rhythms

and opioid addiction, molecular rhythms have yet to be
investigated in the brains of OUD subjects. However, investigating
molecular rhythms in the human postmortem brain has histori-
cally been challenging. Recently, a series of studies from our group
and others have developed an innovative analysis that uses the
“time of death” (TOD) of a subject as a single timepoint within a
24 h timescale. By combining data from multiple subjects, we can
recreate circadian patterns of transcript expression to investigate
alterations in molecular rhythms associated with psychiatric
disorders [16,28–31]. To investigate whether molecular rhythms
were altered in the brains of subjects with OUD, we directly
compared transcript expression patterns using TOD in DLPFC and
NAc between OUD and unaffected subjects using our previous
dataset [32]. We identified molecular rhythms in both the DLPFC
and NAc in unaffected subjects that were significantly altered in
OUD. The timing of peak expression of rhythmic transcripts
differed between OUD and unaffected subjects and between
brain regions. In OUD, altered molecular rhythms were associated
with opioidergic, dopaminergic, and GABAergic signaling in the
DLPFC and NAc. Finally, we discovered genetic associations
between brain-region-specific molecular rhythm changes in OUD
and sleep-related traits.

MATERIALS AND METHODS
Human subjects
Brains were obtained, following consent from the next-of-kin, during
autopsies conducted at the Allegheny County (Pittsburgh, PA; N= 39) or
the Davidson County (Nashville, TN; N= 1) Medical Examiner’s Office. An
independent committee of clinicians made consensus, lifetime DSM-IV
diagnoses for each subject using the results of a psychological autopsy,
including structured interviews with family members and review of
medical records, and toxicological and neuropathological reports [33]. The
same approach was used to confirm the absence of lifetime psychiatric
and neurologic disorders in the unaffected comparison subjects. All
procedures were approved by the University of Pittsburgh Committee for
Oversight of Research and Clinical Training Involving Decedents and
Institutional Review Board for Biomedical Research. Each OUD subject
(n= 20) was matched with an unaffected comparison subject (n= 20) for
sex and as closely as possible for age [32] (Tables S1 and S2). Cohorts
differed by race (p= 0.02) and brain pH (p= 0.015; mean difference was
0.2 pH units) and did not differ in postmortem interval (PMI), age, RNA
integrity number (RIN), pH, or TOD (p > 0.25). DLPFC area 9 and NAc were

identified and collected as previously described [32]. Time of death (TOD)
was determined from the Medical Examiner’s Office death investigation
report.

Rhythmicity analyses
TOD of each subject was adjusted to circadian time by conversion to
Zeitgeber Time (ZT). For each subject, we use sunrise and sunset time on
the day the individual died to stratify TOD across ZT. ZT0 is the equivalent
of sunrise, where negative numbers represent hours immediately prior to
sunrise. Cosinor fitting was used to detect the rhythmicity of transcript
expression. Sinusoidal curves were fitted using the nonlinear least-squares
method, with the coefficient of determination (R2) used as a proxy of
goodness-of-fit. An estimate of the empirical p-value was determined
using a null distribution of R2 generated from 1000 TOD-randomized
expression datasets. Molecular rhythms were first assessed separately in
unaffected comparison subjects and subjects with OUD. Rhythmic
transcripts were compared using significance cutoffs (p < 0.05; Fisher’s
exact test to determine overlap) and a threshold-free approach (rank–rank
hypergeometric overlap (RRHO)) [34]. RRHO ranks all expressed transcripts
(15,042 transcripts in our dataset) by the rhythmicity p-value and
determines overlap between the unaffected comparison and OUD datasets
based on the ranking of p-values. Transcripts with OUD-related differences
in rhythmicity were determined using the difference in R2. Transcripts with
ΔR2 > 0 when ΔR2= R2Control � R2OUD were defined as being significantly less
rhythmic in OUD. Transcripts with ΔR2 > 0 when ΔR2 ¼ R2OUD � R2Control were
defined as being significantly more rhythmic in OUD. We generated a null
distribution of ΔR2 by doing permutation 1000 times: at each permutation,
we permute the unaffected comparisons and OUD subjects separately with
shuffled TOD to get a null R2OUD and a null R2Control, based on which a null
ΔR2 is calculated. Any transcript with significant ΔR2 (p < 0.05 through
permutation test) are denoted as having significantly less or more
rhythmicity in OUD. We further restrict the change in rhythmicity analysis
to transcripts that are significantly rhythmic in one group or the other. For
a transcript to be considered less rhythmic in OUD, it had to: (1) be
significantly rhythmic in unaffected comparisons (p < 0.05); (2) be
significantly less rhythmic in OUD (p < 0.05). For a transcript to be more
rhythmic in OUD, it had to: (1) be significantly rhythmic in OUD (p < 0.05);
(2) be significantly more rhythmic in OUD (p < 0.05). We also assessed
differences in phase, amplitude, or base; analyses were restricted to
transcripts significantly rhythmic in both unaffected comparisons and OUD
subjects.

