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Abstract

The hypothesis that variability in natural habitats promotes modular organization is widely accepted for cellular networks.
However, results of some data analyses and theoretical studies have begun to cast doubt on the impact of habitat variability
on modularity in metabolic networks. Therefore, we re-evaluated this hypothesis using statistical data analysis and current
metabolic information. We were unable to conclude that an increase in modularity was the result of habitat variability.
Although horizontal gene transfer was also considered because it may contribute for survival in a variety of environments,
closely related to habitat variability, and is known to be positively correlated with network modularity, such a positive
correlation was not concluded in the latest version of metabolic networks. Furthermore, we demonstrated that the
previously observed increase in network modularity due to habitat variability and horizontal gene transfer was probably due
to a lack of available data on metabolic reactions. Instead, we determined that modularity in metabolic networks is
dependent on species growth conditions. These results may not entirely discount the impact of habitat variability and
horizontal gene transfer. Rather, they highlight the need for a more suitable definition of habitat variability and a more
careful examination of relationships of the network modularity with horizontal gene transfer, habitats, and environments.
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Introduction

Because of the importance of modular organization in biological

systems [1], modularity in cellular networks is of great interest to

researchers of basic science as well as to those in engineering, in

the context of network biology [2,3]. Modularity is an especially

important property because it is related to robustness [4] and

evolvability [5]. Nonetheless, skepticism exists regarding the

importance of modularity [6,7].

The origins of network modularity have been of particular

interest to researchers. Kashtan and Alon [8] have suggested a

possible theoretical model that uses an evolutionary optimization

algorithm based on edge rewiring (mutation). This theory is based

on the conjecture that modular networks spontaneously evolve

when the evolutionary goal (i.e., system-specific purpose) changes

over time in a manner that preserves the same subgoals but in

different permutations. Similarly, Lipson et al. [9] suggested that

evolutionary forces can lead to modularity. In this context, for

example, an evolutionary goal can be interpreted as survival of a

species in a natural habitat; thus, a change in the evolutionary goal

corresponds to the variability in a species’ habitat.

Inspired by these studies, Parter et al. [10] showed by using

network analysis that variability in natural habitats promotes the

modularity in bacterial metabolic networks (i.e., network modu-

larity in organisms increases with increasing environmental

variability). These researchers focused on metabolic networks

because these networks are believed to be highly modularized

[11,12]; however, it has also been suggested that metabolic

networks are modular but not significantly so [13]. A diversity of

species’ metabolic networks are available in databases such as the

Kyoto Encyclopedia of Genes and Genomes (KEGG) database

[14] and the Encyclopedia of Metabolic Pathways (MetaCyc) [15]

although metabolic information is still not completed. The result

shown by Parter et al. clearly supports the predictions from

theoretical models, and several studies actively discuss ecological

interactions of metabolic networks based on habitat variability

(e.g., [16–20]).

However, further data analyses have begun to cast doubt on this

interpretation of network modularity, which is evidently derived

from a viewpoint of evolutionary optimization or habitat

variability. For example, the rate of edge rewiring due to

evolutionary events is the lowest in cellular networks [21]

(although previous theories have assumed the edge rewiring

mechanism), suggesting that it is difficult to completely explain the

origin of metabolic network modularity on the basis of edge

rewiring. In Archaea (another domain of prokaryotes), changes in

metabolic network modularity depend on growth conditions such

as temperature and trophic requirements, and are not necessarily

reliant on habitat variability [22]. Archaea, however, represent an

unusual case in that they show high diversity based on growth

conditions [23], but not on habitat variability. Similarly, several

studies also showed that a species’ growth conditions influence its

metabolic network structure [24,25].

Several theoretical studies have questioned the view that

network modularity is the result of a change in evolutionary

goals. Using a network model, Solé and Valverde [26] claimed

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e61348



that such a mechanism is not required for acquiring network

modularity. However, they focused on protein interaction

networks, not metabolic networks, and only presented qualitative

results on the origin of network modularity. Therefore, we

proposed an evolving network model without tuning parameters

to describe the metabolic networks, and demonstrated quantitatively

that metabolic network modularity could arise through simple

processes, independent of changes in the evolutionary goal or

habitat variability [27].

