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implicated in defining the site of Ca’*-dependent

exocytosis of neurotransmitter. We have identified
here a novel CAZ protein of ~120 kD from rat brain and
named it CAST (CAZ-associated structural protein). CAST
had no transmembrane segment, but had four coiled-coil
domains and a putative COOH-terminal consensus motif
for binding to PDZ domains. CAST was localized at the
CAZ of conventional synapses of mouse brain. CAST
bound directly RIM1 and indirectly Munc13-1, presumably
through RIM1, forming a ternary complex. RIM1 and
Munc13-1 are CAZ proteins implicated in Ca’*-dependent

The cytomatrix at the active zone (CAZ) has been

exocytosis of neurotansmitters. Bassoon, another CAZ protein,
was also associated with this ternary complex. These results
suggest that a network of protein—protein interactions
among the CAZ proteins exists at the CAZ. At the early
stages of synapse formation, CAST was expressed and
partly colocalized with bassoon in the axon shaft and the
growth cone. The vesicles immunoisolated by antibassoon
antibody—coupled beads contained not only bassoon but
also CAST and RIMT. These results suggest that these CAZ
proteins are at least partly transported on the same vesicles
during synapse formation.

Introduction

The active zone beneath the presynaptic membrane is the
principal site for Ca**-dependent exocytosis of neurotrans-
mitter (Landis et al., 1988). Synaptic vesicles dock to the
active zone and fuse with the plasma membrane, resulting in
exocytosis of neurotransmitter (Burns and Augustine, 1995).
Although various proteins involved in synaptic vesicle fusion
have thus far been isolated and characterized (Siidhof, 1995;
De Camilli and Takei, 1996), the molecular mechanisms by

which synaptic vesicles are properly localized at the active
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zone still remain unclear. It has been assumed that the cy-
tomatrix at the active zone (CAZ)* is involved in determining
the site of synaptic vesicle fusion (Landis et al., 1988; Hirokawa
etal., 1989; Gotow et al., 1991; Dresbach et al., 2001). Thus,
identifying and characterizing molecular components of the
CAZ is a crucial step for understanding its organization and
the targeting mechanism of synaptic vesicles to the active
zone. However, only four CAZ proteins have thus far been
characterized. (1) Bassoon is a 420-kD protein containing
two NH,-terminal zinc fingers, several coiled-coil domains,
and a stretch of polyglutamines at its COOH terminus (tom
Dieck et al., 1998). Bassoon is localized at the CAZ of excita-
tory and inhibitory synapses (tom Dieck et al., 1998; Richter
et al., 1999) as well as at the base of retinal ribbon synapses
(Brandstatter et al., 1999). (2) Piccolo is a 500-kD protein
with zinc fingers structurally related to bassoon, but it also has
PDZ and C2 domains (Cases-Langhoff et al., 1996; Fenster
et al., 2000). The piccolo zinc fingers are shown to directly
interact with PRALI, the dual prenylated Rab3A and VAMP2/
synaptobrevin II receptor (Martincic et al., 1997; Bucci et al.,
1999; Fenster et al., 2000). Rab3A is a small G protein and
VAMP2/synaptobrevin II is a component of the SNARE
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complex, both of which are implicated in Ca2+-dependent
exocytosis of neurotransmitter (Séllner et al., 1993; Geppert
et al., 1997; Takai et al., 2001). Aczonin has been character-
ized in chick and mouse and is an ortholog of piccolo (Wang
etal,, 1999). (3) Munc13-1 is a mammalian ortholog of Cie-
norbabditis elegans UNC-13 (Maruyama and Brenner, 1991;
Brose et al., 1995). Muncl3-1 contains one C1 and two C2
domains, which mediate phorbol ester and diacylglycerol
binding, and phospholipid-dependent Ca** binding, respec-
tively. Munc13-1 is implicated in Ca**-dependent exocytosis
of neurotransmitter through regulating vesicle priming (Betz
et al., 1998; Augustin et al., 1999) and interacts with many
other components of the synaptic exocytosis machinery, such
as Doc2 (Orita et al., 1997; Duncan et al., 1999), Muncl8
(Verhage et al., 1997), and syntaxin (Betz et al., 1997).
Muncl3-1 has two other isoforms, Munc13-2 and -3, but it
is currently unclear whether the other members are localized
at the CAZ. (4) RIM1 is a 180-kD protein containing two
NHS,-terminal zinc fingers, one PDZ, and two C2 domains.
RIM1 has originally been isolated as a putative downstream
effector of Rab3A (Wang et al., 1997). RIM1 binds not only
Rab3A but also cAMP-GEFII (Ozaki et al., 2000), RIM-BPs
(Wang et al., 2000), Muncl3-1 (Betz et al., 2001), synap-
totagmin (Coppola et al., 2001), Ca®" channel (Coppola et
al., 2001), and a-liprin (Schoch et al., 2002). It has recently
been shown that RIM1 regulates Ca”*-dependent exocytosis
of neurotransmitter through regulating vesicle priming
(Castillo et al., 2002; Schoch et al., 2002). Another member
of the RIM family, RIM2, has also been identified (Ozaki et
al., 2000; Wang et al., 2000). RIM2 is highly homologous to
RIM1 and expressed mainly in the brain. These four CAZ
proteins with multiple domains seem to function as scaffolds
at the CAZ, but the temporal and spatial regulation of these
proteins in the formation and maintenance of the CAZ as
well as molecular interactions among the CAZ proteins are
largely unknown.

To further investigate the protein composition at the syn-
aptic junction, we attempted to isolate novel synaptic pro-
teins by a new method. In this method, we biochemically
obtained the crude membrane (P2) and postsynaptic density
(PSD) fractions from rat brain, extracted proteins from each
fraction, and subjected them to a column chromatography,
followed by SDS-PAGE and protein staining. We then
searched for proteins more concentrated in the PSD fraction
than in the P2 fraction by comparing each corresponding
protein band. We identified 20 proteins, most of which were
known to be synaptic proteins, but one of them was a novel
protein of ~120 kD. The protein was localized at the CAZ,
and we named it CAST (a novel CAZ-associated structural
protein). We moreover found that CAST directly bound
RIM1 and indirectly bound Munc13-1, forming a ternary
complex. We characterize here this novel CAZ protein and
discuss its possible function at the CAZ.