Heatmaps
Transcript expression levels were Z-transformed and ordered by phase
(peak hour). Each column represents a subject, ordered by TOD. We
generated heatmaps for (1) top 200 rhythmic transcripts in unaffected
comparison subjects; (2) top 200 rhythmic transcripts identified in
unaffected comparison subjects but plotted for OUD subjects; (3) top
200 rhythmic transcripts identified in OUD subjects; (4) top 200 rhythmic
transcripts identified in OUD subjects but plotted for unaffected
comparison subjects.

Scatterplots
Scatterplots were generated to represent transcript expression rhythms.
TOD on the ZT scale is indicated on the x-axis and transcript expression
level on the y-axis, with each dot indicating a subject. The red line is the
fitted sinusoidal curve. For each brain region, scatterplots were generated
for the top three transcripts that were significantly less rhythmic in OUD
subjects and the top three transcripts that were significantly more
rhythmic in OUD subjects relative to unaffected comparison subjects.

RNA-sequencing analyses
Overrepresentation of pathways (GO, KEGG, Hallmark, Canonical Pathways,
Reactome, BioCarta, CORUM) was assessed using Metascape (http://www.
metascape.org) for rhythmic transcripts in DLPFC and NAc, transcripts that
were more or less rhythmic in OUD, and transcripts in co-expression
networks, with expressed transcripts as background. Networks were
visualized with Cytoscape. INGENUITY® Pathway Analysis (Qiagen) was
used to predict upstream regulators of rhythmic transcripts. Rank–rank
hypergeometric overlap (RRHO) [34, 35] was used to assess the overlap of
rhythmic transcripts between unaffected comparison subjects and subjects
with OUD.
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Identification of OUD-specific co-expression networks
We used weighted gene co-expression network analysis (WGCNA) to
identify transcript modules across samples [36]. Networks were built
separately in each brain region and disease group. We used Fisher’s exact
test to determine enrichment of rhythmic transcripts or transcripts that
were significantly less rhythmic or more rhythmic in OUD subjects within
each of the WGCNA modules. ARACNe was used to identify hubs for
network analysis [37] and Cytoscape was used to visualize networks.
Overrepresentation of pathway categories was assessed using Metascape,
with 5000 WGNCA-analyzed transcripts as background.

Integration of rhythmic transcripts with GWAS
Transcripts that were rhythmic within disease groups and transcripts that
were less or more rhythmic in OUD subjects (corrected p < 0.05) were used
to construct foregrounds for GWAS enrichment. We computed the
partitioned heritability (GWAS enrichment) of noncoding regions contain-
ing and surrounding OUD rhythmic transcript sets using the LD score
regression pipeline for enrichment [38]. LD score regression coefficients
were adjusted for FDR < 0.05 on enrichments performed on each included
GWAS foregrounds. A significant p-value indicates enrichment of the
foreground genomic regions for GWAS single nucleotide polymorphisms
relative to the background.

RESULTS
Distinct transcriptional rhythms in subjects with OUD
Given the convergence of clinical and preclinical evidence
reflecting altered circadian rhythms in opioid addiction
[7, 39, 40], we investigated whether brain transcriptional rhythms
were altered in DLPFC and NAc, regions strongly implicated in
OUD [41–44]. In DLPFC, we identified fewer rhythmic transcripts in
subjects with OUD (n= 339) compared to unaffected comparison
subjects (n= 730) (Tables S3 and S4)), with only 19 rhythmic
transcripts shared between groups (Fig. 1A; Fisher’s exact test p >
0.35 indicating nonsignificant overlap). Results using a threshold-
free approach, RRHO, further supported a lack of overlap between
unaffected and OUD subjects in DLPFC rhythmic transcripts (Fig.
1B). The top 200 rhythmic transcripts peaked across the day in
unaffected comparison subjects, but these same transcripts were
arrhythmic in OUD subjects (Fig. 1C). Similarly, the top rhythmic
transcripts in the DLPFC of OUD subjects were arrhythmic in
unaffected comparison subjects (Fig. 1D). Canonical circadian
transcripts (NR1D2, ARNTL, and CIART) were rhythmic in the DLPFC
of unaffected comparison subjects, like previous studies
[16, 28, 29, 31, 45], but were not rhythmic in OUD subjects
(Fig. 1E).
We performed a similar analysis of transcriptional rhythmicity in

