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The COVID-19 pandemic has accelerated the study of the potential of multi-target drugs (MTDs). The
mixture of homologues called ivermectin (avermectin-B1a + avermectin-B1b) has been shown to be a
MTD with potential antiviral activity against SARS-CoV-2 in vitro. However, there are few reports on
the effect of each homologue on the flexibility and stiffness of proteins associated with COVID-19,
described as ivermectin targets. We observed that each homologue was stably bound to the proteins
studied and was able to induce detectable changes with Elastic Network Models (ENM). The perturba-
tions induced by each homologue were characteristic of each compound and, in turn, were represented
by a disruption of native intramolecular networks (interactions between residues). The homologues were
able to slightly modify the conformation and stability of the connection points between the Ca atoms of
the residues that make up the structural network of proteins (nodes), compared to free proteins. Each
homologue was able to modified differently the distribution of quasi-rigid regions of the proteins, which
could theoretically alter their biological activities. These results could provide a biophysical-
computational view of the potential MTD mechanism that has been reported for ivermectin.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

COVID-19 is a respiratory infection caused by the SARS-CoV-2
virus, which as of July 2021 has claimed over 4 million lives world-

wide (https://www.who.int/emergencies/diseases/novel-coron-

avirus-2019). This pandemic has been exacerbated by the lack of
panviral agents or other effective treatments to limit spread,
reduce hospital admissions and prevent death or long-term health
complications. To date much of the literature has focused on repur-
posing marketed drugs, such as hydroxychloroquine and remde-
sivir, to allow quick clinical adoption [1]. However, despite
promising data from in vitro studies many of these compounds
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Table of symbols

Rg Radius of gyration
hdi main chain deformability
BT
n b-factor (temperature factor)

hei motion stiffness
Nf number of flexible fragment
Nn number of connection point or set of vertices between

the Ca atoms of the residues that make up the structural
network of proteins (nodes)

Nlk number of links in path (communication route or struc-
tural interaction in the considered system)

hRi average path force (kcal/mol*Å2)
hXi average path force correlation
N average path (%) of the effective network center (hubs)
hUi average (%) of correlation of nodes
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have failed to show efficacy in human clinical trails [2]. Faced with
these problems, new computational approaches offer attractive
alternatives to large-scale in vitro drug screening by using tiered
network pharmacology to identify targets and subsequent ligands
of interest. Multi-Target Drugs (MTDs) have the potential of bind-
ing to two or more targets, enabling the control of complex dis-
eases [3]. Multi-Target Drugs (MTDs) have increasing market
value - an estimated 20% of approved drugs are MTDs [4]. Multiple
studies have revealed a wide range of antiviral effects of the anti-
helminthic drug ivermectin, including against SARS-CoV-2 [5,6,7].
Interest has been building around the use of ivermectin as a
MTD, however, more trials are needed to evaluate the potential
efficacy of ivermectin in the clinical setting [5].

Similarly, a wide variety of computational studies have been
carried out to determine the multitarget capacity of ivermectin
against SARS-CoV-2 [8–12]. Ivermectin is composed of an approx-
imately 80:20 mixture of two homologues, avermectin B1a (AVM-
B1a) and avermectin B1b (AVM-B1b), which differ both in stereo-
chemistry and in the presence of a sec-butyl and isopropyl group,
in the position C25, respectively (Fig. 1). However, there are few
reports on the effect of each homologue on the flexibility and stiff-
ness of proteins associated with COVID-19, described as ivermectin
targets Importin a1 (IMPa1), Importin b1 (IMPb1), Helicase and
Mpro, in terms of flexibility and structural and conformational
rigidity using methods based on elastic network models (ENMs)
coupled to molecular dynamics. In this study, ligand–protein com-
plexes were built by molecular docking using the DockThor-VS
web server optimized for the reuse of drugs focused on SARS-
CoV-2 (see Figs. 2-5).

The most favorable complexes obtained under the conditions of
this study (they are ligand–protein complexes in the probabilisti-
Fig. 1. Molecular structure of the two homologues considered in this study obtained from
differential chemical group of each structure is indicated.

2

cally most feasible and thermodynamically most favorable posi-
tions, with the relatively lower free binding energy generated by
the docking simulations) were subjected to molecular dynamics
simulations in an explicit water system equivalent to a physiolog-
ical environment to predict minimum energy structures that were
analyzed using Elastic Network Models (ENMs) such as the Gaus-
sian Network (GNM), Anisotropic Network (ANM), Normal mode
analysis (NMA), Protein Structure Network (PSN) and spectrum-
based quasi-rigid domain decomposition of complexes (SPECTRUS)
simulations. These models and their theoretical foundations
described below, and allowed us to analyze the perturbations in
terms of structural and conformational deformability that may be
induced by each homologue of ivermectin in a group of previously
identified proteins of interest as a target for ivermectin and associ-
ated with COVID-19.
2. Theory

The employment of atomistic Molecular Dynamics (MD) trajec-
tories instead of a single structure provides a dynamic description
of the network as links break and form with atomic fluctuations.
Dynamic networks can be inferred by employing time averages
of the interaction strength cutoff for protein structure graph build-
ing, time averages of the interaction energy for edge weighting, fre-
quency cutoffs for link formation and hub definition, and cross-
correlation of atomic motions to search for the shortest interaction
pathways [13].

The low-frequency modes from Elastic Network Model (ENM)
agree well with essential dynamics modes from MD simulations,
both in terms of directions and relative amplitudes of motions.
The calculation of modes by ENM approaches only takes seconds,
PubChem. A) Avermectin B1a (AVM-B1a), and B) Avermectin B1b (AVM-B1b). The
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consequently, several approaches have already made use of such
directional information, e.g., for steering MD simulations, incorpo-
rating receptor flexibility in docking approaches, flexible fitting of
molecular structures, and efficient generation of pathways of con-
formational changes [14].
2.1. Elastic network models (ENM)

ENM is a coarse-grained (CG) normal mode analysis (NMA)
technique able to describe the vibrational dynamics of protein sys-
tems around an energy minimum. Within this technique, the pro-
tein structure is described by a reduced subset of atoms (usually
Ca-atoms), whose coordinates can be derived either from structure
determinations (X-ray crystallography, NMR, etc.) or from molecu-
lar simulations. The interactions between particle pairs are given
by a single term Hookean harmonic potential. The total energy of
the system is thus described by the simple Hamiltonian:

E ¼
X
i–j

kij dij � d0
ij

� �2
ð1Þ

where dij and d0
ij are the instantaneous and equilibrium dis-

tances between Ca-atoms i and j, respectively, whereas kij is a force
constant, whose definition varies depending on the type of ENM
used. The second derivatives of the harmonic potential are stored
in a 3 N � 3 N Hessian matrix (H), whose diagonalization gives a
set of 3 N-6 nonzero-frequency eigenvectors and associated
eigenvalues.

Two alternative versions of ENM have been implemented. In the
first version, termed ‘‘linear cutoff-ENM,” the force constant is
equal to 1 for pairwise interactions between the Ca-atoms lying
within a cutoff distance chosen by the user, and adjacent Ca-
atoms are assigned a force constant equal to 10. In the second
one, termed ‘‘Kovacs-ENM,” the force constant depends on the dis-
tance of the interacting particles:

kij ¼ C
d0
ij

dij

 !6

ð2Þ

where C is constant (with a default value of 40 kcal/mol*Å2).
The structural perturbation method (SPM) has been recently
described as a technique useful to characterize allosteric wiring
diagrams in the context of the ENM lowest frequency modes.
According to this methodology, amino acid positions that are rele-
vant to protein dynamics are searched by perturbing systemati-
cally all the springs that connect the Ca-atoms and then
measuring the residue-specific response of such perturbations in
the context of a given mode m. The perturbation response is com-
puted as:

dxm ¼ vT
m � dH � vm ð3Þ

where mm is the eigenvector of mode m, vT
m is its transpose, and

dH is the Hessian matrix of the perturbation to the energy of the
elastic network:

dE ¼ 1
2

X
i–j

dkij dij � d0
ij

� �2
ð4Þ

The response dxim is proportional to the elastic energy of the

springs that are connected to the ith residue when they are per-
turbed by an arbitrary value (0.1), thus defining the most critical
nodes for the dynamics of a given mode. A node represents a con-
nection point or a set of vertices within the network, or protein
structure graph, typically each protein node is the Ca atom of a
residue [15,16]. The number of modes used for the computation
3

is specified by the user (from 1 up to 3 N-6). It is also possible to
generate, for each analyzed mode, a pdb file containing the values
of dxim in the b-factor field.