Results
Identification of CAST and molecular cloning
of its cDNA

To isolate proteins concentrated in the synaptic junction,
proteins were extracted from the P2 and PSD fractions of rat
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Figure 1. Mono Q column chromatographies of the P2 and PSD
fractions. Proteins were extracted from the P2 and PSD fractions
and each extract was subjected to Mono Q column chromatography.
An aliquot (20 pl) of each eluted fraction was subjected to 7.5%
SDS-PAGE, followed by protein staining with silver. Fractions 6, 7,
and 8 of each chromatography are shown. These fractions contained
piccolo, synamon/shank 1A, citron, and p120 (CAST). These results
are representative of three independent experiments.

brain by a urea-based buffer, and each extract was then sub-
jected to Mono Q column chromatography. Each fraction
was subjected to SDS-PAGE, followed by protein staining
with silver. When each protein band was compared between
the P2 and PSD fractions, 20 protein bands were more con-
centrated in the PSD than in the P2 fraction (unpublished
darta). Some of these protein bands are shown in Fig. 1. The
corresponding bands for the 20 proteins were cut out from
the gels and analyzed by MALDI-TOF mass spectrometry.
When a database was searched, most spectra had significant
matches to known proteins, such as bassoon (tom Dieck et
al., 1998), synamon/shank 1A (Naisbitt et al., 1999; Yao et
al., 1999), and synapse-associated protein (SAP) 102
(Muller et al., 1996; unpublished data). These proteins are
enriched in the PSD or presynaptic plasma membrane frac-
tion, indicating that this approach is effective to identify
new proteins enriched in the synaptic junction.

Two spectra for ~500- and ~~120-kD bands (p500 and
p120) had no significant matches in the database. Thus, we
determined the partial aa sequences of p500 and p120.
Computer homology search revealed that the two peptides
derived from p500 were contained within the aa sequence of
piccolo (Fenster et al., 2000). The four peptides derived
from p120 were contained in the primary sequence deduced
from a human cDNA (KIAA0378). However, this cDNA
appeared to lack its NH,-terminal portion and its function
has been unknown. We obtained the full-length cDNA of
p120, which encoded the protein consisting of 957 aa with a
calculated molecular weight of 110,616 (Fig. 2 A). We
named this protein CAST. CAST had no transmembrane
segment but had four coiled-coil domains. The COOH-ter-
minal three aa (IWA) was a putative consensus motif for

binding to PDZ domains (Songyang et al., 1997). To con-
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Figure 2.  Full-length sequence of CAST. (A) Deduced aa sequence
of CAST. Underlines indicate the aa sequences of the four peptide
peaks. Boxes indicate coiled-coil domains. The putative consensus
motif for binding to PDZ domains is shown in bold letters. These
sequence data are available from GenBank/EMBL/DDBJ under
accession no. AY049038. (B) Western blot analysis of recombinant
CAST. The pBluescript-SK (pBS) vector containing CAST or pBS
alone was in vitro translated in the rabbit reticulocyte lysate system.
The lysates (5 wl each) and the homogenate of rat brain (10 pg of
protein) were analyzed by Western blotting using the anti—-CAST-1
Ab. This result is representative of three independent experiments.

firm whether this clone encoded the full-length cDNA, we
constructed an expression vector with the cDNA and ex-
pressed the protein by an in vitro translation system. West-
ern blot analysis using a polyclonal antibody (Ab) (anti—
CAST-1 Ab) indicated that the expressed protein showed
mobility similar to that of native CAST on SDS-PAGE (Fig.
2 B). Thus, we concluded that this clone encoded the full-
length cDNA of CAST.

Tissue and subcellular distribution of CAST

Western blot analysis showed that the anti—-CAST-1 Ab rec-
ognized a protein band of ~120 kD in rat brain, but not in
other rat tissues including heart, spleen, lung, muscle, kid-
ney, and testis (Fig. 3 A). This result indicates that CAST is
mainly expressed in the brain. Subcellular distribution anal-
ysis in rat brain showed that CAST was concentrated in the

PSD fraction (Fig. 3 B). The subcellular distribution pattern
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Figure 3. Tissue and subcellular distribution of CAST and its
solubilization property by various detergents. (A) Tissue distribution.
The homogenates of various rat tissues (20 pg of protein each)
were analyzed by Western blotting using the anti-CAST-1 Ab. (B)
Subcellular distribution. The homogenate of rat brain was subjected
to subcellular fractionation. An aliquot of each fraction (5 pg of
protein each) was analyzed by Western blotting using the anti-NMDA
receptor 2B or anti-CAST-1 Ab. NMDAR2B, the NMDA receptor
2B. (O) Insolubility of CAST by nonionic and zwitter ionic detergents.
Proteins were extracted from the P2 fraction with the indicated
detergents and then separated into the soluble and pellet fractions.
An aliquot (25 pl) of each fraction was analyzed by Western blotting
using the anti—-CAST-1 Ab. P, pellet fraction; S, soluble fraction.
These results are representative of three independent experiments.

of CAST was similar to that of the NMDA receptor. In ad-
dition, CAST was resistant to solubilization by CHAPS, a
zwitter ionic detergent, and NP-40 and Triton X-100, non-
ionic detergents, although CAST was solubilized by SDS
and deoxycholate (Fig. 3 C). These results indicate that
CAST is a synaptic protein and tightly associated with the
cytoskeletal structure.