the NAc. Surprisingly, OUD subjects had more than twice as many
rhythmic transcripts compared to unaffected comparison subjects
(738 and 349, respectively) (Tables S5 and S6), with an overlap of
only 14 transcripts (Fig. 1F; Fisher’s exact test p > 0.65 indicating
nonsignificant overlap). RRHO further supported an overall lack of
overlap between unaffected comparison and OUD subjects in the
NAc (Fig. 1G). In unaffected comparison subjects, the top 200
rhythmic transcripts peaked across the day, while these transcripts
were arrhythmic in subjects with OUD (Fig. 1H). Notably, although
there are fewer rhythmic transcripts in the NAc relative to DLPFC
of unaffected subjects, there is a more robust rhythmicity pattern
in the NAc (compare Fig. 1C and H), suggesting that transcripts
identified in the NAc are robustly rhythmic. In OUD subjects, the
following patterns of diurnal expression were identified in top
rhythmic transcripts: (1) peaks of expression during the day and
troughs at night; or (2) troughs of expression during the day and
peaks at night (Fig. 1I). Using the top 200 rhythmic transcripts in
NAc of OUD subjects, these anti-phasic patterns of transcriptional
rhythms appear to exhibit near 12 h rhythms of expression in
unaffected comparison subjects compared to the 24 h rhythm in
subjects with OUD (Fig. 1J). Canonical circadian genes (NR1D2,

ARNTL, and CIART) were rhythmic in the NAc of unaffected
comparison subjects [30] but were not rhythmic in OUD (Fig. 1J).

Distinct peak times of rhythmic transcripts in subjects with
OUD
Having identified rhythmic transcripts in the DLPFC and NAc of
unaffected comparison and OUD subjects, we next evaluated the
timing of peak transcript expression. In DLPFC, we observed two
peaks of expression in unaffected comparison subjects at ~ZT4
and ~ZT16 (Fig. 2A, left), nearly 12 h apart from each other; in
other words, transcripts tended to peak at either ZT4 or ZT16. In
contrast to unaffected comparison subjects, rhythmic transcripts
in the DLPFC of OUD subjects did not exhibit distinct expression
peaks (Fig. 2A, right). In NAc of unaffected comparison subjects,
most rhythmic transcripts peaked ~ZT10 (Fig. 2B, left). Rhythmic
transcripts in the NAc of OUD subjects peaked at either ~ZT11 or
~ZT23 (Fig. 2B, right).
The observation that rhythmic transcripts form two separate

clusters with peaks ~12 h apart in DLPFC of unaffected subjects
and in NAc of OUD subjects prompted further investigation of the
biological pathways represented by these clusters of transcripts. In
DLPFC of unaffected comparison subjects, transcripts peaking at
ZT4 (approximately mid-morning) were enriched for regulation of
ion transport, energy metabolism, and negative regulation of
NMDA receptor-mediated neuronal transmission, along with
circadian rhythm-related genes (Fig. 2C). Transcripts that peak at
ZT16 (approximately late evening to midnight) in DLPFC of
unaffected comparison subjects were enriched for immune-
related pathways (e.g., adhesion of symbiont to host, negative
regulation of viral transcription; Fig. 2C). Rhythmic transcripts in
the DLPFC of OUD subjects were enriched for pathways related to
receptor internalization and neurotrophin signaling (Fig. 2C). In
the NAc of unaffected comparison subjects, rhythmic transcripts
were enriched for immune pathways (e.g., negative regulation of
immunoglobulin production) and small noncoding RNAs (e.g.,
PIWI-interacting (piRNA) RNA biogenesis). Additionally, we inves-
tigated pathways associated with rhythmic transcripts peaking at
either ~ZT11 or ~ZT23 in NAc of OUD subjects. Interestingly,
transcripts peaking at ZT11 and ZT23 were both enriched for
opioid-related signaling pathways (Fig. 2D). Transcripts peaking at
~ZT11 (evening) in the NAc of OUD subjects were enriched for
morphine addiction, synaptic transmission, GABAergic transmis-
sion, and glial cell-derived neurotrophic factor receptor signaling
pathways. Transcripts peaking at ~ZT23 (right before sunrise) were
enriched for chemical synaptic transmission, voltage-gated
potassium channels, and opioid signaling (Fig. 2D). Collectively,
these findings indicate rhythmic transcripts: (1) in the DLPFC of
unaffected comparison subjects were primarily associated with
immune and excitatory synaptic signaling; and (2) in the NAc of
OUD subjects were associated with opioidergic signaling and
GABAergic neurotransmission.