Thermal B-factors from normal modes or thermal B-factor
(Debye–Waller factor) of atoms in a protein describe the average
squared displacements of the atoms in the protein away from their
equilibrium positions at a temperature T. They are a useful mea-
sure of a protein’s flexibility or rigidity. Normal modes can be used
to estimate the B-factors. Theoretical b-factors can be computed
inside the ENM module, by the formula:

BT
n ¼ 8p2kT

3

X3N
m¼1

v2
mn

km
ð5Þ

where mmn is the nth element of eigenvector m, km is the associ-
ated eigenvalue, k is the Boltzmann constant, and T is the temper-
ature in K. Cross correlations between theoretical and
experimental b-factors can be also computed according to the fol-
lowing equation:

CC ¼
PN

i¼1
bTi b

E
j

N � bT
�
�bE

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
bTi b

T
j �bT

�
� bT
�

N

r
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
bEi b

E
j �bE

�
� bE
�

N

r ð6Þ

where bT
i and bE

i are the theoretical and experimental b-factors,

and bT
�
and bE

�
are the theoretical and experimental b-factor average

over all atoms, respectively. The number of modes used for the
computation is specified by the user (from 1 up to 3 N-6). More-
over, involvement coefficients I between the ENM modes and the
displacement vector between a given structure/frame T and a ref-
erence structure R can be computed according to the following
equation:

Im ¼
P3N

n;i¼1vmnDriP3N
n¼1v2

mn

P3N
i¼1Dr

2
i

where Dri ¼ rTi � rRi and rT;Ri is the ith coordinate in the two con-
formers and vmn is the nth element of eigenvectorm. By default, the
computation is done for all 3 N-6 modes, and only the values of I
greater than an arbitrary threshold (i.e., 0.2) are output. The cumu-
lative square overlap (CSO) between all modes and the displace-
ment vector is computed according to the following equation:

CSO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3N�6

m¼1

I2m

vuut ð8Þ

Finally, residue correlation Cij is computed as:

Cij ¼
PN

I¼1
v iIv jI

kIPN
m¼1

v imv jm

km

� �1
2 PN

n¼1
v inv jn

kn

� �1
2

ð9Þ

For further detail, see [13,17,18,19]. The evidence that func-
tional dynamics of proteins relies on highly cooperative, low fre-
quency, global/essential modes caused the diffusion of methods
like the NMA able to infer such collective modes. The observed
robustness of global modes with respect to details in atomic coor-
dinates or specific interatomic interactions and their insensitivity
to the specific energy functions and parameters that define the
force field provided support to the development of simplified, i.e.
CG, descriptions of protein structures such as the ENM. The latter
relies on the fact that the property that dominates the shape of glo-
bal modes is the network of inter-residue contacts, which is a
purely geometric quantity defined by the overall shape or native
contact topology of the protein. In recent years, the ENM-based
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NMA (ENM-NMA) contributed significantly to improving our
understanding of the collective dynamics of proteins. For further
details, see [13].

2.2. Normal mode analysis (NMA)

NMA is a popular approach to describe the collective functional
movements of macromolecules. Each normal mode comprises both
a strain vector and a frequency. The first encodes a direction of
atomic displacement and the second is related to the relative
amplitude of the motion. NMA in Cartesian coordinates is used in
online modeling of protein flexibility [20]. NMA is a technique to
investigate the vibrational motion of a harmonic oscillating system
in the immediate vicinity of its equilibrium. The motions studied
are of small amplitude in a potential well and they cannot cross
energy barriers. A system is defined to be in equilibrium, or in
the bottom of the well (region surrounding a local minimum of
potential energy), when the generalized forces acting on the sys-
tem are equal to zero. At this minimum q0, the potential energy
can be expanded in a Taylor series, yielding a quadratic approxima-
tion V , to the potential energy E, with respect to the generalized
coordinates qi:

V ¼ 1
2

@2V
@qi@qj

 !
0

gigj ¼
1
2
Vijgigj ð10Þ

where g is the deviation from the equilibrium ðqi ¼ q0i þ giÞ.
Similarly the kinetic energy, T, is also approximated as a quadratic
function. The Lagrangian is given by L ¼ T � V , which leads to the g
linear differential equations of motion:

Ti€gi þ Vijgj ¼ 0 ð11Þ
By assuming an oscillatory solution, gi ¼ aik cos xkt þ dkð Þ and

substituting it in Eq. (2), one obtains an eigenvalue problem:

ATVA ¼ k ð12Þ
where A is the matrix of the amplitudes, aik and V is the matrix

of the second derivatives of the potential energy and is referred to
as the Hessian. k is a diagonal matrix, and ATA ¼ I. The pattern of
motions is fully specified by the vibrational normal modes, i.e.
the eigenvectors (Ak) and their associated eigenvalues (kk). The
normal mode vectors describe in which direction each particle
moves, and how far it moves relative to the other particles. Hence,
it does not give an absolute amount of displacement for each par-
ticle. All particles in each normal mode vibrate with the same fre-
quency. For details, see [21]. ENM-NMA is the basis for web servers
(iMODS, WEBnma and webPSN) and algorithms using the alterna-
tive approaches Gaussian Network Model (GNM) (HingeProt), Ani-
sotropic Network Model (ANM) (HingeProt) and Protein Structure
Network (PSN) (webPSN) [13,19–22].

2.3. Gaussian network model (GNM)

GNM predicts the relative magnitudes of fluctuations, describ-
ing a protein as a network of Ca connected by springs of uniform
force constant c if they are located within a cutoff distance rc
(10 Å in this study). In GNM, the interaction potential for a protein
of N residues is:

VGNM ¼ � c
2

XN�1

i¼1

XN
j¼iþ1

Rij � R0
ij

� �
� Rij � R0

ij

� �
Cij

" #
ð13Þ

where Rij and R0
ij are the equilibrium and instantaneous distance

between residues i and j, and C is N � N Kirchhoff matrix, which is
written as follows:
4

Cij ¼
�1 i–j;Rij � rc
0 i–j;Rij � rc

�Pi;i–jCij i ¼ j:

8><
>: ð14Þ

Then, square fluctuations are given by

h DRið Þ2i ¼ 3kT
c

� �
� C�1
h i

ii

hDRi � DRji ¼ 3kT
c

� �
� C�1
h i

ij

ð15Þ

The NMA are extracted by eigenvalue decomposition:
C ¼ UKUT , where U is the orthogonal matrix whose kth column
uk is kth mode eigenvector. K is the diagonal matrix of eigenvalues,
kk � hDRi � DRji can be written in terms of the sum of the contribu-
tion of each mode as follows:

hDRi � DRji ¼ 3kT
c

� �
�
X
k

UkKkU
T
k

� ��1
� �

ij

ð16Þ

Thus, the cross-correlation can be calculated by

Cij ¼ hDRi � DRji
hDRii2 � hDRji2
h i1=2 ð17Þ

The cross-correlation value ranges from �1 to 1: positive values
mean that two residues have correlated motions (motions in the
same directions), while the negative values mean that they have
anticorrelated motions (motions toward each other).

2.4. Anisotropic network model (ANM)

ANM predicts the directionalities of the collective motions in
addition to their magnitudes. ANM in an extension of the GNM,
both are coarse-grained residue level elastic network models. In
ANM, the interaction potential for a protein of N residues is;

VANM ¼ � c
2

XN�1

i¼1

XN
j¼iþ1

Rij � R0
ij

� �2
Cij

" #
ð18Þ

The motion of the ANM mode of proteins is determined by
3 N � 3 N Hessian matrix H, whose generic element is given as
follows:

Hij ¼

@2V
@Xi@Xj

@2V
@Xi@Yj

@2V
@Xi@Zj

@2V
@Yi@Xj

@2V
@Yi@Yj

@2V
@Yi@Zj

@2V
@Zi@Xj

@2V
@Zi@Yj

@2V
@Zi@Zj

2
6664

3
7775 ð19Þ

where Xi, Yi, and Zi represent the Cartesian components of resi-
dues i and V is the potential energy of the system. rc used here is
18 Å. Accordingly, ANMs provide the information not only about
the amplitudes but also about the direction of residue fluctuations.
For details, see [18,19].

GNM is used to calculate mean-square fluctuations and correla-
tion between the fluctuations of residues, and ANM to generate the
conformations that describe the fluctuations of residues from the
average X-ray structure in the principal directions of motion.
GNM results are more reproducible, and thus are preferentially
used for evaluating square displacements in low frequency modes
[19].

2.5. Protein structure network (PSN)

PSN gives more insights into the global properties of protein
structures. The representation of protein structures as networks
of interactions between amino acids has proven to be useful in a
number of studies, such as protein folding, residue contribution
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to the protein–protein binding free energy in given complexes, and
prediction of functionally important residues in enzyme families
[23]. All these aspects pertain to the issue of intra-molecular and
inter-molecular interaction.

PSN is constructed from the atomic coordinates of residues,
which represent the nodes of the network. Two nodes are con-
nected by an edge if the percentage of interaction between them
is greater than or equal to a given Interaction Strength cutoff;

Iij ¼ nijffiffiffiffiffiffiffiffiffiffi
NiNj

p 100 ð20Þ

where Iij is the interaction percentage of nodes i and j, nij is the
number of side-chain atom pairs within a given distance cutoff
(4.5 Å as a default), and Ni and Nj are, respectively, the normaliza-
tion factors (NF) for residues i and j, which take into account the
differences in size of the different nodes and their propensity to
make the maximum number of contacts with other nodes in pro-
tein structures.

The Iij are calculated for all node pairs excluding j ¼ i� n, where
n is a given neighbour cutoff (2 as default), and each node pair with
an Iij value greater than or equal to a given Imin cutoff is connected
by an edge. Different networks can be achieved by probing a range
of Imin cutoffs. At high Imin cutoffs, only nodes with high number of
interacting atom pairs will be connected by edges, indicative of
stronger inter-residue interactions. At a given Imin cutoff, those
nodes that realize more than a given number of edges (4 as default)
are called hubs. The percentage of interaction of a hub node is;

Ii ¼ nij

Ni
100 ð21Þ

where Ii is the hub interaction percentage of node i, nij is the
number of side-chain atom pairs within a given distance cutoff
and Ni is the normalization factor of residue i. Node inter-
connectivity is finally used to highlight cluster-forming nodes,
where a cluster is a set of connected amino acids in a graph. For
details, see [13,17,24].