Localization of CAST at the CAZ

We then examined the spatial distribution of CAST in a sag-
iteal section of adult mouse brain using another anti-CAST
polyclonal Ab (anti—-CAST-2 Ab). A widespread immunore-
activity of CAST was detected throughout the central nervous
system, including the hippocampus, the cortex, the cerebel-
lum, and the olfactory bulb (Fig. 4 A). Consistently, Western
blot analysis revealed that CAST was expressed in the various
rat brain regions, such as the hippocampus, the cortex, the
cerebellum, the amygdala, and the olfactory bulb (unpub-
lished data). We next examined the precise localization of
CAST in the hippocampus by immunohistochemistry. The
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Figure 4. Synaptic localization of CAST. (A) Gross distribution
of CAST in mouse brain. (B) CA3 region of mouse hippocampus.
The sections were doubly stained using the anti-CAST-2 and anti—
synaptotagmin | Abs. (a) Low magnification. (b) High magnification.
SR, stratum radiatum; SL, stratum lucidum; SP, stratum pyramidale;
SO, stratum oriens. Bars: (a) 100 wm; (b) 30 wm. (C) Primary cultured
rat hippocampal neurons. Neurons at 21 d of culture were doubly
stained using the anti-CAST-2 and antibassoon Abs or anti—-PSD-95/
SAP90 Ab. Arrows indicate the colocalized signals. Bars, 10 um.
These results are representative of three independent experiments.

staining pattern of CAST was compared with that of synap-
totagmin I, a synaptic vesicle protein (Matthew et al., 1981).
In the CA3 region of the hippocampus, CAST showed the
most intense signal in the stratum lucidum where the syn-
apses are formed between the mossy fiber terminals and the

Figure 5. Localization of CAST at the CAZ in mouse hippocampus.
The sections were reacted with the anti-CAST-2 Ab, incubated with
immunogold particles (1.4 nm) conjugated with goat IgG against
rabbit 1gG, and silver enhanced, followed by electron microscopic
analysis. Bar, 100 nm. The result is representative of three
independent experiments.

dendrites of pyramidal cells (Fig. 4 B). The staining pattern of
CAST was similar to that of synaptotagmin I. In primary cul-
tured rat hippocampal neurons, CAST was also colocalized
with bassoon and PSD-95/SAP90 (Fig. 4 C). Immunoelec-
tron microscopic analysis of mouse brain showed that the im-
munoreactivity of CAST was detected in the presynaptic
nerve terminals in the stratum lucidum of the CA3 region
(Fig. 5). The CAST signal was concentrated at the CAZ.
These results indicate that CAST is localized at the CAZ.

A ternary complex of CAST with RIM1 and Munc13-1
To explore a function of CAST at the CAZ, we examined
the binding of CAST to other CAZ proteins. For this pur-
pose, we first immunoprecipitated CAST by its Ab from the
extract of the P2 fraction of rat brain. Among the proteins
examined, RIM1 and bassoon were coimmunoprecipitated
with CAST (Fig. 6 A, a). Neither Munc13-1 nor PSD-95/
SAP90 was coimmunoprecipitated with CAST. Our anti-
RIM1 Ab could not be used for immunoprecipitation, but
our antibassoon Ab could. CAST and RIM1 were coimmu-
noprecipitated with bassoon by the antibassoon Ab (Fig. 6
A, b). Furthermore, Muncl3-1 was coimmunoprecipitated
with bassoon. Because it has been shown that Munc13-1 di-
rectly binds RIM1 (Betz et al., 2001), the RIM1-Munc13-1
complex might be coimmunoprecipitated with bassoon.
These results suggest that CAST is associated with other
CAZ proteins, including at least RIMI, bassoon, and
Muncl3-1, although it is unknown why Munc13-1 was not
coimmunoprecipitated with CAST by its Ab.

We next confirmed the binding of CAST, RIM1, bas-
soon, and Muncl3-1 by the cosedimentation assay. The
extract of the P2 fraction was incubated with the Myc—
CAST-coupled or Myc—RIMI1-coupled affinity beads.
Native RIM1 and bassoon bound to the Myc—CAST-cou-
pled affinity beads and native CAST and bassoon bound
to the Myc-RIM1-coupled affinity beads (Fig. 6 B).
Moreover, native Munc13-1 bound not only to the Myc—
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Figure 6. Binding of CAST, RIM1, bassoon, and Munc13-1.

(A) Coimmunoprecipitation of other CAZ proteins with CAST. The
extract of the P2 fraction was subjected to immunoprecipitation by
the anti—-CAST-1 or antibassoon Ab. The immunoprecipitate was
analyzed by Western blotting using various Abs against the indicated
proteins: (a) by the anti-CAST Ab and (b) by the antibassoon Ab. Input
contains 5% of the extract used for the assay. (B) Cosedimentation
of other CAZ proteins with CAST. The extract of the P2 fraction was
incubated with the control or Myc—CAST- or Myc—RIM1-coupled
affinity beads. Proteins that bound to the beads were analyzed by
Western blotting using the anti-RIM1, anti-CAST, anti-Munc13-1,
or antibassoon Ab. Bound Myc-CAST and Myc-RIMT were detected
by the anti-Myc Ab (unpublished data). (a) The Myc—CAST-coupled
affinity beads. (b) The Myc—RIM1-coupled affinity beads. Input
contains 5% of the extract used for the assay. (C) Ternary complex
formation of CAST with RIM1 and Munc13-1. Each expression
plasmid of EGFP—CAST-1, HA-RIM1, or Myc-Munc13-1 was
transfected into HEK293 cells. Each protein was extracted and then
mixed in the indicated combinations, followed by immunoprecip-
itation using the anti-GFP or anti-HA Ab. The immunoprecipitates
were then analyzed by Western blotting using the indicated Abs.
IP, immunoprecipitation. These results are representative of three
independent experiments.

RIM1-coupled affinity beads but also to the CAST-cou-
pled affinity beads (Fig. 6 B).

Because it was not clear from these results whether the
binding of CAST to other CAZ proteins is direct or indirect,
we examined whether CAST forms a complex directly with
RIM1 and Muncl3-1. We could not examine whether
CAST forms a complex with bassoon, because bassoon is a
very large protein and transfection of its cDNA has not been
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done (tom Dieck et al., 1998). We transfected each expres-
sion plasmid of CAST, RIM1, or Munc13-1 into HEK293
cells, extracted each protein, and mixed them in various
combinations, followed by immunoprecipitation using the
anti-GFP Ab for CAST or the anti-HA Ab for RIM1. RIM1
was coimmunoprecipitated with CAST by the anti-GFP Ab
for CAST (Fig. 6 C). Muncl3-1 was not, however, coim-
munoprecipitated with CAST in the presence or absence of
RIM1. Conversely, CAST and/or Munc13-1 were coimmu-
noprecipitated with RIM1 by the anti-HA Ab. These results,
together with the earlier observation that Munc13-1 directly
binds RIM1 (Betz et al., 2001), indicate that CAST forms a
ternary complex with at least RIM1 and Munc13-1 by di-
rectly binding RIM1 and indirectly binding Munc13-1. It is
currently unclear why Muncl3-1 is not coimmunoprecipi-
tated with CAST by its Ab, but the immunoprecipitation of
CAST might affect the binding of RIM1 and Muncl3-1,
which is in part consistent with the result in Fig. 6 A, a. In
addition, bassoon appears to be associated with the ternary
complex of CAST, RIM1, and Muncl3-1, but it remains to
be clarified how bassoon interacts with this complex.