These findings cast doubt on the impact of habitat variability on

modularity in metabolic networks. We re-evaluated this impact by

using statistical data analysis and the latest metabolic reaction

database.

Results

It is difficult to conclude that habitat variability promotes
metabolic network modularity

Parter et al. [10] reported a positive correlation between

metabolic network modularity and the variability in a natural

habitat. In this previous study, the habitat variability was classified

into 6 groups according to the NCBI BioProject database (www.

ncbi.nlm.nih.gov/bioproject) as follows (see [10] for details): (1)

obligate bacteria that are obligately associated with a host, either

intracellularly or extracellularly, (2) specialized bacteria that live in

specialized environments such as marine thermal vents, (3) aquatic

bacteria that live in fresh or seawater environment, and are not

associated with hosts, (4) facultative bacteria, free-living bacteria that

often associate with a host, (5) multiple bacteria, that live in multiple

different types of environments such as bacteria with a wide host

range, and (6) terrestrial bacteria that live in the soil. The

parenthetic numbers correspond to the degree of habitat

variability. We also used this definition of habitat variability in

this study.

In recent years, however, several new technologies and high-

throughput methods have generated a greater volume of genomic

and metabolic data (i.e., metabolic information has been

significantly updated). Consequently, it is possible to arrive at

different conclusions about correlations between network modu-

larity and habitat variability. Therefore, we reinvestigated the

correlation between network modularity and habitat variability by

using the latest metabolic reaction database [28]. The definition of

habitat variability, the calculation method, and the set of species

were similar to those used in the previous study [10]. In this

analysis, however, Methanosarcina acetivorans and Agrobacterium

tumefaciens C58 (Cereron)–both of which were used in the previous

study–were excluded because the former belongs to a different

domain (Archaea) and the latter was not available in the KEGG

database as of May 20, 2011. In total, we investigated the

metabolic networks of 115 bacteria (see Table S1).

We constructed metabolic networks–represented as undirected

networks in which nodes and edges correspond to metabolites and

substrate–product relationships, respectively–and calculated their

modularity values (Q), as described in previous studies [10,22,27]

(see Materials and Methods for details). Although metabolic

networks are obviously directed, we considered undirected

networks for comparison to the previous study [10]. Note that

the neglect of edge direction does not indicate any importance of

edge direction. When considering edge direction, for example, we

can find an important structural pattern in metabolic networks:

bow–tie structure [29,30]. Note that the modularity value was

normalized (Qm) to allow comparison between different network

sizes and connectivity, parameters that strongly affected this

variable [31]. Thus, there was no correlation of Qm with the

number of nodes (i.e., metabolites; Spearman’s rank correlation

coefficient rs = 0.057, p = 0.54) or the number of edges (i.e.,

substrate–product relationships in metabolic reactions; rs = 0.082,

p = 0.38). Furthermore, Qm was not correlated with genome size

(rs = 0.054, p = 0.56) or with the number of protein-encoding genes

(rs = 0.078, p = 0.41), because these variables are related to network

size and number of edges (see Table S1).

As shown in Figure 1, we could not conclude that a positive

correlation existed between modularity and habitat variability in

bacterial metabolic networks, as in Archaea [22]. This result does

not support the hypothesis that variability in natural habitats

promotes modular organization.

We used a fast greedy algorithm [32] to calculate metabolic

network modularity (i.e., Q and Qm) (see Material and Methods for

details) although this algorithm is known to be poor in finding the

maximum Q [33]. Thus, it remains possible that the limitation of

the fast greedy algorithm causes the conclusion of no correlation

(Figure 1). To avoid this limitation, we need to use better

algorithms such as the Bayesian method [34], the spectral

decomposition method [35], and simulated annealing-based

methods [12,36] (reviewed in [37]); however, these algorithms

could not be applied to this study because their higher

computational costs. However, the limitation of the fast greedy

algorithm posed a little problem for calculating Q in this study. We

checked the difference of Q in each metabolic network between the

fast greedy algorithm and a simulated annealing-based method

[36] (i.e., QGreedy2QSA, where QGreedy and QSA are Q calculated

using the greedy algorithm and simulated annealing-based

method, respectively). We found that the mean of the difference

is negative (20.0053; 95% confidence interval, from 20.0058 to

20.0048; see also Table S1), as expected. However, this difference

was very small in comparison with the mean of QGreedy or QSA

(0.798 and 0.803, respectively) (see also Table S1).