3. Materials and methods

3.1. Building of complexes with molecular docking

The crystal structure of protein complexes speculated as possi-
ble mechanistic pathways for ivermectin in the in vitro inhibition
of SARS-CoV-2 were considered (Fig. 2). As the nuclear import for
macromolecules is facilitated by importins, the structures of
importin a1 subunit (PDB: 5KLR) from Mus musculus and importin
b1 subunit (PDB: 2P8Q) from Homo sapiens were used as a model
for the members of the nuclear import superfamily. The host
nuclear import system can be bound and sequestered by patho-
gens such as SARS-CoV-2 allowing transportation of viral proteins
to the host nucleus leading to increased viral replication [25–29].
Additionally, we also consider the multi-functional helicase
(nsp13) of SARS-CoV-2 responsible for viral replication (PDB:
6ZSL) [30–32], and the main protease (Mpro) of SARS-CoV-2
(PDB: 6LU7) as it is a key enzyme of coronaviruses and has a fun-
damental role in mediating viral replication and transcription,
making it an attractive target for drugs [33–37]. All structures were

obtained in PDB format from the RCSB Protein Data Bank (https://

www.rcsb.org/). The homologues structures of avermectin B1a
(AVM-B1a, CID_6321424) and avermectin B1b (AVM-B1b,
CID_6321425) that make up ivermectin were obtained from Pub-

Chem (https://pubchem.ncbi.nlm.nih.gov/) in SDF format and con-
verted to a PDB format using the OpenBabel-3.0 converter [38].

The complexes were built in the DockThor-VS web server

(https://dockthor.lncc.br/v2/) optimized for the design and reuse
5

of drugs focused on SARS-CoV-2 [39]. The DockThor program is a
phenotypic multiple solution steady-state stochastic genetic algo-
rithm (SSGA), which uses crowding as a search method. Crowding
method is a technique used in genetic algorithms to preserve
diversity in the population and to prevent premature convergence
to local optima. It consists of pairing each offspring with a similar
individual in the current population (pairing phase) and deciding
which of the two will remain in the population (replacement
phase). This genetic algorithm is able to handle a wide and diverse
set of data as the variables to be optimized are called genes and the
chains that contain the genes are known as chromosomes, allowing
for analysis of other macromolecules including proteins. It differs
from the simple genetic algorithm in that the tournament selection
does not replace the selected individuals in the population and,
instead of adding the children of the selected parents to the next
generation, the best two individuals from the two parents and
the two children are added back to the population so that the pop-
ulation size remains constant, and therefore has multiple pheno-
typic solutions [40,41,42].

The DockThor-VS platform utilizes a topology file for the ligand
and a specific input file for the protein containing the atom types
and partial charges from the MMFF94S force field, and both are
generated using the in-house tools MMFF Ligand and PdbThorBox.
The file of the ligand is generated by the MMFF Ligand program,
which utilizes the facilities of the Open Babel chemical toolbox
for deriving partial charges and atom types with the MMFF94S
force field, defining the rotatable bonds and the terminal hydroxyl
groups, and calculating the properties necessary for computing the
intramolecular interactions. The PdbThorBox program is used to
set the protein atom types and the partial charges from the
MMFF94S force field. Thus, in the DockThor program, both protein
and ligand are treated with the same force field in the docking
experiment. Subsequently, the results are analyzed using
DTStatistics.

The Web server utilizes the computational facilities of the

Brazilian highperformance platform (SINAPAD, https://www.lncc.

br/sinapad/) and the supercomputer SDumont (https://sdumont.

lncc.br/). The complexes were built using the flexibility algorithm
and blind docking. The affinity prediction and ranking of distinct
ligands are performed with the linear model (mathematical algo-
rithms that make it possible to determine the location of an active
segment of protein from an analysis of the potential energy matrix
of the electrostatic interaction between various segment) and
DockTScore GenLin scoring function [39,43]. To increase accuracy
30 runs were made with 106 evaluations per run. As is usually
done, all the water molecules were removed and the PDB files were
separated into two different files, one containing the protein and
the other containing the ligand structure. All the molecular force
field parameterisations are performed automatically by the pro-
grams cited. The remaining settings, conditions and parameters
offered by the program were used in the default mode.

To validate the docking results, the Pose&Rank server

(https://modbase.compbio.ucsf.edu/poseandrank/) was used to
score the protein–ligand complexes, using the statistical scoring
function dependent on the atomic distance RankScore. RankScore
is a method that has been optimized to distinguish ligands from
molecules that do not bind. Again, all the water molecules were
removed and the PDB files were separated into two different files,
one containing the protein and the other containing the ligand
structure. Only the three runs with the most favorable berth were
considered in the sampling of the probabilistically most feasible
and thermodynamically most favorable positions in the complexes.
A thermodynamically stable ligand–protein complex is repre-
sented by the system with the relatively lower free binding energy
generated by the docking simulations [44]. This criterion was used

https://www.rcsb.org/
https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://dockthor.lncc.br/v2/
https://www.lncc.br/sinapad/
https://www.lncc.br/sinapad/
https://sdumont.lncc.br/
https://sdumont.lncc.br/
https://modbase.compbio.ucsf.edu/poseandrank/
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to discriminate the complexes that would be subjected to further
analysis.
3.2. Preparation of complexes with molecular dynamics (MD)
simulations

Simulations for a docking were carried out to sample the mini-
mum energy conformations and study the structural and confor-
mational alteration of the complexes through the subsequent
analysis of the elastic network. For a protein–ligand complex, the
MD system was first relaxed through a series of minimization pro-
cedures. There were three phases for a MD simulation: the relax-
ation phase, the equilibrium phase, and the sampling phase, as
recommended. The MD simulation of the crystal structures was
carried out in an explicit water system. Specifically, the solvation
of the system was carried out in a solvation box of 8.0 Å [45].
Our MD system also consisted of one copy of each protein system
and one copy of the docking ligand. An Amber99SB-ILDN force field
was applied to the complex, with TIP3P water model including ion
particles of Cl– in order to neutralize the total charge of the system.
For this, the system simulates the diffusion of salts between the
solution and the crystalline phases (for a ligand–protein system
with a net charge, the counter ions are usually modeled in a slight
excess over the co-ions in the crystalline phase and close to the
chain side charged amino acids to maintain overall charge neutral-
ity) [45,46,47]. In protein systems, TIP3P water is suitable for the
Particle Mesh Ewald method (PME). Water plays an important role
in almost all biological simulations that have an explicit solvent
and typically represents more than 80% of the particles in the sim-
ulations. Water-water interactions dominate both computational
cost and surrounding properties. In this sense, and although there
are several water models, we used TIP3P, since it is an important
water model widely used in various biological simulations
[45,46,48].

Periodic boundary conditions were applied and the Berendsen
algorithm was adopted to carry out molecular docking at constant
temperature and pressure (300 K and 1 atm, respectively). After
initially applying the steepest descent-based simulation method
(5000 steps) and then the conjugate gradient energy minimization
method (5000 steps) with position constraints on the atoms of the
protein–ligand complex, modeling was carried out at an initial
simulation of 100 ps with the positions of the atoms of the pro-
tein–ligand complex constrained by a force constant of 10 kcal/
(mol Å2) to allow water molecules to diffuse around the protein
and achieve equilibrium with the protein–ligand system. All model
water molecules were treated as rigid bodies, thus allowing a sim-
ulation time step of 2 fs. The PME was used to calculate the electro-
static contribution to nonbonded interactions with a cutoff of
14.0 Å and a time step of 1 fs [46]. The cutoff distance of the Van
der Waals interaction was 14.0 Å. After this equilibration run, the
NVT (canonical set model where quantity of substance (N), volume
(V) and temperature (T) are conserved) production run at 300 K
was performed with the cell size remaining the same [45,46].
The SHAKE algorithm (algorithm used to satisfy link geometry con-
straints) was applied to the system [45,46], and the time step was
set to 2 fs. The minimized energy structures were obtained in PDB
format every 10 ns as target structures extracted from a 100 ns tra-
jectory to be used in the following analyzes. Finally, we obtained a
minimized energy structure at 100 ns and 10 instantaneous struc-
tures every 10 ns. All MD simulations and additional adjustments
were performed using cosgene/myPresto [8,36,49]. Cosgene/

myPresto is available at http://presto.protein.osaka-u.ac.jp/

myPresto4/index_e.html.
6

3.3. Comparative study of the conformational fluctuations of the
ligand–protein complexes

The WAXSiS method is an alternative method of molecular
dynamics that was used to analyze the two SARS-CoV-2 proteins
and two human proteins investigated in this study. Small- and
Wide-Angle X-ray Scattering (SWAXS) curves based on explicit-
solvent all-atom MD simulations were calculated on WAXSiS ser-

ver (http://waxsis.uni-goettingen.de). SWAXS is used to detect glo-
bal parameters of biomolecules, such as the radius of gyration. All
settings, conditions and parameters offered by the program were
used in the default mode. In all cases the simulations considered
the number of atoms in the envelope, the frames per simulation,
the simulation time and the equilibrium time, the number of solute
atoms and water molecules, as well as the neutralization of the
simulation cell [4].