We finally confirmed the direct binding of CAST and
RIMI1 in a heterologous expression system. EGFP-CAST-1
(full length) or Myc-RIM1 (full length) was expressed in
HEK293 cells. EGFP-CAST-1 formed large aggregates
(Fig. 7 A, a) and was recovered in the Triton X-100—insolu-
ble fraction (Fig. 7 B, a). In contrast, Myc—-RIM1 was
mainly distributed in the nucleus (Fig. 7 A, a) and recovered
in the Triton X-100-soluble fraction (Fig. 7 B, b). EGFP
was distributed throughout the cytoplasm (Fig. 7 A, a).
When both EGFP-CAST-1 and Myc-RIM1 were ex-
pressed, CAST formed large aggregates again and RIM1 was
colocalized with CAST at the aggregates (Fig. 7 A, b). More-
over, RIM1, as well as CAST, was recovered in the Triton
X-100-insoluble fraction (Fig. 7 B, ¢). In contrast, PSD-95/
SAP90, which contains three PDZ domains, was not colo-
calized with CAST (Fig. 7 A, ¢). These results indicate that
CAST forms aggregates and recruits RIM1 to the Triton
X-100—insoluble structure and provide another line of evi-
dence for the direct binding of CAST and RIMI.

Because CAST has a putative COOH-terminal consensus
motif for binding to PDZ domains (Fig. 2) (Songyang et al.,
1997) and RIM1 has one PDZ domain (Wang et al., 1997),
we examined the direct binding of CAST and RIMI
through the COOH-terminal consensus motif and the PDZ
domain by the pull-down assay. The extract of HEK293
cells expressing Myc—RIM1 was incubated with glutathione-
Sepharose beads containing various GST fusion proteins of
CAST (Fig. 8 A, a). Myc—RIMI1 stoichiometrically bound to
GST-CAST-4 containing the COOH-terminal consensus
motif, but not to other GST fusion proteins (Fig. 8 A, b and
c), indicating that the COOH-terminal consensus motif of
CAST was essential for its binding to RIM1. We then con-
firmed that CAST binds to the PDZ domain of RIM1. The
extract of HEK293 cells expressing the Myc-tagged COOH
terminus of CAST (Myc—CAST-4) was incubated with glu-
tathione-Sepharose beads containing various GST fusion
proteins of the PDZ domains of RIM1 and PSD-95/SAP90.
Myc—CAST-4 bound to the GST fusion protein containing
the PDZ domain of RIM1, but not to GST alone or the
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Figure 7. Aggregation of CAST and A
recruitment of RIM1 to the aggregates.
(A) Colocalization of RIM1 with CAST
at the aggregates of CAST. HEK293
cells were transfected with pEGFP—
CAST-1 alone, pCMV-Tag3-RIM1
alone, or both. At 36-48 h after the
transfection, the cells were fixed.
CAST and RIMT1 were visualized by
direct fluorescence of EGFP and by
staining using the anti-Myc Ab and
the Cy3-conjugated secondary Ab,
respectively. (a) Cells expressing
EGFP-CAST-1 alone, Myc—RIM1
alone, or EGFP alone. (b) Cells
expressing both EGFP-CAST-1 and
Myc-RIM1. (c) Cells expressing both
EGFP-CAST-1 and Myc-PSD-95/
SAP90. Bars, 8 um. (B) Recruitment
of RIM1 to the Triton X-100-insoluble
fraction. The cells expressing EGFP—
CAST-1 alone, Myc-RIM1 alone, or
both were lysed and centrifuged to
collect the Triton X-100-soluble and
—insoluble fractions. A comparable
amount of each fraction was analyzed
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Figure 8. Direct binding of CAST and RIM1. (A) The RIM1-binding
site of CAST. (a) GST constructs of CAST. CC, coiled-coil domain.
(b) Direct binding of RIM1 to the COOH terminus of CAST. The
GST fusion proteins containing various regions of CAST in panel a
as well as GST alone were immobilized to glutathione-Sepharose
beads. The extract of HEK293 cells expressing Myc—RIM1 was then
incubated with the beads. Proteins that bound to the beads were

GST fusion proteins containing each of the three PDZ do-
mains of PSD-95/SAP90 (Fig. 8 B). Finally, we confirmed
the specific binding of the COOH-terminal consensus motif
of CAST and the PDZ domain of RIM1 by the immuno-
precipitation assay (Fig. 8 C). These results indicate that the
binding of CAST and RIMI is mediated through the
COOH-terminal consensus motif and the PDZ domain.

Mechanism of the localization of CAST

and RIMT1 in neurons

We then examined the mechanism of the localization of
CAST and RIM1 in primary cultured rat hippocampal neu-