Figure 1. Correlation between network modularity and habitat
variability in a natural habitat. Metabolic networks constructed
from the latest version of the database show no correlation (p = 0.61
using the Kruskal-Wallis (KW) test; Spearman’s rank correlation
coefficient rs = 20.03 and p = 0.78). Metabolic networks constructed
from the early version of the database (inset) demonstrate a positive
correlation (p = 0.0001 using the KW test; rs = 0.31 and p = 0.0008).
doi:10.1371/journal.pone.0061348.g001

Habitat Variability May Not Promote Modularity
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The network modularity Qm was calculated using the largest

connected component metabolic networks (see Material and

Methods for details) although metabolic networks are fragmented

(i.e., possess isolated components) in general. Thus, the conclusion

in this study is limited to the context of largest connected

components. However, this handling (i.e., extraction of largest

connected components) hardly influences the conclusion. Using

the latest version of metabolic networks, we checked the difference

of Q between the entire network and the largest connected

component (i.e., QEntire2QLCC, where QEntire and QLCC are Qs

calculated from the entire network and largest connected

component, respectively). The mean of the difference was

20.035 (95% confidence interval, from 20.037 to 20.034),

indicating that Q values of the entire networks are slightly larger

than those of the largest connected components because isolated

components are identified modules of the entire network.

However, this difference was small in comparison with the means

of QEntire or QLCC (0.798 and 0.833, respectively) (see also Table

S1).

Lack of data on metabolic reactions may result in an
overemphasized role of habitat variability in increasing
network modularity

We attempted to perform this re-evaluation under similar

conditions as those used in the previous study [10]. However, the

conditions for data analysis may have been slightly different from

those used in the previous study. For example, the network

representation in this study is slightly different from that in the

previous study. We defined edges as substrate–product pairs on the

basis of carbon trances (see Materials and Methods for details) in

this study. This approach was inspired by Arita’s study [38], in

which he pointed out that the pathways computed in the classical

manners (i.e., network representations without consideration of

atomic traces) do not conserve their structural moieties and,

therefore, do not correspond to biochemical pathways on the

traditional metabolic map. On the other hand, the definition of

edges in the previous study was merely based on the KEGG

database, without explicit consideration of carbon traces.

The definition of currency metabolites such as water and ATP

may also have been different from that in the previous study

because the definition has not been clearly described in [10]. The

deletion of currency metabolites is a crucial step for metabolic

network analysis from a topological point of view [39,40].

To show that differences in analytical conditions pose few

problems, we performed similar analyses by using the earlier

version of the metabolic reaction database [39]. As shown in the

inset of Figure 1, a positive correlation between network

modularity and habitat variability was observed, as reported in

the previous study [10]. This result indicates that the procedures

used for data analysis in this study were not problematic, and it

implies that the observed increase in network modularity due to

habitat variability might result from a lack of data on metabolic

reactions.

Horizontal gene transfer also hardly explains the increase
in metabolic network modularity

Horizontal gene transfer may be useful for environmental

adaptation. In particular, it is believed that horizontal gene

transfer contributes to the evolution of metabolic networks in

response to changes in the environments [41]. Survival in a variety

of environments is closely related to habitat variability. Using the

data on the extent of horizontal gene transfer in bacteria [42,43],

in fact, we found a positive correlation between the extent of

horizontal gene transfer and habitat variability (Spearman’s rank

correlation coefficient rs = 0.29 and p = 0.0044; p = 0.00075 using

Kruskal-Wallis test; see also Table S1). In addition to this, it has

been hypothesized that horizontal gene transfer accelerates gene

clustering [44]. These previous studies imply a correlation between

horizontal gene transfer and metabolic network modularity. Thus,

we also investigated the relationship between horizontal gene

transfer and metabolic network modularity.