Alterations in transcriptional rhythmicity in OUD
Given that we observed minimal overlap of rhythmic transcripts in
both unaffected and OUD subjects, we decided to test whether
transcripts were significantly less rhythmic or more rhythmic in
OUD subjects. In DLPFC, we identified 548 transcripts that were
significantly less rhythmic in subjects with OUD relative to
unaffected comparison subjects (Table S7). The top transcripts in
DLPFC that were less rhythmic in OUD included APBA2 (amyloid-
beta precursor protein-binding family A member 2), FAT3 (FAT
atypical cadherin 3), and AC083798.2 (Long noncoding RNA,
LncRNA) (Fig. 3A). The top biological pathways associated with
transcripts that were less rhythmic in OUD were Netrin and
Eicosanoid signaling (Fig. 3C), and the top IPA-predicted upstream
regulators included the canonical circadian proteins, PER1 and
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PER2 (Fig. 3C), suggesting core molecular clock disruptions in
DLPFC of OUD subjects.
We also identified 209 transcripts that were significantly more

rhythmic in DLPFC of subjects with OUD compared to unaffected

comparison subjects, with TMEM119, ADPRH, and HELLS as the top
transcripts (Fig. 3B; Table S8). The top pathways associated with
transcripts that were more rhythmic in OUD subjects in the DLPFC
included inositol biosynthesis and metabolism, along with
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dopamine receptor signaling and DARPP32 feedback (Fig. 3D),
with TBX21 and ZC3H12C as top IPA-predicted upstream
regulators.
In NAc, we found 406 transcripts that were significantly more

rhythmic in unaffected comparison subjects compared to OUD
subjects, including POLR2F, DNM1P46, and HNRNPA1P7 (Fig. 3E;
Table S9). From these transcripts, we identified several interacting
signaling pathways including RhoA [46], Notch [47], and GP6 [48]
(Fig. 3G). IPA-predicted upstream regulators included several
pesticide agents with neurotoxic profiles (e.g., monobutyl
phthalate) and penfluridol, an antipsychotic medication with
primary action at the dopamine 2 receptor [49]. Among the 762
transcripts that were significantly more rhythmic in the NAc of
OUD subjects compared to unaffected comparison subjects, the
top transcripts included ATXN3, STX2, and CARNMT1 (Fig. 3F; Table
S10). Like DLPFC, we identified dopamine-DARPP32 feedback
pathways among the top enriched pathways along with
dopamine as the top IPA-predicted upstream regulator of
transcripts that were more rhythmic in NAc of OUD subjects
(Fig. 3H). Other top pathways included protein kinase A, beta-
adrenergic, and gap junction signaling, along with the calcium-
induced T lymphocyte pathway (Fig. 3H). Overall, our findings
suggest pathways related to dopamine signaling were more
rhythmic in both DLPFC and NAc of OUD subjects.

Gene module enrichment of synapse-related and glycoprotein
signaling in OUD
WGCNA identified 16 modules in DLPFC of unaffected subjects
with only one module enriched for rhythmic transcripts and only
one module enriched for transcripts that were significantly less
rhythmic in OUD (Fig. S1A). Additionally, we identified 20 modules
in DLPFC of OUD subjects; none of these modules were enriched
for rhythmic transcripts or for transcripts that were significantly
more or less rhythmic in OUD.
From the 19 modules identified in the NAc of unaffected

subjects, only one module was enriched for transcripts that were
less rhythmic in the NAc of OUD subjects (Fig. S1B). In OUD, we
identified 16 modules in the NAc and three of these modules
(OUD-1, OUD-2, and OUD-3) were enriched for rhythmic
transcripts. Both OUD-2 and OUD-3 modules were enriched for
transcripts that were more rhythmic in the NAc of OUD subjects
(Fig. 4A). Several transcripts that are key regulators of synaptic
signaling were present in modules OUD-1, OUD-2, and OUD-3.
These included: GRIN3A [50, 51], SLC6A7 [52], KCNJ6 [53, 54],
GABRQ [55], and HPCAL1 [56] (OUD-1); SEMA5B [57] and SHISA6
[58] (OUD-2) PCP4 [59] and PPP1R1B (DARPP-32) [60]; (OUD-3).
Pathway enrichment analyses of transcripts comprising the
networks in the OUD modules further support the connection

between rhythmic transcripts in OUD and synaptic function in the
NAc, including neurotransmitter receptors and postsynaptic signal
transmission, trans-synaptic signaling, positive regulation of
excitatory postsynaptic potential, and pathways related to
extracellular matrices (ECM) and brain morphology (e.g., ECM
glycoproteins, cell-cell adhesion molecules, and axon develop-
ment) (Fig. 4B).