rons by expressing their various mutants. The various CAST

analyzed by Western blotting using the anti-Myc Ab. The GST
fusion proteins were loaded equally, which was assessed by protein
staining with Coomassie brilliant blue. (c) Stoichiometric binding of
RIMT and CAST. The extract of HEK293 cells expressing Myc-RIM1
was incubated with glutathione-Sepharose beads containing GST—
CAST-4. Proteins that bound to the beads were subjected to 10%
SDS-PAGE, followed by protein staining with Coomassie brilliant
blue. (B) The CAST-binding site of RIM1. The GST fusion proteins
containing the PDZ domain of RIM1 and three PDZ domains
(PDZ1, -2, and -3) of PSD-95/SAP90 as well as GST alone were
immobilized to glutathione-Sepharose beads. The extract of
HEK293 cells expressing Myc—CAST-4 was then incubated with
the beads. Proteins that bound to the beads were analyzed by
Western blotting using the anti-Myc Ab. The GST fusion proteins
were loaded equally, which was assessed by protein staining with
Coomassie brilliant blue. (C) Requirement of the last three aa (IWA)
of CAST for its binding to the PDZ domain of RIM1. Each expression
plasmid of EGFP—CAST-4, EGFP-CAST-4AC, or Myc-RIM1 PDZ
was transfected into HEK293 cells. Each protein was extracted and
then mixed in the indicated combinations, followed by immunopre-
cipitation using the anti-Myc Ab. The immunoprecipitates were
then analyzed by Western blotting using the anti-GFP and anti-Myc
Abs. These results are representative of three independent experiments.
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A Figure 9. RIM1-independent colocalization
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g:::j' 954 z B The lysate of HEK293 cells expressing each CAST
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analyzed by Western blotting. CC, coiled-coil
domain. (B) Localization of the CAST mutants.
Neurons at 7 d of culture were transfected with the
indicated expression vectors, and stained with the
anti-Myc, antibassoon, and anti-synaptophysin
Abs at 9-11 d of culture. The EGFP signal was
detected by FITC channel. Arrows indicate the
sites where the signals of bassoon are clustered.
Bars, 10 pm. These results are representative of
three independent experiments.

mutants are schematically shown in Fig. 9 A, and their activ-
ities for their colocalization with bassoon (see below) and
binding to RIM1 (unpublished data) are also summarized in
the figure. The RIM1-binding activity of the CAST mutants
was estimated by the pull-down assay (see Materials and
methods). We first expressed both EGFP-CAST-1 and
Myc-RIML1 in cultured neurons. Both proteins were colocal-
ized at the synaptic boutons as estimated by the localization
of synaptophysin, a well-known synaptic protein (Wieden-
mann and Franke, 1985; Fig. 9 B, a). Bassoon was also colo-
calized there (unpublished data), consistent with the earlier
observation that it is synaptically localized in cultured neu-
rons (tom Dieck et al., 1998). When EGFP—CAST-1 alone

was expressed, it colocalized with bassoon (Fig. 9 B, b).
EGFP-CAST-2, which lacks only the COOH-terminal
three aa (IWA) and does not bind RIM1, colocalized with
bassoon (Fig. 9 B, ¢). In contrast, EGFP-CAST-6, which
has the COOH-terminal three aa (IWA) and binds RIM1
but lacks the most NH,-terminal region, was diffusely dis-
tributed and not clustered, as compared with bassoon (Fig. 9
B, d). EGFP-CAST-3, which lacks the third and fourth
coiled-coil domains and the COOH-terminal three aa
(IWA), colocalized with bassoon, whereas EGFP—CAST-4,
which lacks the first and second coiled-coil domains and the
COOH-terminal three aa (IWA) but contains the third and

fourth coiled-coil domains, did not colocalize with bassoon



584 The Journal of Cell Biology | Volume 158, Number 3, 2002

A a Myc-RIM1 Bassoon

Merge

Myc-RIM1.1PDZ

Bassoon

EGFP-CAST-1 Myc-RIM1 PDZ Bassoon

B

Myc-RIMA

EGFP-CAST-6

Myc-RIM1

Figure 10. Mechanism of localization of RIM1 in primary cultured
rat hippocampal neurons. (A) Colocalization of RIM1 with bassoon
in cultured neurons. Neurons at 7 d of culture were transfected with
the indicated expression vectors, and stained with the anti-Myc and
antibassoon Abs at 9-11 d of culture. The EGFP signal was detected
by FITC channel. Arrowheads indicate the sites where the signals of
bassoon are clustered. Bars, 10 um. (B) Effect of overexpression of
CAST on the localization of RIM1 in cultured neurons. Neurons at 7 d
of culture were cotransfected with the expression vectors of Myc—RIM1
and EGFP-CAST-2 or EGFP-CAST-6, and stained with the anti-Myc
and anti-synaptophysin Abs at 9-11 d of culture. The EGFP signal
was detected by FITC channel. Arrowheads indicate the sites where
the signals of synaptophysin are clustered. Bars, 10 pm. These
results are representative of three independent experiments.

(unpublished data). EGFP-CAST-5, which contains only
the fourth coiled-coil domain and the COOH-terminal
three aa IWA), did not colocalize with bassoon either (un-
published data). These results indicate that CAST is synapti-
cally localized in cultured neurons through its NH,-terminal
half containing at least the first and second coiled-coil do-
mains in a manner independent of RIM1.

As for the mechanism of the localization of RIM1 in neu-
rons, Myc—RIM1 was colocalized with bassoon (Fig. 10 A,
a) and CAST (unpublished data), when it was expressed in

cultured neurons. In contrast, a Myc-tagged deletion mu-

tant (Myc—RIM1APDZ), which lacks the PDZ domain and
does not bind to CAST, was diffusely distributed and not
clustered, as compared with bassoon (Fig. 10 A, b). When
the Myc-tagged PDZ domains of RIM1 (Myc-RIM1 PDZ)
and EGFP-CAST-1 were coexpressed, they were colocalized
with bassoon (Fig. 10 A, ¢). An essentially similar result was
obtained when Myc—RIM1 PDZ alone was expressed (un-
published data). Thus, the PDZ domain of RIM1 appears to
play a role, at least partly, in the localization of RIM1 in cul-
tured neurons.

We finally examined the role of CAST in the localization
of RIM1. When EGFP-CAST-2 and Myc-RIM1 were coex-
pressed in cultured neurons, both the proteins were colocal-
ized with synaptophysin (Fig. 10 B, a), consistent with the
results in Fig. 9 B, suggesting that Myc—RIM1 binds
endogenous CAST and/or other presynaptic proteins. In
contrast, when EGFP—CAST-6 and Myc-RIM1 were coex-
pressed in cultured neurons, both the proteins were diffusely
localized and not clustered, as compared with synaptophysin
(Fig. 10 B, b). However, Myc—RIM1 was often colocalized
with synaptophysin even when EGFP—CAST-6 was diffusely
localized (unpublished data). Taken together, it is likely that
CAST plays a role, at least partly, in the localization of RIM1
in cultured neurons, but that another presynaptic protein(s)
is additionally involved in this localization of RIM1.