Originally, Kreimer et al. [42] demonstrated the positive

correlation between the extent of horizontal gene transfer and

network modularity in the context of gene clustering due to

horizontal gene transfer; however, they used a different represen-

tation of metabolic networks compared to this study (i.e.,

enzymatic networks, in which nodes and edges represented

enzymes and presence of interjacent chemical compounds,

respectively). Using the data on horizontal gene transfer [42,43]

(see Table S1), we also re-confirmed such positive correlation (the

inset of Figure 2) in the early version of metabolic networks.

In the latest version of metabolic networks, however, we could

not conclude the positive correlation between the extent of

horizontal gene transfer and metabolic network modularity

(Figure 2). This result also suggests that the increase in network

modularity because of horizontal gene transfer might be due to the

lack of data on metabolic reactions.

A similar conclusion was derived in the context of enzymatic

networks. As explained above, the impact of horizontal gene

transfer on metabolic networks was concluded using enzymatic

networks [42]. Using the latest version [28] and earlier version

[39] of the metabolic reaction database, we constructed the latest

version and early version of enzymatic networks on the basis of

[45] (see Material and Methods for details) and evaluated the

correlation between the extent of horizontal gene transfer and

network modularity Qm.

In the enzymatic networks of the earlier version, the network

modularity shows a positive correlation with the extent of

Figure 2. Correlation between the extent of horizontal gene
transfer (HGT) and network modularity. Metabolic networks
constructed from the latest version of the database show no correlation
(Spearman’s rank correlation coefficient rs = 0.15 and p = 0.15). Meta-
bolic networks constructed from the early version of the database
(inset) demonstrate a positive correlation (rs = 0.41 and the associated
p = 4.861025).
doi:10.1371/journal.pone.0061348.g002

Habitat Variability May Not Promote Modularity
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horizontal gene transfer (rs = 0.37 and p = 0.00025). This result is

in agreement with the conclusion derived by Kreimer et al. [42],

although the normalization method of modularity is different

between this study and the previous study. On the other hand,

however, we could not conclude any correlation between network

modularity and extent of horizontal gene transfer (rs = 0.12 and

p = 0.24) in enzymatic networks of the latest version, as in the case

of compound networks (Figure 2).

Differences in structural properties between the earlier
and latest versions of metabolic networks

We here discuss the effect of updates of the metabolic reaction

database on network modularity. The database updates resulted in

the metabolic networks of the latest version being larger than those

of the earlier version. We considered the change ratios of the

number of nodes N and edges E, where nodes and edges

corresponded to metabolites and substrate–product relationships

in metabolic reactions, respectively. The change ratio was defined

as RX = Xlatest/Xearlier21, where Xlatest and Xearlier are structural

parameters (N or E in this case) in the latest and earlier versions of

metabolic networks, respectively. This definition had a limitation

in that it did not consider the loss of nodes and edges due to the

database update; however, this discrepancy was minor–the latest

metabolic network included approximately 98 and 95% of nodes

and edges, respectively, contained in the earlier version.

The mean and median PN in the metabolic networks of 115

bacteria were 0.59 and 0.48, respectively, while the mean and

median of PE were 0.69 and 0.62, respectively. The median values

of PN and PE were highest in species that showed the narrowest

habitat variability (i.e., habitat variability of 1) (Figure 3). This

result indicates that the metabolic networks of species with a

habitat variability of 1 had been heavily updated.

In contrast, the normalized modularity values in the latest

version were overall slightly smaller than those of the earlier

version. The mean and median differences in modularity between

the latest and earlier versions (DQm = Qm
latest2Qm

earlier) were 20.07

(p,2.2610216, paired-sample t-test) and 20.08 (p = 3.0610213,

paired-sample Wilcoxon signed rank test), respectively. In

particular, the Qm value decreased significantly in species with

higher habitat variability (Figure 4). This decline of Qm negates the

positive correlation between Qm and habitat variability observed in

the previous study [10].

However, the differences in RN and RE cannot simply explain

the difference in Qm between the latest and earlier versions,

although they indicate the degree of network expansion due to the

database update. As mentioned in the previous section, the

parameters N and E do not strongly affect Qm, as they were not

correlated with this parameter due to normalization of the network

modularity value. Therefore, it is difficult to clearly explain the

change in Qm. However, Qm may have changed because the

addition of new metabolic reactions differs between species with

narrow and higher habitat variability. Here, we focused on the

ratio (r of the number of new edges among nodes that existed in

the earlier database to the total number of new edges due to the

database update). The mean and median values of r were 0.21

and 0.23, respectively, and r was lowest in species with a habitat

variability value of 1 (Figure 5A). In species with higher habitat

variability, new metabolic links (i.e., substrate–product relation-

ships) tended to be drawn among metabolites that existed in the

earlier version of the database. In species with a habitat variability

value of 1, new substrate–product relationships and metabolites

(i.e., radically new metabolic pathways not found in the earlier

database) tended to be added.