Brain-region-specific genetic associations between altered
transcriptional rhythms and sleep phenotypes
Given our findings of altered transcriptional rhythmicity in OUD,
we explored whether rhythmic transcripts that are significantly
altered in DLPFC or NAc of OUD subjects are associated with
opioid and sleep-related traits [61]. To test this idea, we used
GWAS studies to integrate significant genomic loci from opioid
dependence and various sleep traits (e.g., insomnia, morningness,
and sleep duration). Genomic loci identified by GWAS overlap with
intronic and distal intergenic noncoding regions within cis-acting
regulators of gene expression [62]. Using the intronic and distal
intergenic regions, we examined whether these genomic regions
proximal to transcripts identified as rhythmic either in OUD or
unaffected subjects are enriched for genetic associations with
opioid dependence and sleep traits. We found no significant
associations with rhythmic transcripts in either the DLPFC or NAc
with opioid dependence (Fig. 5). However, we identified
significant enrichments for rhythmic transcripts in DLPFC of
unaffected subjects for insomnia and long sleep duration (Fig. 5A).
Transcripts that were more rhythmic in DLPFC of unaffected
compared to OUD subjects were significantly enriched in insomnia
and morningness (Fig. 5B). In NAc of OUD subjects, highly
rhythmic transcripts were significantly enriched for total sleep
duration (Fig. 5A), including transcripts that were more rhythmic
in OUD compared to unaffected subjects (Fig. 5B). Together, our
integrative analyses of rhythmic transcriptomes with human
GWAS establishes connections between alterations of transcrip-
tional rhythms in corticostriatal circuitry, opioid addiction, and
phenotypes associated with sleep disturbances (i.e., shorter sleep
durations and insomnia).

DISCUSSION
Our data demonstrate transcriptional rhythms in the DLPFC and
NAc of unaffected subjects and subjects with OUD. Rhythmic
transcripts in unaffected subjects were largely distinct from those
in subjects with OUD, suggesting that chronic opioid use leads to
the emergence of rhythmicity in specific transcripts involved in
the function of corticostriatal circuitry. Indeed, many of the
transcripts that were rhythmic in the DLPFC and NAc of OUD

Fig. 1 Rhythmic transcripts are largely distinct in unaffected comparison subjects and subjects with opioid use disorder. A In the
dorsolateral prefrontal cortex (DLPFC), there were 730 rhythmic transcripts detected in unaffected comparison (UC) subjects and 339 in
subjects with opioid use disorder (OUD). Notably, only 19 transcripts were rhythmic in both UC subjects and subjects with OUD. Fisher’s exact
test indicated lack of overlap in rhythmic transcripts in the DLPFC between UC and OUD subjects (p > 0.35). B Rank–rank hypergeometric
overlap was used as a threshold-free approach to confirm the lack of overlap in rhythmicity patterns in the DLPFC of UC subjects and subjects
with OUD. C Heatmap of the top 200 circadian transcripts identified in the DLPFC of UC subjects (left), with transcripts peaking across the day.
Expression levels are Z-transformed for each transcript, and the transcripts are ordered by their circadian phase value (peak hour). Each
column represents a subject and the subjects are ordered by time of death. The top 200 rhythmic transcripts identified in UC subjects are then
plotted for subjects with OUD (right), indicating disrupted rhythmicity of normally rhythmic transcripts in subjects with OUD. D The top 200
rhythmic transcripts identified in OUD subjects in the DLPFC (left) are then plotted in UC subjects (right). E Canonical circadian transcripts
(NR1D2, ARNTL, CIART) were rhythmic in the DLPFC of UC subjects, but were not rhythmic in OUD subjects. F In the nucleus accumbens (NAc),
there were 349 rhythmic transcripts detected in UC subjects and 738 in subjects with OUD. Notably, only 14 transcripts were rhythmic in both
UC subjects and subjects with OUD. Fisher’s exact test indicated lack of overlap in rhythmic transcripts in the NAc between UC and OUD
subjects (p > 0.65). G Rank–rank hypergeometric overlap was used as a threshold-free approach to confirm the lack of overlap in rhythmicity
patterns in the NAc of UC subjects and subjects with OUD. H Heatmap for the top 200 circadian transcripts identified in the NAc of UC
subjects (left). The top 200 rhythmic transcripts identified in UC subjects are then plotted for subjects with OUD (right). I The top 200 rhythmic
transcripts identified in OUD subjects in the NAc (left) are then plotted in UC subjects (right). J Canonical circadian transcripts (NR1D2, ARNTL,
CIART) were rhythmic in the DLPFC of UC subjects, but were not rhythmic in OUD subjects.
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subjects were enriched for pathways related to the regulation of
dopamine neurotransmission. Using integrative analyses combin-
ing circadian patterns of transcriptional regulation and human
GWAS, our findings revealed novel gene-trait relationships
between transcripts that were significantly more rhythmic in