Temporal and spatial localization of CAST

during synapse formation

In the last set of experiments, we examined the temporal and
spatial localization of CAST during synapse formation, us-
ing young primary cultured rat hippocampal neurons as well
as rat brain tissue. Western blot analysis using rat brain ho-
mogenates of various developmental stages showed that the
expression of CAST, as well as of RIMI, bassoon, and
Muncl3-1, was detected from early stages, and the levels of
expression of these CAZ proteins did not significantly
change during the developmental stages tested, although
those of synaptophysin and PSD-95/SAP90 were sharply in-
creased (Fig. 11 A).

Immunofluorescence microscopic analysis of CAST in
cultured neurons revealed that after 2 d of culture, when mi-
nor processes appeared, the immunoreactivity of CAST was
detected as dotty signals in the cell body and fine processes,
which was similar to that of bassoon (unpublished data). Af-
ter 3—4 d of culture, when the axonal outgrowth was ob-
served, the immunoreactivity of CAST was detected as dotty
signals in the axon shaft and the growth cone (Fig. 11 B),
which were partly colocalized with the signals of bassoon.

Because our anti-RIM1 Ab could not be used for immuno-
fluorescence microscopic analysis of RIM1, we examined the
localization of exogenously expressed RIM1 at the early
stages of synapse formation. When EGFP-CAST-1 alone
was first expressed, it was colocalized with bassoon (Fig. 11
C, a), consistent with the results in Fig. 11 B. Moreover,
EGFP-CAST-2, which lacks only the COOH-terminal
three aa (IWA) and does not bind RIM1, was also colocal-
ized with bassoon (unpublished data). When MycRIM1
alone was expressed, it was indeed colocalized with bassoon
and CAST (Fig. 11 C, b and ¢). In contrast, Myc—
RIM1APDZ was diffusely localized and not clustered, as
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Expression and localization of CAST at the early stages of synapse formation. (A) Temporal expression of the CAZ proteins during

synapse formation. The homogenates (20 pg of protein each) from rat brain tissues at embryonic day (E) 18, through postnatal day (P) 70 were
analyzed by Western blotting using various Abs against the indicated proteins. (B) Localization of CAST at the early stage. Neurons at 3 d of
culture were stained with the anti-CAST and antibassoon Abs. (a) The axon shaft. (b) The growth cone. Arrowheads indicate the colocalized
signals. Bars, 10 um. (C) Localization of exogenously expressed CAST and RIM1 at the early stage. Neurons at 1 d of culture were transfected
with the indicated expression vectors and stained with the anti-Myc, antibassoon, and anti-CAST Abs at 3 d of culture. The EGFP signal was
detected by FITC channel. Arrowheads indicate the sites where the signals of endogenous bassoon or CAST are clustered. Bars, 10 um. These

results are representative of three independent experiments.

compared with bassoon (Fig. 11 C, d), suggesting that the
PDZ domain of RIM1 is at least partly required for its clus-
tering with bassoon at the early stages.

The expression of CAST at the early stages of synapse for-
mation and its overlapping dotty signals with those of bas-
soon allowed us to speculate that CAST could be associated
with vesicular membranes. To clarify the nature of the CAST
signals, we first performed a sucrose gradient centrifugation
assay using E18 rat brain. E18 rat brain homogenate was hy-
potonically lysed and subjected to ultracentrifugation at
100,000 g to obtain the supernatant (§100) and pellet (P100)
fractions. Like bassoon (Zhai et al., 2001), CAST, RIM1, and
Munc13-1 were mainly detected in the P100 fraction (Fig. 12
A). The P100 fraction was then layered on a discontinuous
sucrose gradient of 0.3, 0.8, and 1.2 M. After the centrifuga-
tion, fractions were collected and analyzed by Western blot-
ting. CAST, bassoon, RIM1, and Munc13-1, as well as syn-
aptophysin, were found in 0.3 and 0.8 M layers (Fig. 12 A),
containing light membranes (Zhai et al., 2001). The essen-
tially similar results were obtained by continuous sucrose gra-
dient (0.3-1.2 M) ultracentrifugation (Fig. 12 B). CAST,
bassoon, RIM1, and Munc13-1 were detected in the fractions
similar to those of synaptophysin. Importantly, when the
P100 fraction was treated with Triton X-100 before the cen-
trifugation, CAST, as well as the other CAZ proteins, was re-
covered near the bottom fraction, whereas synaptophysin was

recovered near the top fraction (Fig. 12 B). These results sug-
gest that the similar behavior of CAST, RIM1, and Munc13-1
to that of bassoon and synaptophysin on sucrose gradient
centrifugation is dependent on membrane integrity and that
not only bassoon, but also CAST, RIM1, and Muncl3-1, is
associated with the light membranes.

It has recently been reported that bassoon and piccolo are
associated with precursor vesicles for the active zone, which
resemble classic dense core vesicles with a diameter of ~80
nm (Zhai et al., 2001). To clarify that CAST is also associ-
ated with the same vesicles, we immunoisolated the vesicles
from the light membrane fraction by the antibassoon Ab
(Zhai et al., 2001). Beads coated with irrelevant IgG, the an-
tibassoon Ab, or the anti-CAST-2 Ab were incubated with
the light membrane fraction and the bound proteins were
analyzed by Western blotting using indicated Abs. CAST,
but not synaptophysin, was coimmunoisolated with bassoon
by the antibassoon Ab—coupled beads (Fig. 12 C). In addi-
tion, RIM1, but not Muncl3-1, was coimmunoisolated.
Consistently, bassoon and RIM1, but not Muncl3-1, were
coimmunoisolated with CAST by the anti-CAST-2 Ab-
coupled beads. Together with the earlier observation that
bassoon is a good marker for the precursor vesicles for the
active zone (Zhai et al., 2001), our biochemical and cell bio-
logical results suggest that at least some portions of CAST
and RIM1 might also be associated with the same vesicles as
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antibassoon Ab, or the anti-CAST Ab. The bound proteins were analyzed by Western blotting using various Abs against the indicated proteins.
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of three independent experiments.

nonbound fraction; B, bound fraction. These results are representative

those transporting bassoon. It remains unknown whether
Muncl3-1 is associated with the same vesicles but dissoci-
ates from the vesicles during the immunoisolation procedure
or whether it is associated with different vesicles.