We used the HullRad (http://52.14.70.9/index_test.html)
method to predict the hydrodynamic properties of the molecular
structures accurately and quickly. This method uses a convex hull
model to estimate the hydrodynamic volume of the molecule and
the Radius of gyration (Rg). It works well for both folded proteins
and ensembles of conformationally heterogeneous proteins. The
convex hull method is implemented in a Python script [50].

Tools from the energy-based Bhageerath package (http://www.

scfbio-iitd.res.in/software/proteomics/rgnew1.jsp) were used to
narrow the search space for tertiary structures of small globular
proteins and predict the Rg. The protocol comprises eight different
computational modules that form an automated filtering system
that combines physics-based potentials with biophysical filters to
arrive at 10 plausible candidate structures from sequence and sec-
ondary structure information [51]. To evaluate the conformational

quality of each structure, ProSA-web (https://prosa.services.came.

sbg.ac.at/prosa.php) was used. ProSA-web is used to calculate the
z-score of a specific model and correlate this score to those calcu-
lated scores from all publicly available structures on PDB website
[52].

3.4. Comparative study of structural deformation of complexes

Molecular flexibility was determined by Normal Mode Analysis

(NMA) combined with coarse-grained (CG) on iMOD server (http://

imods.chaconlab.org/) in an advance mode using sigmoid Elastic
Network Model (ENM). iMOD provides Normal Mode Analysis
(NMA) combined with Coarse-Grained (CG) and describes molecu-
lar flexibility based on localized displacements or collective confor-
mational changes by diagonalizing the Hessian and kinetic energy
matrices for solving the Lagrangian equations of motion of macro-
molecular complexes at extended timescales [4]. Tools were used
to predict parts of rigid protein complexes and the flexible regions
connecting them in the native topology of protein chains using
ENM.

HingeProt (http://www.prc.boun.edu.tr/appserv/prc/hingeprot/

index.html) was used to apply both the Gaussian Network Model
(GNM) and the Anisotropic Network Model (ANM). GNM and its
extension ANM are coarse-grained residue level ENMs. GNM pre-
dicts the relative magnitudes of the fluctuations, whereas ANM
predicts the directionalities of the collective motions in addition
to their magnitudes. GNM results are more reproducible, and thus
are preferentially used for evaluating square displacements in low
frequency modes. Here GNM is used to calculate mean-square fluc-
tuations and correlation between the fluctuations of residues, and
ANM to generate the conformations that describe the fluctuations
of residues from the average X-ray structure in the principal direc-
tions of motion [16,19].

http://presto.protein.osaka-u.ac.jp/myPresto4/index_e.html
http://presto.protein.osaka-u.ac.jp/myPresto4/index_e.html
http://waxsis.uni-goettingen.de
http://52.14.70.9/index_test.html
http://www.scfbio-iitd.res.in/software/proteomics/rgnew1.jsp
http://www.scfbio-iitd.res.in/software/proteomics/rgnew1.jsp
https://prosa.services.came.sbg.ac.at/prosa.php
https://prosa.services.came.sbg.ac.at/prosa.php
http://imods.chaconlab.org/
http://imods.chaconlab.org/
http://www.prc.boun.edu.tr/appserv/prc/hingeprot/index.html
http://www.prc.boun.edu.tr/appserv/prc/hingeprot/index.html
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To explore the collective movements of the protein complexes,
the NMA template was also used considering the internal coordi-
nates (torsion space). NMA in internal (dihedral) coordinates natu-
rally reproduces the collective functional motions of biological

macromolecules. For this, the iMODS server was used (http://

imods.chaconlab.org.) [20] and WEBnma v2.0. In WEBnma, the
force field used for computing the normal modes is the C-a force
field. It uses only the C-a atoms of the protein which are assigned
the masses of the whole residue they represent. Since it uses a
coarse-grained model, frequencies and energies are predicted on
relative scales and, therefore, normalized and unitless [22,53].

The webPSN (http://webpsn.hpc.unimo.it/wpsn.php) was used
for its high-performance investigation of allosterism in biological
systems, which uses a mixed protein structure network (PSN)
and an ENM-NMA (PSN-ENM), strategy to predict the interaction
structure between residues in proteins (structural communication)

[13]. Finally, the SPECTRUS (http://spectrus.sissa.it/#home) server
was used, which performs a decomposition into quasi-rigid
domains of proteins or protein complexes, based on the analysis
of the distance fluctuations between pairs of amino acids. For this,
the MD trajectories treated under the previous conditions are used
to compare the functional dynamics of protein complexes with dif-
ferent degrees of structural similarity. Similarly, this method uses
ENM that, thanks to the specific properties of each protein complex
and its free energy landscape, can reliably reproduce structural
fluctuations [54].
4. Results and discussion

4.1. Comparative study between conformational fluctuations of
protein-avermectin complexes

The protein–ligand complexes presented a thermodynamically
favorable and differential docking between each homologue with
each of the tested structures (see Figs. 2-5). The genetic algorithm
used predicted a docking of AVM-B1b with Mpro with DG = -10.
Fig. 2. Molecular docking is shown in a topological plot of the hydrophobicity of the
interactions found with residues in the binding pocket are also shown. A, IMPa1 + AVM
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2 kcal/mol, and of AVM-B1a with DG = � 9.6 kcal/mol. For the heli-
case, the free binding energies were DG = -10.2 kcal/mol and DG =
� 9.1 kcal/mol for AVM-B1b and AVM-B1a, respectively. For IMPa
it was DG = -8.9 kcal/mol and DG = � 8.7 kcal/mol for AVM-B1b
and AVM-B1a, respectively. And for the IMPb of DG = � 8.4 kcal/-
mol and DG = -8.9 kcal/mol for AVM-B1b and AVM-B1a, respec-
tively (see Table 1).

AVM-B1a bound multiple W and N-type residues, while AVM-
B1b bound both W and N-type residues, as well as D192 and
G150 residues in IMPa (see Table 1). These interactions are impor-
tant because part of nuclear import involves the recognition of
IMPa from nuclear localization signals (NLS). NLS are recognized
by an IMPa linker, which, when bound by IMPb1, can mediate
transport across the nuclear pore complex. IMPa retains an
IMPb-binding domain (IBB) responsible for binding to IMPb1 and
ten Armadillo tandem repeat motifs (ARM), the efficiency of
nuclear transport depends on the binding affinity to NLS-IMPa,
the basis for recognition of IMPa-NLS lies in the structure of the
ARM repeats, rich in conserved residues of typeW and N, described
as part of the main binding site, while residues D192 and G150 are
key for the affinity of IMPa to NLS. It has been reported that the
disturbance in the interaction with residues D192 and G150 alter
the binding of NLS to IMPa with a decrease of up to 3 kcal / mol
in the free binding energy [27].

Both homologues at IMPb1 bound to residues within the 52–64
region (see Table 1), which is important because similar to IMPa,
snurportin 1 (SNP1) transport adapter-mediated nuclear import
uses an IMPb binding domain (IBB) to recruit the IMPb receptor
and gain access to the nucleus, and the IBB domain has been
reported to contain binding determinants for IMPb spanning resi-
dues 25–65 and includes the IMPa IBB homology region (aIBB)
[55]. Both homologues bound to residue S-289 and to residues
within the 523–542 region, which are part of putative functional
sites in helicase (see Table 1). In helicase, residue S-289 is part of
the active site of ATP hydrolysis reported in SARS-CoV and SARS-
CoV-2. In addition, the segment of residues 523–542 has also been
determined as part of the dsDNA binding site [56]. It was found
binding pocket regions of each protein with each avermectin homologue. Typical
-B1a; B, IMPa1 + AVM-B1b.

http://imods.chaconlab.org
http://imods.chaconlab.org
http://webpsn.hpc.unimo.it/wpsn.php
http://spectrus.sissa.it/%23home


Fig. 3. Molecular docking is shown in a topological plot of the hydrophobicity of the binding pocket regions of each protein with each avermectin homologue. Typical
interactions found with residues in the binding pocket are also shown. A, IMPb1 + AVM-B1a; B, IMPb1 + AVM-B1b.

Fig. 4. Molecular docking is shown in a topological plot of the hydrophobicity of the binding pocket regions of each protein with each avermectin homologue. Typical
interactions found with residues in the binding pocket are also shown. A, Helicase + AVM-B1a; B, Helicase + AVM-B1b.
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that both homologues interact with the residue R-298 (see Table 1),
which has been reported as key in the catalytic activity of the
enzyme. This residue has been described to be involved in dimer-
ization of this protein and plays a key role in the catalytically active
conformation of Mpro [57,58].

The Z-Score showed conformational fluctuations between free
protein and low-energy ligand–protein complexes. Starting from
this model, it was observed that all the Avermectins-Protein com-
plexes presented differences in the distances of their Ca atoms, as
well as in their energetics at 100 ns of simulation and with respect
8

to their corresponding free protein subjected to the same dynamic
conditions. In ProSA-web, the most extreme Z-Score values were
related to more dynamic and distant conformations of the free pro-
tein. This applies both for very negative values and for values very
close to 0, since they tend to fall outside the Z-Score obtained from
all the protein chains determined experimentally in the Protein
Data Bank (PDB). In fact, the Z-Score for proteins such as the Mul-
tidrug ABC transporter (PDB: 2HYD) has been reported to be
�8.29, which is in the range of native conformations. Whereas
according to the ProSA-web results obtained for the homologous



Fig. 5. Molecular docking is shown in a topological plot of the hydrophobicity of the binding pocket regions of each protein with each avermectin homologue. Typical
interactions found with residues in the binding pocket are also shown. A, Mpro + AVM-B1a; B, Mpro + AVM-B1b.