DLPFC and NAc of OUD subjects and sleep-related phenotypes.
Additionally, we identified transcripts that were significantly less
rhythmic in OUD subjects, also with significant associations to
sleep GWAS. An important consideration is that our findings may
be driven, in part, by acute opioid administration, as most subjects
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Fig. 2 Distinct peak times for rhythmic transcripts in subjects with opioid use disorder (OUD) compared to unaffected comparison (UC)
subjects. A In the dorsolateral prefrontal cortex of UC subjects, transcripts generally peaked at either ZT4 or ZT16, ~12 h apart. Rhythmic
transcripts in the DLPFC in subjects with OUD did not peak at consistent times. B In the nucleus accumbens (NAc), rhythmic transcripts in UC
subjects generally peaked at ZT10. Rhythmic transcripts in the NAc of subjects with OUD peaked at either ZT11 or ZT23, ~12 h apart.
C Transcripts peaking at ZT4 in the DLPFC of UC subjects were enriched for pathways related to rhythms (e.g., circadian rhythm-related genes,
sleep) and neurotransmission (e.g., negative regulation of NMDA receptor-mediated neuronal transmission), while transcripts peaking at ZT12
were enriched for immune-related pathways (e.g., adhesion of symbiont to host, negative regulation of innate immune response). Rhythmic
transcripts in the DLPFC of OUD subjects were enriched for regulation of neurotrophin TRK receptor signaling pathway and positive
regulation of receptor internalization. D Rhythmic transcripts in the NAc of OUD subjects were enriched for apoptotic cleavage of cellular
proteins. In the NAc of OUD subjects, rhythmic transcripts peaking at ZT11 were enriched for morphine addiction, glial cell-derived
neurotrophic factor receptor signaling, ECM glycoproteins, and synaptic transmission, GABAergic, while transcripts peaking at ZT23 were
enriched for opioid signaling, voltage-gated potassium channels, and synapse-related pathways (e.g., regulation of postsynapse organization,
chemical synaptic transmission).
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had a positive toxicology for opioids at the time of death. Since
opioid overdose is commonly associated with respiratory failure,
an ischemic injury may independently influence brain gene
expression. However, many of our unaffected comparison subjects
also had causes of death associated with acute ischemia. Future

studies using larger cohorts will assess the impact of acute opioid
exposure on rhythmic transcript alterations in the human
postmortem brain.
Similar to previous studies in the human postmortem brain

[30, 32], we found robust transcriptional rhythms in unaffected
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subjects in both the DLPFC and NAc. In the DLPFC of unaffected
subjects, pathways associated with rhythmic transcripts were
related to circadian rhythms, sleep, metabolism, immune
response, and synaptic and neural transmission. Pathways related
to piRNAs, autophagy, and the GTPase cycle were among those
enriched in the NAc of unaffected subjects. Notably, there was
minimal overlap between the transcripts identified as rhythmic in
either the DLPFC or NAc from unaffected subjects compared to
OUD subjects. Several pathways, which have been previously
linked to the effects of opioids, were enriched in rhythmic
transcripts in the DLPFC of OUD subjects, including neurotrophin
TRK receptor signaling [63, 64] and Rap1 signaling [65]. For
example, neurotrophin activation of TRK receptors, signaling
through various molecular cascades (e.g., cAMP and ERK), is
involved in opioid-induced neural and synaptic plasticity [66, 67].
Dysfunction in neurotrophin TRK receptor signaling and opioid
receptor signaling has been associated with psychiatric disorders
[64]. Moreover, Rap1 may be involved in a subfamily of GTPase-
activating proteins that influence mu-opioid receptor activation
[68] and neurotransmission [65]. Interestingly, Rap1-dependent
signaling modulates neuronal excitability and drug reward-related
behaviors in mice [69].
In the NAc of OUD subjects, enriched pathways from rhythmic

transcripts were related to GABAergic neurotransmission, mor-
phine, opioid signaling, postsynaptic organization, and glial cell
neurotrophic factors, along with ECM glycoproteins, among
others. Interestingly, we recently reported that transcripts
associated with microglial and ECM pathways were differentially
expressed in DLPFC and NAc of OUD subjects when the time of
death was not taken into consideration [32]. The current results
suggest these transcripts and their related pathways may be
altered at specific times of the day. While the functional impact of
rhythmic alterations in glia [70] and brain scaffolding [71, 72]
needs to be explored further in OUD, microglial regulation of
neuroinflammation, in addition to consequences on the ECM and
the functional impacts on synaptic physiology, may be critically
involved in the long-term effects of opioids on the brain
[32, 73, 74].
Many of the rhythmic transcripts we identified in the DLPFC of

unaffected subjects and in the NAc of OUD subjects generally
peaked at different times of the day. In unaffected subjects,
rhythmic transcripts tended to peak at either ZT4 (i.e., mid-
morning) or ZT16 (i.e., late evening), represented by distinct sets
of enriched pathways. For example, circadian rhythm and sleep-
related transcripts peak at ZT4, while other pathways peak at
ZT16. In OUD subjects, rhythmic transcripts did not exhibit these
two peaks, possibly due to this group having fewer than half the
rhythmic transcripts compared to the unaffected group. In
contrast, rhythmic transcripts in the NAc exhibited two peaks at
ZT11 (i.e., evening) or ZT23 (i.e., prior to “sunrise”) in OUD subjects.
Several of the pathways peaking at ZT11 were related to glia, ECM,