Discussion
CAST as a CAZ protein

We propose here that CAST is a novel CAZ protein accord-
ing to the following several lines of evidence. (1) CAST is
concentrated in the PSD fraction. Originally, the PSD
fraction has been thought to contain mainly postsynaptic
proteins (Kennedy 1997). However, it has been shown that
presynaptic proteins are also included in this fraction (Lang-
naese et al., 1996). Consistently, bassoon (tom Dieck et
al., 1998), piccolo/aczonin (Cases-Langhoff et al., 1996;
Wang et al., 1999), and RIM1 (Wang et al., 1997) are con-
centrated in the PSD fraction. (2) CAST is tightly associated
with the detergent-insoluble structure. This property is simi-
lar to those of the other CAZ proteins. (3) CAST is electron
microscopically localized at the CAZ of conventional syn-
apses. (4) CAST forms a ternary complex with at least RIM1
and Munc13-1, and bassoon is associated with this complex.
Taken together, these findings indicate that CAST is a new
component of the CAZ.

A possible function of CAST

We postulate that CAST plays a role at least partly in the lo-
calization of RIM1 in neurons according to the following
several lines of evidence. (1) In HEK293 cells, CAST forms
aggregates and recruits RIM1 to the Triton X-100—insoluble

structure. (2) In primary cultured rat hippocampal neurons,
exogenously expressed CAST is synaptically colocalized with
synaptophysin and bassoon in a manner independent of
RIMI. (3) Overexpression of the RIM1-binding domain of
CAST inhibits, not completely but partly, the localization
of RIM1 in cultured neurons. It is currently unknown why the
overexpression of the RIM1-binding domain of CAST does
not completely inhibit the localization of RIM1 in cultured
neurons, but many proteins, including Rab3A (Wang et al.,
1997), cAMP-GEFII (Ozaki et al., 2000), RIM-BPs (Wang
et al., 2000), Muncl3-1 (Betz et al., 2001), synaptotagmin
(Coppola et al., 2001), Ca** channel (Coppola et al., 2001),
and a-liprin (Schoch et al., 2002), have been shown to bind
the zinc fingers, C2 domains, and other regions of RIM1.
Therefore, some of these CAZ or presynaptic proteins in ad-
dition to CAST are also involved in the localization of
RIMI. Although it remains unknown which CAZ proteins
other than CAST are involved in the localization of RIM1 at
the CAZ, a-liprin (Serra-Pages et al., 1998), which binds
the C2B domain of RIM1 in vitro (Schoch et al., 2002),
may be of particular interest because its ortholog in C. ele-
gans, SYD-2, has been shown to be essential for normal ac-
tive zone function (Zhen and Jin, 1999). In SYD-2 mutant
animals, the active zone is significantly lengthened. Cur-
rently, however, it is unclear whether a-liprin is a CAZ pro-
tein. If a-liprin might also be a component of the CAZ pro-
teins involved in the localization of RIM1 through its
binding to the C2B domain, Myc—-RIM1APDZ would be
colocalized with bassoon. However, Myc-RIM1APDZ is
diffusely distributed in cultured neurons. This may just be
due to the limited amount of endogenous a-liprin. All in all,



molecular determinants involved in scaffolding of the CAZ
proteins at the CAZ may be more complex than envisaged.

Recently, an ortholog of RIM (UNC-10) in C. elegans
has been identified and characterized (Koushika et al.,
2001). RIM regulates vesicle priming, but the organization
of the active zone is intact in RIM mutant animals. Consis-
tently, the recent studies from RIM1 knockout mice dem-
onstrate that RIM1 plays important roles in synaptic plas-
ticity through regulating vesicle priming, but that the
structural alteration of the active zone is not observed in
RIM1 knockout mice (Castillo et al., 2002; Schoch et al.,
2002). Thus, RIM1 appears not to be essential for the for-
mation and/or maintenance of the CAZ structure. It may
be noted that bassoon or piccolo/aczonin is not evolution-
arily conserved in C. elegans (Garner et al., 2000), suggest-
ing that these proteins are not essential for the formation
and/or maintenance of the CAZ structure. In contrast,
with a database search, we have identified a putative
ortholog of CAST in C. elegans (F42A6.9; GenBank/
EMBL/DDB]J accession no. AF038613). This hypothetical
protein shows ~20% aa identity to CAST (unpublished
data). Moreover, it is intriguing that the COOH-terminal
three aa (IWA) of CAST are conserved in the hypothetical
protein. CAST may be essential for the formation and/or
maintenance of the CAZ structure.

We have demonstrated here that CAST forms a ternary
complex with at least RIM1 and Munc13-1. We have more-
over shown here that bassoon is associated with this complex.
At present, we do not know whether bassoon directly binds
CAST, RIM1, and/or Munc13-1. Because bassoon is a very
large protein with several protein—protein interaction do-
mains, it may have a potency to interact with many presynap-
tic proteins. The physiological significance of the ternary
complex of CAST, RIM1, and Muncl3-1 or the association
of bassoon with the ternary complex is currently unclear, but,
to our knowledge, we have provided here, for the first time,
the evidence that a network of protein—protein interactions
among the CAZ proteins exists in vivo. Genetic ablation of
the CAST gene in mice as well as C. elegans might provide us
with some clues for our understanding of the molecular
mechanism underlying the assembly of the CAZ.

Implication of CAST in synapse formation

It has been suggested that the active zone might be formed
by the incorporation of preassembled, macromolecular com-
plexes into the presynaptic membrane (Vaughn, 1989; Roos
and Kelly, 2000). Consistently, GFP-tagged VAMP2/synap-
tobrevin II has been shown to cluster at the newly forming
active zone together with other presynaptic proteins, such as
synapsin I, SV2, and Ca?* channel (Ahmari et al., 2000).
These clusters are thought to be cytoplasmic transport pack-
ets for presynaptic proteins. It is currently unknown whether
the CAZ proteins are contained in the clusters. Recently,
bassoon- and piccolo-associated dense core vesicles have
been discovered and characterized (Zhai et al., 2001). Be-
cause bassoon and piccolo are almost always found at na-
scent synapses, the dense core vesicles are thought to be pre-
cursor vesicles for the active zone (Zhai et al.,, 2001),
although the presence of other CAZ proteins on the vesicles
has not been studied. We have shown here that CAST, as
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well as bassoon, is expressed at the early stages of synapse
formation in primary cultured rat hippocampal neurons.
Our present study further suggests that not only CAST, but
also RIM1, is at least partly associated with the same vesicles
as those transporting bassoon. Taken together with the ear-
lier observation (Zhai et al., 2001), it is likely that the CAZ
proteins are expressed and associated with the vesicles at the
eatly stages of synapse formation and then correctly trans-
ported into newly forming synapses, followed by fusion with
the plasma membrane, which might result in the formation
of the new active zone.