Taken together, we speculate that the change in Qm due to

updating of the database occurred for the following reasons. In

general, network modularity decreased slightly because metabolic

networks may be randomized due to the addition of edges among

previously existing nodes, although this does not imply that all

edges contributed to the randomization. However, network

modularity may remain constant or increase because of the

addition of many new metabolic pathway modules in species with

narrow habitat variability. This speculation may be supported by

the negative correlation DQm and r (Figure 5B).

Metabolic network modularity may be influenced by
growth conditions rather than by habitat variability

Because habitat variability did little to describe the increase in

modularity (Figure 1), other explanations for the variation in

modularity among species were investigated. Species’ growth

conditions correspond to their metabolic network structure. To

evaluate network modularity as a function of species’ growth

conditions, we selected 383 bacterial species with identified growth

Figure 3. Change ratio of network parameters between the
latest version and earlier version of metabolic networks. (A) In
the case of the number of nodes (p = 1.561026 using the Kruskal-Wallis
(KW) test). (B) In the case of the number of edges (p = 8.861026 using
the KW test).
doi:10.1371/journal.pone.0061348.g003

Habitat Variability May Not Promote Modularity
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conditions (oxygen requirement and growth temperature) from the

list [14] (see also Table S1).

We found differences in the network modularity of bacteria due

to differences in growth conditions (Figure 6). In particular, the

network modularity of aerobic bacteria was slightly lower than that

of facultative and anaerobic bacteria. Moreover, hyperthermo-

philic bacteria showed lower metabolic network modularity than

non-hyperthermophilic bacteria. This finding is consistent with the

result shown by Kreimer et al. [42]; however, the representation of

metabolic networks used by Kreimer et al. was different from that

used in this study (i.e., enzymatic networks). Similar tendencies

were also observed in archaeal metabolic networks [22]. Thus,

differences in network modularity due to varying growth

conditions such as temperature may be conserved in prokaryotes.

Discussion

The results presented here call into question the impact of

habitat variability and its closely related parameter (i.e., the extent

of horizontal gene transfer) on metabolic network modularity

(Figures 1 and 2). The positive correlation of network modularity

with habitat variability and the extent of horizontal gene transfer

shown in the previous study were probably due to a lack of data on

metabolic reactions (i.e., questionable data accuracy). This

correlation may be invalidated by the improved metabolic

information that is now available for species with narrow habitat

variability (or with low extents of horizontal gene transfer).

Figure 6 implies that network modularity is dependent on

species’ growth conditions, as in the case of Archaea [22]. For

example, the lower metabolic network modularity observed in

aerobic bacteria may be the result of incorporation of peripheral

metabolic reactions due to oxygen [42,46]. Furthermore, the

thermal stability of proteins (metabolic enzymes) may yield lower

metabolic network modularity observed in hyperthermophilic

bacteria. Enzymes require a certain level of structural stability to

survive in hot environments; thus, they tend to be easily

deactivated (i.e., disappearance of edges) under such conditions,

and as a result, the modular structure may collapse. The details of

possible mechanisms underlying network modularity based on

these growth conditions have been discussed previously [22,27].