GABAergic signaling, and morphine addiction, while the pathways
peaking at ZT23 were potassium channels, synaptic transmission,
opioid, and Wnt signaling, and others. We also observed hints that
transcripts exhibiting a 24 h rhythm in the NAc of OUD subjects
might exhibit ultradian rhythms (i.e., less than 24 h) in unaffected
comparison subjects, although we were not powered to
determine if these transcripts did indeed exhibit 12 h rhythms.
Twelve hours rhythms in neuronal and synaptic activity, neuro-
transmission (e.g., dopaminergic [75]), and behaviors [16,27,28]
have been described in rodent models [76].
In subjects with OUD, we found transcripts that were

significantly less rhythmic in DLPFC and NAc compared to
unaffected comparison subjects; these transcripts were related
to many pathways of brain function, including synapse and
immune signaling. For example, the transcript APBA2 was less
rhythmic in the DLPFC of OUD subjects and encodes for a synaptic
adaptor protein, which when disrupted leads to the impaired
synaptic formation and vesicle trafficking in excitatory synapses
[77]. In addition, APBA2 variants were associated with impulsivity
and addiction vulnerability [78]. APBA2 directly binds neurexin
proteins that are neuron-specific surface proteins involved in
synaptic formation and netrin signaling [79]. Netrin signaling was
the top pathway enriched from transcripts that were less rhythmic
in the DLPFC of OUD subjects. Other pathways included
eicosanoid signaling, involved in synaptic plasticity and inflamma-
tion [80]; 3-phosphoinositide degradation, involved in neuronal
hyperexcitability and associated with various psychiatric disorders
[81]; calcium-induced T lymphocyte, which tunes T-cells to
coordinate immune responses [82]; and tRNA splicing [83]. In
the NAc of OUD subjects, transcripts that were less rhythmic were
related to synapses and substance use. For example, HNRNPA1P7
belongs to a family of RNA-binding proteins involved in
cytoskeletal organization and synaptic activity, and more recently,
substance use [84]. Both RhoA and Notch signaling pathways were
also enriched for transcripts that were less rhythmic in NAc of
OUD subjects, both of which are involved in opioid tolerance and
withdrawal [46].
Additionally, we identified transcripts that were significantly

more rhythmic in OUD subjects. For example, TMEM119, a robust
marker for microglia [85], was among the top transcripts that were
highly rhythmic in the DLPFC of OUD subjects, resembling
increased glial reactivity at certain times of day [86] in OUD. In
support of this, Tmem119 has a robust expression rhythm in the
mouse suprachiasmatic nucleus associating with circadian-
dependent modulation of glial activity [87]. Many of the top
pathways enriched among transcripts that were more rhythmic in
DLPFC of OUD subjects were related to inositol phosphates, key
regulators of cell signaling [88]. The inositol phosphate pathway
impacts cellular and molecular rhythms [89], suggesting molecular
changes in diurnal patterns of expression in the DLPFC of OUD
subjects are, in part, driven by alterations in inositol signaling.

Fig. 3 Scatterplots indicating rhythmicity for transcripts that were significantly more or less rhythmic in the dorsolateral prefrontal
cortex (DLPFC) and nucleus accumbens (NAc) in subjects with opioid use disorder (OUD) compared to unaffected comparison (UC)
subjects. Each dot indicates a subject with x-axis indicating the time of death (TOD) on ZT scale (−6 to 18 h) and y-axis indicating transcript
expression level. The red line is fitted sinusoidal curve. A Scatterplots for the DLPFC indicating rhythmicity of APBA2, FAT3, and AC083798.2 in
UC subjects (left), which are significantly less rhythmic in subjects with OUD (right). B Scatterplots for the DLPFC indicating lack of rhythmicity
of TMEM119, ADPRH, and HELLS in unaffected comparison subjects (left), and these transcripts are significantly more rhythmic in subjects with
OUD (right). C The top pathways represented by transcripts that are less rhythmic in the DLPFC in OUD are related to netrin signaling and
eicosanoid signaling, and the top IPA-predicted upstream regulators are PER1 and PER2. D The top pathways represented by transcripts that
are more rhythmic in the DLPFC in OUD are related to inositol and dopamine, and the top IPA-predicted upstream regulators are TBX21 and
ZC3H12C. E Scatterplots for the NAc indicating rhythmicity of POLR2F, DNM1P46, and HNRNPA1P7 in UC subjects (left), which are significantly
less rhythmic in subjects with OUD (right). F Scatterplots for the NAc indicating lack of rhythmicity of ATXN3, STX2, and CARNMT1 in UC
subjects (left), and these transcripts are significantly more rhythmic in subjects with OUD (right). G The top pathways represented by
transcripts that are less rhythmic in the NAc in OUD are related to RhoA signaling and autophagy, and the top IPA-predicted upstream
regulators are monobutyl phthalate and the antipsychotic penfluridol. H The top pathway represented by transcripts that are more rhythmic
in the NAc in OUD is Dopamine-DARPP32 Feedback, and the top IPA-predicted upstream regulators is Dopamine.
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Other pathways included feedback regulation of dopamine
neurotransmission, and the top IPA-predicted upstream regulators
were TBX21 and ZC3H12C; both of these transcription factors
modulate dopamine’s actions on immune cells in the brain,
controlling the activation of T-cells, consequently regulating the
neuroinflammatory response [90].
In contrast to DLPFC, most transcripts that were significantly