Table 1
Comparative analysis of the molecular docking of each homologue (AVM-B1a and AVM-B1b) obtained with each of the proteins using the different affinity and scoring methods.

Target DG (kcal/mol) Ki

(10-7 M)
MMPBSA
(kcal/mol)

INTERACTIONS

HB1a HB1b HB1a HB1b HB1a HB1b HB1a HB1b

IMPa1 �8.9 �8.7 3.3 4.6 �70.9 �100.1 N-188HB, W-184HB, N-228H, E-266H, R-227H, W-
184H, W-231H, N-188H, N-146H, D-270H, S-149H,
A-269H, L-307H, T-311H, P-308H, W-273H

S-149HB, N-228HB, R-238HB, E-266HB, S-149H, D-
270H, N-235H, G-191H, R-238H, G-150H, D-192H,
W-231H, N-188H, E-266H, G-187H, A-148H, G-
224H, N-228H, R-227H, W-184H

IMPb1 �8.4 �8.9 7.5 3.0 �36.8 �59.1 K-62HB, K-60H, M�61H, K-62H, R-53H, L-64H, I-54H,
D-63H, R-52H

K-62HB, K-60H, M�61H, K-62H, R-53H, L-64H, I-54H,
D-63H, R-52H

Helicase �9.1 �10.2 2.3 0.4 �83.1 �79.6 S-289HB, A-316HB, H-290HB, E-261HB, R-442HB, E-
319H, L-317H, A-316H, S-289H, R-443H, E-540H, G-
285H, G-538H, S-264H, D-260H, R-442H, H-290H, F-
262H, G-287H, T-286H, E-261H, K-323H, Y-324H, K-
320H

E-261HB, S-289HB, A-316HB, T-286H, G-285H, G-
538H, G-287H, R-443H, E-540H, E-319H, S-289H, L-
317H, H-290H, A-316H, S-264H, D-260H, R-442H, F-
262H, E-261H, K-320H, Y-324H, K-323H

Mpro �9.6 �10.2 1.0 0.4 �73.1 �67.9 R-298HB, Y-154HB, F-8H, I-152H, F-294H, V-297H, D-
153H, G-302H, E-299H, S-301H, R-298H, Y-154H, K-
12H, D-155H, P-9H

Y-154H, D-153H, I-152H, F-264H, F-8H, R-298H

Binding energy values reported using complexes and similar algorithms are shown. These are indicated in superscript against the values in this study highlighted in black. Ki,
inhibition constant for binding of ligand to proteins in units of M; HB1a, Avermectin B1a; HB1b, Avermectin B1b. HB, Hydrogen Bonds; H, Hydrophobic Interactions; A, Alanine;
R, Arginine; N, Asparagine; D, Aspartic Acid; E, Glutaminic Acid; Q, Glutamine; G, Glycine; H, Histidine; I, Isoleucine; L, Leucine; K, Lysine; M, Methionine; F, Phenylalanine; P,
Proline; S, Serine; T, Threonine; W, Tryptophan; Y, Tyrosine; V, Valine.
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ABC transporter protein of multiple drugs (PDB: 1JSQ), the Z-Score of
this model is � 0.60, a value too high for a typical native structure
[52].

In IMPa1, the complexes with the homologues presented the
most distant conformational fluctuation from the free protein
one with a Z-Score more negative than that obtained for the
ligand-free protein, which suggests unfolding of this protein with
both stereoisomers. On the contrary, although a similar trend
towards unfolding against Mpro was predicted, especially with
compound B1b, the results are not very significant in terms of
the Z-Score. In contrast, the results obtained for IMPb1 suggest
refolding or compactation of structure in all cases. While for the
case of the helicase, the results indicate that only with AVM-B1a
induced conformational changes of this protein (Table 2).
9

The scores obtained by the ProSA server for all structures, vali-
date that most of the predicted complexes differ from free protein
and show slight conformational changes after simulations, with
values within those reported [59–61], a phenomenon that was
observed more consistently in the AVM-B1a-bound complexes.

The radius of gyration (Rg) can be used as a measure of the com-
pactness of a protein which allows understanding of its folding
properties. Small Rg values indicate a folding whereas high Rg val-
ues show an unfolding for a protein under perturbation. A relative
constant Rg value through time indicates that the ligands hold the
folding behavior of the protein whereas abrupt fluctuations of the
Rg values denote protein folding instability [11]. In Table 2, no sta-
tistically significant differences can be observed between all Rg
values calculated from the Avermectins-Protein complexes at



Table 2
Comparison between Z-score, radius of gyration and hydrodynamic radius in relation to the minimum energy structure at 100 ns MD simulation for each complex.

Complexes Simulation time (100 ns)

Z_Score Rg
a Rg

b Rg
c Rh

d Rh
e

IMPa1 �8.50 21.94 21.89 21.93 22.06 23.92
IMPa1 + AVM-B1a �12.20 28.16 28.12 23.92 28.53 28.16
IMPa1 + AVM-B1b �10.38 28.78 28.64 23.92 28.91 28.78
IMPb1 �5.93 15.61 14.92 14.92 15.31 16.33
IMPb1 + AVM-B1a �4.87 14.73 15.48 14.72 15.55 16.33
IMPb1 + AVM-B1b �4.72 14.68 15.17 14.67 15.16 16.33
Helicase �5.27 32.07 32.02 31.97 32.51 33.51
Helicase + AVM-B1a �5.03 31.91 31.34 31.32 31.67 33.51
Helicase + AVM-B1b �5.24 32.78 32.14 32.09 32.54 33.51
Mpro �6.17 21.65 21.56 21.62 21.55 21.41
Mpro + AVM-B1a �6.50 21.76 21.71 21.72 21.86 21.41
Mpro + AVM-B1b �6.28 22.13 22.02 22.09 21.95 21.41

a , radius of gyration (Rg) (Jayaram et al., 2006).
b , radius of gyration (Rg) with WAXSiS server.
c , radius of gyration (Rg) with HullRad.
d , radius hydrodynamic (Rh) with WAXSiS server.
e , radius hydrodynamic (Rh) with HullRad. Units for all radii are in Angstroms (Å).
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100 ns of simulation with the different methods considered (p ˃
0.001). The methods predicted conformational fluctuations in the
studied complexes oriented towards the folding or unfolding of
the complexes without important differences in relation to the
ligand-free proteins, indicative of stable ligand–protein complexes.
Observations dependent on both the type of protein system and
the homologue were considered (Table 2). It is very important to
note that the analysis of Rh data allows conclusions to be drawn
similarly to those obtained using the parameter Rg by showing
results without significant differences (Table 2).

For IMPa1, AVM-B1a and AVM-B1b specifically, an unfolded
conformation of the protein is induced, with an average difference
between both homologues and the free protein of Rg � 5 Å. With
mean values for each homologue of Rg � 4.8 ± 2.4 Å and Rg � 5.
2 ± 2.8 Å, for complex with AVM-B1a and AVM-B1b, respectively
(Table 2). Results that would allow us to infer, together with those
of the atomic distance in terms of RMSD and the graphs thrown by
WAXSiS server, that IMPa1 presents an almost ‘‘sphero-cylindrica
l” folded structural state (Supplementary material Fig.S1). Starting
from the same criteria we can indicate that the IMPb1 protein
showed a slight refolding with fluctuating values between each
homologue. The mean difference between both complexes and
the free protein was Rg � 0.24 Å. With mean values Rg for the com-
plex with AVM-B1a and AVM-B1b of �0.2 ± 0.7 Å and �0.3 ± 0.6 Å,
respectively (Table 2). Although it is an important signal, observa-
tions at the RMSD level show that none of the homologues was
able to induce significant differential perturbations compared to
the free protein, showing stability in the systems. These results
show a slightly greater effect of unfolding AVM-B1b on IMPa1
and folding on IMPb1, compared to AVM-B1a. As well as a differen-
tial behavior of each homologue against each type of Importin
tested in terms of induction of conformational changes.

In the helicase, AVM-B1b induced a slightly unfolded conforma-
tion, whereas the AVM-B1a induced slight refolding of this protein
(Table 2). This is related to the atomic distance values which show
important and differential variations between these compounds
compared to the free protein of the helicase, inducing a globular
folded conformational state with both avermectin homologues.
While for Mpro the effect of both homologues was oriented
towards conformational unfolding. The mean difference between
both homologues and the free protein was Rg� 0.29 Å. Specifically,
the mean values of the difference between each homologue were
Rg � � 0.5 ± 0.3 Å and 0.3 ± 0.3 Å, for AVM-B1a and AVM-B1b,
respectively. In this sense, although there is a differential behavior
of each homologue in terms of Rg, they were not able to induce
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important perturbations compared to the free protein. Similarly,
although the greatest effect of Mpro unfolding was by AVM-B1b
compared to AVM-B1a, the compounds were unable to induce sig-
nificant perturbations compared to the free protein, which would
allow inferring that the ligand–protein complexes are stable. The
presentation in graphical mode of the results shown in Table 2 of
the WAXSiS server model can be seen in supplementary material
such as Fig.S1.