It may be suitable to conclude that the impact of growth

conditions such as growth temperature on network modularity is

limited in bacteria because the differences in network modularity

are not very significant (Figure 6). This may be because bacteria

have very similar growth conditions. Results from our theoretical

study [27] and an additional previous study [47] suggest that

metabolic network modularity can be acquired almost neutrally

when there are no significant selective constraints. For example,

temperature is a strong selective constraint [48]. Our theory

predicts that network modularity differs little among species

because most bacteria show similar growth temperatures (approx-

imately 93% of the 383 bacteria that we investigated are

mesophiles). On the other hand, the modularity in archaeal

metabolic networks shows a strong dependency on growth

conditions–temperature in particular–because Archaea are widely

distributed among a wide range of environments [23]. Several

Figure 4. Differences in network modularity between the latest
version and earlier version of the metabolic network database.
The differences depend on habitat variability (p = 1.961027 using the
Kruskal-Wallis test).
doi:10.1371/journal.pone.0061348.g004

Figure 5. Ratio r of the number of new edges among nodes in
the earlier version of the database to all newly added edges.
(A) The ratio r depends on habitat variability (p = 6.861028 using the
Kruskal-Wallis test). (B) The ratio r negatively correlates with the
difference DQm (Spearman’s rank correlation coefficient rs = 20.56 and
p = 1.0610210).
doi:10.1371/journal.pone.0061348.g005

Habitat Variability May Not Promote Modularity
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theoretical studies [47,49] have also reported the neutrality of

structural properties in metabolic networks.

Zhou and Nakhleh [50] reported a similar conclusion. Inspired

by our previous study [22], they showed the association between

network modularity and these growth conditions on a large set of

species spanning a wider range of taxonomy (i.e., Archaea,

Bacteria, and Eukaryotes). This finding strongly supports our

results, including our previous results [22,24]. Zhou and Nakhleh

also reported no correlation between habitat variability and

metabolic network modularity; however, they could not clearly

conclude the reason of the contradictory finding with the previous

study. Zhou and Nakhleh discussed that the limited impact of

habitat variability might be because of differences in network

reconstruction, algorithm used to optimize modularity, or data

used, and they did not give emphasis to this discrepancy. In this

study, we showed that the hypothesis in which habitat variability

promotes metabolic network modularity is highly likely to result

from the accuracy of metabolic information, and emphasize that

this hypothesis, which is accepted in the wide-ranging research

fields such as molecular biology and ecology, is an open question.

These findings do not entirely discount the impact of habitat

variability. Rather, they stress the necessity of a more suitable

definition of habitat variability. Parter et al. [10] have defined

habitat variability on the basis of an NCBI BioProject database

(www.ncbi.nlm.nih.gov/bioproject). Although ecological or envi-

ronmental relationships of cellular (especially metabolic) networks

have been investigated on the basis of this definition (e.g., [11–

14]), it may not correctly reflect real-world variability in natural

habitats. The definition of habitat variability is more complicated

than that of growth conditions; thus, careful examination of the

interactions of metabolic network modularity with habitats and

environments is required. To do this, it is necessary to capture

habitat and environmental metadata. For example, the Environ-

mental Ontology (EnvO) database [51] for concise and controlled

descriptions of environments may provide more detailed defini-

tions through hierarchical classification schemes.

The impact on horizontal gene transfer is also an open question.

The identification of horizontally transferred genes is difficult. The

extent of horizontal gene transfer, used in this study and previous

studies, is limited to the recent events of horizontal transfer

because of the sensitivity of the method [43]. When the time scale

of the events is extended, we may be able to conclude a positive

correlation between the extent of horizontal gene transfer and

network modularity. In particular, Cordero and Paulien [52]

found a surprising pattern of nonlinear enrichment of long-

distance horizontal gene transfers in large genomes focusing on

both cumulative and recent evolutionary histories, suggesting that

distant horizontal transfers are biased toward specific functional

groups. Characterization of the difference in enrichment patterns

between recent and cumulative horizontal gene transfers may

reveal the impact of horizontal gene transfer on metabolic network

modularity in greater detail. In particular, Cordero and Paulien

suggested an intimate relationship between environmental and

genomic complexity in microbes, which implies that an ecological,

as opposed to phylogenetic, signal in gene content is relatively

important in bacteria. This indication may be important to

understand the relationship between several factors (e.g., habitat

variability, growth conditions, and horizontal gene transfers)

believed to interact with metabolic network modularity.

The definition of modularity and modules is also controvertible.

The conclusion in this study is limited in the context of network

modularity. For metabolic networks, however, most biologically

functional modules may be hardly defined through module

detection methods based on network topology (i.e., in the context

of network modularity). In particular, it is reported that the

definition of modularity, used in this study and many previous

studies, might not be topologically intuitive due to the locality and

limited resolution [53,54]. Methods based on link communities

(e.g., [55,56]) may be useful to avoid these limitations because they

show better accuracy in the prediction of biologically functional

modules (or categories such as pathways).