more rhythmic in the NAc of OUD subjects were related to
synapses. For instance, ATXN3, among the top rhythmic tran-
scripts, is involved in the formation of dendritic spines and new
synapses in rodents [91] and STX2 regulates vesicle release of
neurotransmitters [92, 93]. In addition, GRIN3A was significantly
more rhythmic in NAc of OUD subjects, and notably, was
identified as a hub transcript in the OUD-1 module. The OUD-1
module was specific to OUD and the NAc, and was mainly
comprised of transcripts involved in neurotransmission, such as
postsynaptic receptors, trans-synaptic signaling, neuroactive
ligand-receptor signaling, and GABA receptor activation. GRIN3A
is involved in opioid-induced synaptic plasticity of both excitatory
and inhibitory circuits in the NAc following chronic administration
[51, 94, 95] and variants of GRIN3A were identified as alleles
associated with therapeutic response to methadone in people
with opioid addiction [96]. Previously, we found that neuroin-
flammatory pathways were enriched in differentially expressed
transcripts in the NAc from OUD subjects, including interferon
(IFN) signaling [32]. Intriguingly, IFN signaling interacts with
GRIN3A, whereby elevated IFN induces NMDA-evoked glutamate
release [50]. Thus, cycles of opioid withdrawal may elevate IFN
levels, augmenting excitatory signaling in NAc and inducing
opioid-induced synaptic plasticity and behavioral consequences.
Based on our findings, rhythmicity of GRIN3A-dependent signaling

may also regulate opioid-induced excitatory synaptic plasticity
[97].
We integrated the transcriptional rhythm profiles in the

human brain with opioid and sleep-related GWAS findings to
begin to identify novel gene-trait relationships in OUD. Using
integrative GWAS analyses, we found that transcripts that were
less rhythmic in the DLPFC of OUD subjects were enriched for
genomic loci associated with insomnia and morning prefer-
ence GWAS. Further, transcripts that were more rhythmic in
DLPFC of OUD subjects were associated with short sleep
duration GWAS. Transcripts that increased transcriptional
rhythmicity in the NAc of OUD subjects were related to total
sleep duration. We found a lack of enrichments for opioid-
related GWAS, probably because of the comparatively smaller
sample sizes and limited GWAS loci for opioid dependence
[61]. Nevertheless, our findings support associations between
genetic risk for sleep alterations, brain-region-specific changes
in transcriptional rhythmicity, and OUD. Given the roles for
both the DLPFC [98] and NAc [99–101] in sleep and substance
use, our results provide putative mechanisms for transcrip-
tional rhythmicity in DLPFC and NAc to mediate the relation-
ships between sleep and OUD. Our findings provide further
support for the involvement of dopaminergic and glutamater-
gic neurotransmission in corticostriatal circuits including the
DLPFC and NAc in the regulation of sleep and possible
intersections with substance use [102]. Further, our results
suggest treatments targeting certain pathways in the brains of
patients with OUD may be more effective when given at the
time of day when the alteration is most robust. Our insights will
hopefully provide the opportunity for new therapeutics in the
treatment of OUD.
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with opioid and sleep-related traits. Genome-wide associated studies (GWAS) have identified loci associated with various sleep-related traits
and opioid dependence. We investigated whether rhythmic transcripts, as well as transcripts that were significantly more or less rhythmic in
subjects with opioid use disorder (OUD), were enriched for genetic associations with sleep-related traits and opioid dependence. A In the
DLPFC of unaffected comparison (UC) subjects, there was significant enrichment of rhythmic transcripts for genes associated with insomnia
and long sleep duration. In NAc of OUD subjects, there was enrichment of rhythmic transcripts and transcripts that were more rhythmic in
OUD in total sleep duration. There were no significant associations in the NAc of UC subjects. B Insomnia and morningness were associated
with transcripts that were significantly less rhythmic in DLPFC of OUD subjects. Transcripts in the DLPFC that were more rhythmic in OUD
subjects were enriched for genes associated with short sleep duration, while transcripts that were more rhythmic in the NAc of OUD subjects
were enriched for total sleep duration. No significant enrichments were identified for opioid dependence.
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