4.2. Comparative analysis between structural deformation of
complexes using the ENM-based approaches of normal mode analysis
(NMA), anisotropic network models (ANM) and gaussian network
model (GNM) for each complexes

The analyzes carried out using the models NMA, ANM and GNM
were Deformation (hdi) and B-factor (hbi) (measures of the ability of
a given molecule to deform in each of its residues (Table 3). In
these models, the regions of high deformability usually have val-
ues � 0.2 and the higher the value, the greater the deformability.
The value hbi is a comparison between the NMA field and the
PDB field of the portein-ligand complex in terms of deformability,
for which, experimental hbi is taken from the corresponding PDB
field and the calculated NMA is obtained by multiplying the mobil-
ity of NMA by 8p2. The Eigenvalue (kk) associated to each normal
mode represents the motion stiffness. Its value is directly related
to the energy required to deform the structure, and the lower the
hei, the easier it will be to deform the biomolecular structure.
The use of ENM-based methods for the study of inhibitors has
already been suggested, and it has been observed that each type
of ligand could, of course, show a different behavior in the corre-
sponding structures and show different ‘‘hot spots” of union
depending on the nature of each studied complex and product of
the typical general properties that emerge from each elastic struc-
ture global [20–22]. In addition, protein residue fluctuations have
already been accurately predicted using this type of model in
SARS-CoV-2 [62].

In the complexes, low fluctuation regions were observed with a
significant propensity to deform, specifically, the NMA predicted a
greater relative amplitude of atomic shifts in terms of hdi for IMPa1
and IMPb1 in the presence of AVM-B1a and AVM-B1b � 0.6 in all
cases, and with respect to the free protein (�0.4) (see Table 3).
An atomic shift of between 0.4 and 0.8 and 0.2 – 0.6 was also pre-
dicted for IMPa1 in the presence of AVM-B1a and AVM-B1b in
terms of calculated hbi, respectively, in contrast to the values of
the free protein (0.2 – 0.4). Although these values show greater



Table 3
Values of deformation and flexibility of complexes using the normal mode analysis (NMA), Anisotropic Network models (ANM) and Gaussian Network Model (GNM) approach for
each complex. The predictions correspond to the minimum energy structure at 100 ns MD simulation.

Complexes NMA/MD-ANM/GNM (simulation time 100 ns)

hdia,* BT
n
b,* Def. Frag.c,* kk

d,* SM1** Scorese,** Nf.
f,**

IMPa1 0.4 0.2 – 0.4 1–400 3.7 72–278; 279–497 0.93; 0.93 7
IMPa1 + AVM-B1a 0.6 0.4 – 0.8 1–50; �400 1.0 72–281; 282–497 0.94; 0.94 15
IMPa1 + AVM-B1b 0.6 0.2 – 0.6 �400 7.5 72–282; 283–497 0.95; 0.96 17
IMPb1 0.4 0.4 1–20; 60–80 2.0 1–68; 69–140 0.96; 0.61 6
IMPb1 + AVM-B1a 0.6 0.4 1–50; 100–120; 350 3.4 1–69; 128–140 0.89; 0.55 9
IMPb1 + AVM-B1b 0.6 0.4 1–40; 100–140; 400 3.0 1–68; 69–140 0.95; 0.55 9
Helicase 0.6 0.4 1–200; 400–500 4.7 2–141; 142–203 0.99; 0.96 3
Helicase + AVM-B1a 0.6 0.4 50–100; 500 6.3 2–142; 143–203 0.99; 0.96 5
Helicase + AVM-B1b 0.6 0.4 50–100; 200–500 4.3 2–141; 142–203 0.99; 0.96 4
Mpro 0.6 0.4 1–50; 200–300 6.7 1–196; 197–306 0.94; 0.89 12
Mpro + AVM-B1a 0.4 0.6 1–50; 100–150; 200–300 7.9 1–196; 197–306 0.94; 0.89 11
Mpro + AVM-B1b 0.4 0.6 1–100; 150–200; 250–300 8.5 1–196; 197–306 0.95; 0.90 13

SM1 = Slowest mode predicted from the ANM/GNM.
a , hdi = Deformation (Regions of high deformability typically have values � 0.2. The higher the value, the greater the deformability).
b , BT

n= Beta Factors (Regions of high deformability typically have values � 0.2. The higher the value, the greater the deformability). Beta Factors is taken from the
corresponding PDB field and from the calculated NMA that is obtained by multiplying the mobility of NMA by 8p2.

c , Deformable Fragment.
d , kk = Eigenvalue, value is directly related to the energy required to deform the structure. The lower, the easier the deformation. All values are in 10-6.
e , Score to Slowest mode.
f , number of Flexible Fragment.
* , predicted from the NMA.
** , predicted from the ANM/GNM.
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fluctuation and structural deformation of IMPa1 induced by AVM-
B1a, compared to AVM-B1b, the differences are not statistically
significant, and show stable complexes. This corresponds to the
most favorable values of binding energy of AVM-B1a by IMPa1,
which could in turn be related to the conformational changes at
the folding level described above.

A similar trend in relation to hdiwas predicted with each homo-
logue against IMPb1, with a similar atomic shift between each
avermectin in terms of BT

n � 0.4, as was observed at the level of
conformational changes predicted with the models Rg for each
compound. The two homologues caused in both Importins a level
of hdi of � 0.2 with respect to the free protein, especially in the
region of residue � 400 of the chain of IMPa1, which coincides
with the low mobility regions with the most favorable scores
(Scores = 0.94–0.96) predicted in IMPa1 by the integrated ANM /
GNM models, which are located around the residuals 282–497.
While for IMPb1 the fluctuations predicted could be related to
the favoring of a greater number of regions with a greater propen-
sity to deformation. Establishing low mobility conformations
between residues 1–140 as predicted by all ENM approaches tested
here (NMA, ANM and GNM) with a score of 0.89 and 0.95, for AVM-
B1a and AVM-B1b, respectively (Table 3).

These results show that avermectin homologues caused only
slight conformational changes in Importins represented by posi-
tional fluctuations as a result of atomic shift in deformed regions,
and are related to the stability calculated with MD. However, the
ligands caused the appearance of a greater number of adjacent
short regions to be theoretically favored in both Importins charac-
terized by having greater flexibility in the appearance of each
homologue, a phenomenon associated with an important confor-
mational and structural disturbance in terms of rigidity and flexi-
bility, observed especially between IMPa1 and AVM-B1a. These
observations correspond to the mechanism of action described
for ivermectin in this context, which has been determined as a
direct binding to IMPa, leading to structural changes that result
in greater flexibility. These changes in IMPa1 have been reported
to prevent interaction with the virus, as well as IMPb1, and that
the IMPa-dependent mode of action of ivermectin explains the
11
wide range of viruses for which ivermectin has demonstrated
antiviral effects both in vitro and in vivo [29].

In the helicase, the NMA approach predicted a relative ampli-
tude of atomic shifts in terms of similar hdi for the protein in the
presence and absence of ligands (�0.6), even in terms of the calcu-
lated BT

n � 0.4 (Table 3). The propensity to deformation was there-
fore similar between each complex with the same scores for the
prediction of low mobility regions. All ENM-based models used
predicted similar regions of low mobility and high propensity to
be deformed regardless of the absence or presence of the ligands.
An interesting result because it allows us to infer that none of
the homologues caused important structural changes on this pro-
tein in terms of deformation and stiffness, according to the
approaches tested here by NMA, ANM and GNM. However, it is
important to note that the differential activity was predicted in
terms of the generation of short fragments of maximum flexibility,
specifically, AVM-B1a and AVM-B1b caused an increase of 5 and 4
fragments of maximum flexibility, respectively; compared to the 3
flexible fragments predicted for the free protein. In this sense,
although regions of low mobility were not predicted due to the
effect of homologues on helicase, both compounds caused an
increase in structural flexibility in a similar manner, especially
due to the action of AVM-B1a, which is related to the lower num-
ber of regions determined as rigid in the helicase in the presence of
this avermectin (Table 3).

As shown in Table 3 the relative amplitude of the atomic dis-
placements in terms of hdi for Mpro varied both in terms of defor-
mation and BT

n with respect to the free protein, but they were
similar between the two homologues. Specifically, the fluctuations
in terms of deformation were score � 0.4 in each complex as
opposed to a score � 0.6 deformation in the free protein, with a
similar atomic shift between each avermectin in terms of
BT
n � 0.6 which was higher than the prediction without ligands

(�0.4). The propensity to deformation was more favorable in the
presence of AVM-B1b (kk = 8.5x10-6)) in contrast to AVM-B1a
(kk = 7.95x10-6)) and in comparison, with the control
(kk = 6.75x10-6)), therefore, the ANM and GNM approaches show
a greater deformation of Mpro in the presence of both homologues,
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especially due to the effect of AVM-B1b. Observations that are
related to the higher number of predicted flexible short regions
Nf in the AVM-B1b + Mpro complex of 13, as opposed to the
Nf = 11 predicted flexible fragments for AVM-B1a. The regions of
low mobility with preference to deform were predicted in a similar
way in each complex by all the elastic network approaches consid-
ered, and exhibited greater diversity in the complexed Mpro mod-
els compared to the protein without ligand (Table 3).