It is also necessary to test the effect of growth conditions such as

temperature on network modularity using more species, although

current data on species phenotypes are biased as mentioned above.

Therefore, it is important to identify species that live in extreme

environments (i.e., extremophiles). The development of high-

throughput techniques may provide more such data. For example,

metagenomics using next-generation sequencing helps to identify

novel extremophiles from hot springs, deep sea, and so on. By

considering more extremophiles, the effect of growth conditions on

metabolic network modularity could be more appropriately

evaluated.

Metabolic networks have not been fully understood; thus, there

is a need for a more careful examination in data analysis in the

future. For example, enzyme promiscuity [57], which implies that

enzymes can catalyze multiple reactions, act on more than one

Figure 6. Differences in network modularity values due to
differences in species’ growth conditions. (A) Oxygen require-
ments (p = 8.761028 using the Kruskal-Wallis test). The degree of
oxygen required increases in the following order: anaerobic, facultative,
and aerobic. (B) Growth temperature (p = 0.02 using the Wilcoxon test).
Growth temperature increases from non-hyperthermophilic to hy-
perthermophilic.
doi:10.1371/journal.pone.0061348.g006

Habitat Variability May Not Promote Modularity
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substrate, or exert a range of suppressions [58], in which an

enzymatic function is suppressed by over-expressing enzymes

showing originally different functions, suggests the existence of

many hidden metabolic reactions, and they may be related to

metabolic robustness against changing environments [59]. Con-

sideration of these hidden metabolic reactions is important for

designing metabolic pathways and understanding metabolic

evolution.

Our analysis has several limitations, as do many other works on

metabolic network analyses: limited knowledge of metabolic

reactions (i.e., missing links), reconstruction of metabolic networks

based on genomic information, and failure to consider reaction

stoichiometry and direction of reaction (i.e., reversible or

irreversible).

Although data analysis has these limitations, these findings

encourage a reconsideration of the widely accepted hypothesis

(i.e., the impact of habitat variability on metabolic network

modularity), and they enhance our understanding of adaptive and

evolutionary mechanisms in metabolic networks.

Materials and Methods

Construction of metabolic networks
We downloaded XML files (version 0.7.1) containing the

metabolic network data on May 20, 2011 from the KEGG

database [14] (ftp://ftp.genome.jp/pub/kegg/xml/kgml/

metabolic/organisms/). As of July 1, 2011, the KEGG FTP site

is only available to paid subscribers. Since the use of such data

may be desirable to ensure reproducibility, our dataset on

metabolic networks is available upon request. Instead of the

KEGG databases, we can consider other databases and datasets

such as MetaCyc [15] and biochemical reaction databases of the

Institute of Bioprocess and Biosystems Engineering [28,39].

These metabolic networks are represented by undirected

networks (i.e., compound networks) in which nodes and edges

correspond to metabolites and reactions (i.e., substrate–product

relationships), respectively. We extracted R numbers (e.g.,

R00010), which indicate metabolic reactions, from the XML files.

On the basis of R numbers, substrate–product relationships were

identified as carbon traces using the latest version [28] and an

earlier version [39] of the metabolic reaction database. Currency

(ubiquitous) metabolites such as H2O, ATP, and NADH were

removed as described previously [24]. The largest connected

component (giant component) was extracted from each metabolic

network to accurately calculate network modularity (and also for

comparison with the previous study [10]). In particular, network

randomization (in the calculation of Qm in this study) requires

caution in case the networks possess isolated components or

(clusters) [60] because Qm may be overestimated or underestimat-

ed due to isolated components; thus, we avoided the use of entire

networks.

Using these datasets, for species in which the extent horizontal

gene transfer has been determined in [43], we constructed

enzymatic networks, in which the nodes and edges are metabolic

enzymes (reactions) and presence of interjacent chemical com-

pounds, respectively. Basically, an edge is drawn between 2

enzymes (nodes) if at least 1 product of a reaction catalyzed by an

enzyme corresponds to at least 1 substrate of the reaction

catalyzed by another enzyme (see [3,45] for details). Substrate–

product relationships of each metabolic reaction were defined as

carbon traces using the latest version [28] and an earlier version

[39] of the metabolic reaction database in order to avoid the

emergence of biologically unsuitable edges (see [3,45] for details;

the importance of this handling is explained with an example). The

largest connected component (giant component) was extracted

from each metabolic network to avoid bias from small isolated

components in the calculation of Qm.