The ability of ENMs to efficiently assess intrinsically favored
global movements, as well as the relevance of these predictions
to the dominant changes in structure observed for a given protein
in the presence of different ligands suggest that intrinsic dynamics
play a role in the mediation of ligand–protein complex interac-
tions, and could be comparable to MD measurements [63,64].
However, there are few reports on the use of ENM for the study
of conformational perturbations in SARS-CoV-2, in this direction,
our results show that the complexed structures have a stable inter-
action movement with each other after the molecular union, in
addition, the complexes presented a greater deformation than
those reported [65]. The presentation in graphical mode of the
results shown in Table 3 of the NMA model can be seen in supple-
mentary material such as Fig. S2–S4.

It has already been reported that calculations based on ENM tem-
plates can identify the location of new sites with particular local
dynamics, and, simulations based on ENM-type methods have pro-
ven to be powerful in locating candidates for susceptible binding
sites, so they are complemented with docking studies and MD, in
fact, it has been found that experimental free energies are normally
arranged in the same sequence as ENM values, although they cannot
deliver predicted values for total free binding energies. Finally, these
analyzes are important because the recognition of stiffness and flex-
ibility control regions on the surface of proteins has a pharmacolog-
ical application and raises other general questions in the biophysics
of the elasticity of fluctuation in proteins [62].
4.3. Study of the structural interaction of the protein regions in
complexes using the ENM-based approaches of normal mode analysis
(NMA) and protein structure network analysis (PSN)

Based on what was discussed in the previous section, the min-
imum energy structures of each Avermectin-Importin complex
Table 4
Comparison between the complexes using the Elastic Network Models (ENM), Normal Mod
complex. The predictions correspond to the minimum energy structure at 100 ns MD sim

Complexes PSN/MD-ENM/NMA-SPECTRUS (simulation time 100

Nna Nlkb hRic h
IMPa1 68 67 7.51 0
IMPa1 + AVM-B1a 108 107 6.98 0
IMPa1 + AVM-B1b 84 83 6.40 0
IMPb1 44 43 7.64 0
IMPb1 + AVM-B1a 55 54 7.43 0
IMPb1 + AVM-B1b 69 68 7.86 0
Helicase 211 210 7.98 0
Helicase + AVM-B1a 173 172 8.47 0
Helicase + AVM-B1b 221 220 7.62 0
Mpro 70 69 6.42 0
Mpro + AVM-B1a 63 62 6.83 0
Mpro + AVM-B1b 70 69 7.10 0

a , Nn = Number of nodes in MetaPath.
b , Nlk = Number of links MetaPath.
c , hRi ¼Average path force.
d , hXi ¼Average path correlation.
e , hUi ¼Average % of correlation of Nodes.
f , N ¼Average path hubs percent. The increase or decrease of all these values (Nn,

interactions. Values with a hXi � 0.60 represent complexes that contain at least one co
g , NDQ = Number of Domains Q (subdivision). Represents the position of the subdivisio
h , Score to NDQ.
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obtained with MD at 100 ns were analyzed with the integrated
PSN-ENM/NMA approach (Table 4). The parameters considered
were number of nodes (Nn) and links (Nlk) in MetaPath, average
path force (hRi) and correlation (hXi), average % of correlation of
nodes (N) and average path hubs percent (hUi). The above param-
eters allow the calculation of the shortest path in the structural
regions of the protein interaction, and the increase or decrease of
these values are related to the increase or decrease of the
intramolecular interactions. Values with ahXi � 0.60 represent
complexes that contain at least one correlated residue, and this
usually allows only the shortest paths to be retained. The highest
average correlation hXi of the routes between each node for each
of the homologues against IMPa1 was 0.96 (a slightly higher corre-
lation than the free protein hXi ¼ 0.94), with a percentage in the
correlation of the nodes of 54.26 %, which represents 53.24% and
55.28% for the complex with AVM-B1a and AVM-B1b, correspond-
ingly, and they are more favorable correlations than those calcu-
lated for this Importin without ligands.

The average percentage of hub nodes N present in the global
peer group was 39.81% (38.14% and 41.48% for AVM-B1a and
AVM-B1b respectively). Furthermore, the average of the interac-
tion strength between the links present in the global group was
6.69, represented by a bond strength hRi of 6.98 for complex with
AVM-B1a and 6.40 with AVM-B1b. These interaction forces were
lower than those found in the structure without ligand. The meta
pathway generated Nn from the interactions of each of the aver-
mectins revealed 108 and 84 nodes, for complex with AVM-B1a
and AVM-B1b respectively. The strength of the interactions, as well
as the number of nodes Nn and predicted links Nlk in the trajecto-
ries show that both homologues are capable of altering the confor-
mation and stability of the free protein. AVM-B1a induced the
formation of a greater number of amino acid rearrangements, dis-
rupting native intra-molecular networks and interactions (Table 4).

For IMPb1, the highest average correlation of the routes hXi
between each node for the AVM-B1a and AVM-B1b was 0.91 and
0.89 respectively. A percentage in the correlation of the nodes
hUi of 45.39% was predicted, represented by hUi ¼50.57 % and
40.20% for complex with AVM-B1a and AVM-B1b, correspondingly.
The average percentage of hub nodes N present in the global peer
group was 30.20 %, with 30.71% and 29.69% for the complex with
the AVM-B1a and AVM-B1b respectively. Likewise, the average of
e Analysis (NMA), Protein Structure Network (PSN) and SPECTRUS approach for each
ulation.

ns)

Xid hUie Nf NDQg Scoreh

.94 46.42 38.22 11 2.42

.96 53.24 38.14 5 2.81

.96 55.28 41.48 10 3.12

.91 47.40 36.89 4/70 3.21/3.61

.91 50.57 30.71 4 71 2.81/5.18

.89 40.20 29.69 6/70 2.74/2.94

.98 39.81 41.34 7 5.94

.98 34.31 34.96 9 4.54

.97 44.02 29.28 8 5.78

.93 43.84 33.25 12 2.76

.93 35.60 35.72 12 2.70

.94 51.95 31.74 6 3.04

Nlk, hRi, hXi, hUi and N) is related to the increase or decrease of intramolecular
rrelated residue.
n of the quasi-rigid domain.
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the interaction strength between the links hRi present in the global
group was 7.65, represented by a binding force of hRi ¼ 7.43 for
complex with AVM-B1a and 7.86 for complex with AVM-B1b.
The meta pathway Nn generated from the interactions of each of
the homologues revealed Nn ¼ 55 and 69 nodes, for complex with
AVM-B1a and AVM-B1b respectively. The results calculated above
show that the ligands may be capable of modifying the conforma-
tion and stability of the nodes of the free protein. The observations
on the effect of AVM-B1b against IMPb1 in terms of strength of
interactions, number of nodes and bonds generated correspond
to what has been previously described, highlighting that both com-
pounds affect this Importin, but AVM-B1b has a slightly higher
propensity to disrupt the native intra-molecular networks and
interactions of IMPb1 (Table 4).

The highest average correlation of the routes between each
node hXi for each of the homologues against Helicase was 0.98
and 0.97 for the AVM-B1a and AVM-B1b, respectively, with a per-
centage in the correlation of the nodes hUi of 39.17 %, represented
by hUi ¼34.31% and 44.02% for the complex with AVM-B1a and
AVM-B1b correspondingly. The average percentage of hub nodes
N present in the global peer group was 32.12% (34.96% and
29.28% for the complex with the AVM-B1a and AVM-B1b respec-
tively). Furthermore, the average of the interaction strength
between the links hRi present in the global group was 8.05, repre-
sented by a binding force of hRi ¼8.47 for complex with AVM-B1a
and 7.62 for AVM-B1b. The meta pathway Nn generated from the
interactions of each of the avermectins revealed 173 and 221
nodes, for AVM-B1a and AVM-B1b, respectively. The number of
nodes observed, as well as the links and the correlation between
them show that the AVM-B1b is capable of inducing the greatest
number of perturbations in the intramolecular interactions in heli-
case, and this corresponds to the most favorable values of binding
energy of AVM-B1b predicted against this protein. Although the
greater strength in these interactions may be mediated by the
AVM-B1a, but with a lower number of nodes linked and correlated
at the energy level compared to the free protein. All these observa-
tions show that both homologues are able to affect the natural
interactions of this protein in a differential way, with an increase
or decrease in the number of these predicted by the AVM-B1b
and AVM-B1a complexes, respectively (Table 4).

The highest average correlation of the interactions between
each node hXi for the complexes with avermectin homologues ver-
sus Mpro was 0.94 and 0.93 for the the complex with AVM-B1a and
AVM-B1b, respectively, with a percentage in the correlation of the
nodeshUi of 43.78%, represented byhUi = 35.60% and 51.95% for the
complex with AVM-B1a and AVM-B1b, correspondingly. The aver-
age percentage of main nodes N was 33.73%, being N ¼ 35.72% and
31.74% for the complex with AVM-B1a and AVM-B1b, compara-
tively. In addition, the average interaction force between the links
hRi was 6.97, represented by a force in the interaction of hRi ¼6.83
for the complex with AVM-B1a and hRi ¼7.10 for the complex with
AVM-B1b. Additionally, it was observed that the meta-path gener-
ated revealed Nn = 63 and 70 nodes, for the complex with AVM-
B1a and AVM-B1b, respectively. These predictions show that the
highest correlation between nodes occurred between the AVM-
B1b and Mpro (51.95%) as opposed to its homologue (35.60%)
and the protein without ligand (43.84%), generating the highest
strength in the bonds and interactions calculated (hRi ¼7.10) com-
pared to the complex with the ligand B1a (hRi ¼6.83) and the free
protein (hRi ¼6.42), with a number of nodes and links similar to
the free protein but greater than those predicted for AVM-B1a.
Therefore, these observations indicate that both compounds affect
the intramolecular interaction pathways of the complexed Mpro,
being the AVM-B1b the compound capable of affecting to a greater
extent the stability and native interactions of the viral protease
according to the PSN-ENM/NMA approach (Table 4). The presenta-
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tion in graphical mode of the results shown in Table 4 of the PSN
model can be seen in supplementary material such as Fig. S5–S9.

4.4. Comparison of structural rigidity between complexes using the
ENM-based approach of SPECTRUS for each complex

The rigidity of the minimum energy structure was studied by
means of the decomposition approach in quasi-rigid domains of
the simulated complexes, based on the analysis of the fluctuations
of distance between pairs of amino acids with ENM. This so-called
SPECTRUS approach is based on the notion that, for genuinely rigid
systems, the distances between any two constitutive points are
strictly conserved during movement in space during simulation
(Table 4 and Fig. 6), and the parameter considered were the
NDQ = Number of Q domains (subdivision), which represents the
position of the subdivision of the quasi-rigid domain. Variations
in native NDQ can indicate the relative shift of the domains, a
dynamic phenomenon that can alter the biological functionality
in proteins [54].

Very favorable quasi-rigid regions were predicted for IMPa1
(Score = 2.81 for complex with AVM-B1a and Score = 3.12 with
AVM-B1b) with respect to the free protein one (Score = 2.42) and
that correspond to the fragments with a greater propensity to be
deformed and to adopt lowmobility conformations previously pre-
dicted by the NMA, ANM and GNM approaches. The scores of these
regions show that both homologues were able to generate regions
with greater stiffness than those present in free protein. AVM-B1a
displaced the quasi-rigid domain from the native NDQ = 11 subdi-
vision to the NDQ = 5 subdivision, this represents a significant con-
formational fluctuation in terms of local stiffness. The fluctuations
caused by the AVM-B1b on IMPa1 oscillated in subdivisions close
to the free protein, but with scores that show a very favorable
quasi-rigid region generated, more stable than in the non-
complexed form (Fig. 6).

Similar results were obtained between the SPECTRUS model
and the remaining ENM-type approaches used to predict the flex-
ibility and rigidity of the Avermectins-IMPb1 systems, specifically,
the regions of lower mobility previously reported by NMA, ANM
and GNM correspond to the quasi-rigid domains determined with
the decomposition into domains. All systems predicted 2 quasi-
rigid domains in this protein, and the score for the first region of
the complexed systems was less favorable compared to the free
protein. This shows a stiffer NDQ = 4 first subdivision in the free
protein (Score = 3.21) compared to the complexed ones, indicating
that AVM-B1b caused the displacement of the first domain
(NDQ = 4, Score = 2.81 for the complex with AVM-B1a; and
NDQ = 6, Score = 2.74 for the complex AVM-B1b). The same trend
was maintained in the second quasi-rigid subdivision between the
free protein and the AVM-B1b complex, while the AVM-B1a com-
plex showed a more favorable quasi-rigid conformation and
shifted towards the NDQ = 71 domain, unlike the NDQ = 70 domain
of the AVM-B1b complex and the free protein, these results show a
clear variation in the distribution of quasi-rigid regions with favor-
able predictive scores in Importins (see Table 4 and Fig. 6). What
validates that these homologues are capable of affecting the global
and local conformation and structural stability of these protein
systems, altering the native intramolecular interactions once the
complexes have been established and modifying the regions and
their constitutive fluctuations.

It is important to note that despite all the observations related
to the effect of AVM-B1a on IMPa1 are discriminatory, at the
energy level, AVM-B1b can also alter the structure of this Importin,
exerting a similar effect, although our results show that AVM-B1a
is capable of inducing a marked conformational folding, as well as a
structural deformation, promoting the formation of fluctuating
regions of greater rigidity. This close activity on IMPa1 is also



Fig. 6. Comparison between the spectrum-based quasi-rigid domain decomposition of complexes using SPECTRUS. A, IMPawith and without Avermectin B1a (AVM-B1a) and
Avermectin B1b (AVM-B1b); B, IMPb with and without Avermectins, C, Helicase with and without Avermectins; D, Mpro with and without Avermectins. The predictions
correspond to the minimum energy structure at 100 ns MD simulation.
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reflected against IMPb1 before which the results do not show a
clear tendency or inclination towards any of the homologues in
relation to the primary variables considered in this study (Table 4
and Fig. 6).

Less favorable quasi-rigid regions were predicted for helicase
(Score = 4.54 for complex with AVM-B1a and Score = 5.78 for com-
plex with AVM-B1b) with respect to the free protein (Score = 5.94)
and they correspond to the fragments with greater propensity to
be deformed and to adopt conformations previously predicted
low mobility (Table 4 and Fig. 6). The scores of these regions show
that both homologues were able to generate regions with a stiff-
ness that differs from those present in the free protein, specifically,
homologue B1a displaced the quasi-rigid domain from the native
NDQ = 7 subdivision to the NDQ = 9 subdivision (Fig. 6), this repre-
sents a significant conformational fluctuation in terms of local stiff-
ness, while the fluctuations caused by the AVM-B1b counterpart on
Helicase oscillated in the subdivision NDQ = 8 (Table 4). Observa-
tions show that homologues can generate changes at the distribu-
tion level of the initial quasi-rigid regions in this viral protein.

In addition, compared to Mpro, the SPECTRUS model predicted
quasi-rigid regions similar to those previously described by the
NMA, ANM and GNM models, the most favorable was the subdivi-
sion NDQ = 6 with a score of 3.04 generated by AVM-B1b, followed
by AVM-B1a with a domain NDQ = 12 (similar to free protein) with
a score of 2.70 (Table 4). The predicted regions correspond to the
fragments with the highest propensity to be deformed and to
adopt low mobility conformations (Fig. 6), and these observations
show that the AVM-B1b was able to displace the quasi-rigid
domain maintained in the complex established by the B1a homo-
logue and in the free protein. Therefore, AVM-B1b can affect rigid-
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ity, and therefore the stability and native interactions of the viral
protease, with a greater propensity than that exhibited by AVM-
B1a, as predicted by the PSN-ENM/NMA approaches (Table 4 and
Fig. 6). Importantly, the SPECTRUS method based on domain
decomposition does not consider the structural properties of the
protein, but it allows the study of the variations in the clustering
of protein residues in terms of dynamically correlated domain net-
works, based on the effective correlation times of the pair distance
correlation functions [66], it has also been shown to be a useful
approach to identify dynamic domains in complex proteins
[67,68].

These theoretical predictions could guide the possibility of
deriving formulations or analogues that can be administered to
achieve relevant therapeutic concentrations, as it has been sug-
gested necessary to do in the particular case of ivermectin [5,69].
It is important to say that these predictions based on theoretical
models are not without interest as they show the possible struc-
tural distortion that ivermectin homologues induce in both cellular
and viral sites, which in some way may be a reflection of the
remarkable and controversial clinical benefits noted very recently
by different groups worldwide [70,71]. The novel approach of
ENM-based models showed a possible multidirectional activity of
ivermectin, and an orientation towards cellular structures (AVM-
B1a), and also towards viral proteins (AVM-B1b) associated with
COVID-19, because homologues can generate changes at the distri-
bution level of the initial quasi-rigid regions in this proteins, what
could affect biological activity. However, these results should not
be taken as final, and it is recommended to study a greater number
of possible targets under the same conditions of this study.
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5. Conclusions

In this study, given that a wide diversity of possible targets for
ivermectin has been reported whilst there are few reports that
compare the behavior of its homologues components, our objective
was to investigate from a biophysical and computational chemical
perspective the effect of the interactions of each homologue on the
flexibility and stiffness of the predicted complexes with IMPa1,
IMPb1, helicase and Mpro.

We observed that each homologue was stably bound to the pro-
teins studied, and were able to induce detectable changes with
ENMs, specifically, in IMPa1 and IMPb1, the homologues induced
slightly unfolded and folded conformations, respectively, whilst
the helicase underwent slight unfolding and refolding by AVM-
B1b and AVM-B1a, respectively. The effect of avermectin binding
to Mpro was oriented towards the slight conformational unfolding.

The NMA, ANM and GNM models showed behaviors that corre-
spond to the stability calculated with MD, and in a strict sense, the
perturbations induced were characteristic to each compound, and
were predicted more clearly with the PSN and SPECTRUS models.
In this sense, and in view of the fact that are currently looking
for drugs to screen in vitro, in vivo or for clinical trials, our data
should be taken seriously because the calculated perturbations
were represented by a disruption of the interactions between
amino acids, causing the modification of the conformation and sta-
bility of the proteins studied, with an impact on the distribution of
the quasi-rigid regions of said structures, which could affect the
biological activity of the protein systems analyzed.
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