Measurement of metabolic network modularity
This method is similar to that of a previous study [10], thereby

allowing comparison.

To allow the comparison of metabolic network modularity with

networks of different size and connectivity, we used the normalized

network modularity value Qm based on [10,22,27], which was

defined as:

Qm~Qreal{QrandQmax{Qrand

where Qreal is the network modularity of a real-world metabolic

network and Qrand is the average network modularity value

obtained from 10000 randomized networks constructed from its

real-world metabolic network. The network modularity measure Q

is defined as the fraction of edges that lie within, rather than

between, modules relative to that expected by chance (see

equation (4) in [32]). Each Q value was calculated using the fast

greedy algorithm proposed by Clauset et al. [32]. Qmax was

estimated as: 121/M, where M is the number of modules in the

real network.

Randomized networks were generated from a real-world

metabolic network using the edge-rewiring algorithm [60]. This

algorithm generates a random network by rewiring 2 randomly

selected edges until the rewiring of all edges is completed. For

example, consider 2 edges, A2B and C2D, where the letters and

lines are nodes and edges, respectively. Through this edge-rewiring

algorithm, the edges A2D and C2B are obtained (see [60] for

details).

In general, in metabolic networks (i.e., substrate graphs) where

reactions have multiple substrates and products, short cycles

related to network modularity are generated as a result of network

representations [22]. Ideally, the number of short cycles should

remain constant during the generation of randomized networks.

However, the edge-rewiring algorithm used here does not abide by

this constraint. Although the null model has this limitation, it did

not pose a significant problem in this study because the substrate

graphs used were based on atomic mapping and currency

metabolites were excluded. As an example, we considered a

straight-line pathway, which is a part of the central metabolism

(see Figure S1A). In the case of substrate graphs drawn according

to chemical equations, in which a metabolic reaction A+B R C+D

is converted to a graph with 4 edges: A2B, A2C, B2C, and

B2D, short cycles were drawn to some of the edges connecting to

currency metabolites (ATP and ADP in this case) despite the

straight-line metabolic pathway (Figure S1B). When focusing on

atomic traces (carbon traces, in particular) and removing currency

metabolites, such short cycles are not drawn (Figures S1C and

S1D). Hence, in our metabolic networks, most of the metabolic

reactions (approximately 96% on average) are represented as

reactions with a single substrate and/or product. Therefore, short

cycles generated by network representation rarely pose problems.

Supporting Information

Figure S1 Short cycles drawn according to network
representations. (A) A representation of a metabolic pathway

as depicted in textbooks. Examples of substrate graphs based on

chemical equations (B) and atomic traces (C). The solid and

dashed lines represent traces based on carbon and phosphorus
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atoms, respectively. (D) Substrate graph based on atomic traces

after removal of currency (ubiquitous) metabolites. The direction

of edges is omitted in (B–D).

(PDF)

Table S1 List of bacterial species. This table includes the

species name, Kyoto Encyclopedia of Genes and Genomes

(KEGG) ID (see http://www.genome.jp/kegg/catalog/org_list.

html), genome size, number of protein-encoding genes, habitat

variability, oxygen requirements, growth temperature, and extent

of horizontal gene transfer for each bacterium. In addition, it

includes the following parameters from the latest and earlier

versions of each bacterial metabolic network (compound network):

modularity value Q, normalized modularity value Qm, number of

nodes (metabolites), number of edges (substrate–product pairs),

and number of new edges among nodes that existed in the earlier

version. In the case of the latest version of metabolic networks, the

modularity value QSA in the largest connected component

calculated using the simulated annealing-based method and the

modularity value QEntire in the entire networks calculated using the

fast greedy algorithm are also provided. In addition to this, this

table also includes the network parameters of enzymatic networks:

Q, Qm, number of nodes (enzymes), and number of edges (presence

of shared metabolites).

(XLS)
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