Materials and methods

Purification of synaptic proteins

Subcellular fractionation of rat brain was performed as described by Co-
hen et al. (1977). Proteins were extracted from the P2 or PSD fraction (1.4
mg of protein each) with 900 .l of an extraction buffer (20 mM Tris-Cl, pH
8.0, 7 M urea, 2 M thiourea, 0.9% CHAPS, T mM DTT, 10 pM a-amidi-
nophenyl-methanesulfonyl fluoride hydrochloride [APMSF], and 10 pg/ml
leupeptin) at RT for 30 min. 450 wl of a dilution buffer (20 mM Tris-Cl, pH
8.0, and T mM DTT) was added to the extract. The filtrated extract (~1 ml)
for the P2 or PSD fraction was then applied on a Mono Q column (1.6
mm X 50 mm; Amersham Biosciences) equilibrated with 2 ml of buffer A (20
mM Tris-Cl, pH 8.0, 0.6% CHAPS, T mM DTT, and 10 wM APMSF). After
the column was washed with 2 ml of buffer A, elution was performed with
a 2.4-ml linear gradient of NaCl (0-0.5 M) in buffer A, and fractions of 100
ul each were collected. All the fractions were subjected to SDS-PAGE, fol-
lowed by protein staining with Coomassie brilliant blue. The bands more
concentrated in the PSD fraction than those in the P2 fraction were cut out
from the gels and stored at —20°C until use.

Determination of partial aa sequence of CAST and molecular
cloning of its cDNA

The Mono Q fraction containing CAST (600 pl) was subjected to 7.5%
SDS-PAGE. A protein band corresponding to CAST was cut out from the
gel, digested with a lysyl endopeptidase, and analyzed as previously de-
scribed (Imazumi et al., 1994). Aa sequences of the four peptides were de-
termined. Computer homology search revealed that all four peptides were
contained within the primary sequence deduced from a human cDNA
fragment (KIAA0378). The cDNA fragment was obtained from Kazusa
DNA Research Institute for a probe. To obtain full-length CAST, a rat hip-
pocampus cDNA library in NZAPII (Stratagene) was screened with the
probe. The full length in pBluescript-SK (pBS; Stratagene) was used as the
template for PCR to prepare various constructs.

Abs

A rabbit antiserum against CAST was raised against GST-KIAA0378-1, aa
30-182 (anti-CAST-1), or GST-KIAA0378-2, aa 183-308 (anti-CAST-2).
The antiserum was affinity purified as previously described (Takeuchi et
al., 1997). The polyclonal anti-NMDA receptor 2B (Chemicon), mono-
clonal synaptophysin (Chemicon), monoclonal anti-Myc (9E10) (Roche),
monoclonal anti-Munc13-1 (Synaptic Systems), monoclonal antibassoon
(StressGen  Biotechnologies), monoclonal anti-synaptotagmin | (Wako
Pure Chemical Industries), monoclonal anti-RIM1 (Transduction Laborato-
ries), and monoclonal anti-PSD-95/SAP90 (Transduction Laboratories) Abs
were purchased from commercial sources.

Solubilization of CAST from the P2 fraction of rat brain

Proteins were extracted from the P2 fraction (500 p.g of protein) of rat brain
with 500 pl of an extraction buffer (20 mM Tris-Cl, pH 7.5, 100 mM NaCl,
1 mM EDTA, 10 pg/ml of leupeptin, and 10 wM APMSF), containing an in-
dicated detergent at a concentration of 1% (wt/vol), at RT for 30 min. The
extract was centrifuged at 100,000 g at RT for 30 min to obtain the soluble
and pellet fractions.

Neuron culture and transfection

Primary cultured rat hippocampal neurons were prepared as previously de-
scribed (Bito et al., 1996). Immunofluorescence microscopy was performed
as previously described (Takeuchi et al., 1997). In the case of endogenous
CAST, methanol was used for fixation. Neurons were transfected with the
indicated expression vectors as previously described (Boudin et al., 2000).
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Expression vectors

Expression vectors were constructed in pGEX (Amersham Biosciences),
pClneo-Myc (Hirao et al., 1998), pPCMV-HA (Irie et al., 1997), or pEGFPC1
(CLONTECH Laboratories, Inc.) using standard molecular biological meth-
ods. The expression vector containing the human RIMT cDNA (pCMV-
Tag3-RIMT, full length, aa 1488) was kindly supplied from Dr. S. Seino
(Chiba University, Chiba, Japan). pClneo-Myc-RIM1 and -RIM1 PDZ (aa
568-695) and pCMV-HA-RIM1 were constructed from the RIM1 cDNA
and used for transfection. pClneo-Myc-RIMTAPDZ was constructed by
connecting the NH,-terminal (aa 1-576) and COOH-terminal (aa 696—
1488) regions of RIM1 at an EcoRl site. The PDZ domain of RIM1 was also
subcloned in pGEX and pCMV-Myc (Irie et al., 1997) for pull-down and
immunoprecipitation assays, respectively. pGEX-PDZT, -2, and -3 for PSD-
95/SAP90 and pCMV-Myc—PSD-95/SAP90 (full length) were obtained as
previously described (Irie et al., 1997). pEFBos-Myc—-Munc13-1 was ob-
tained as previously described (Orita et al., 1997). The GST fusion proteins
were purified according to the manufacturer’s protocol (Amersham Bio-
sciences).

Immunoprecipitation

Proteins were extracted from the P2 fraction (4 mg of protein) with 1%
deoxycholate, followed by dilution and dialysis with a Triton X-100-based
buffer as previously described (Luo et al., 1997). The extract was then in-
cubated with 2.5 ug of the control IgG, the anti-CAST-1, anti-Myc, or anti-
bassoon Ab at 4°C for 2 h. After the beads were extensively washed with
buffer B (20 mM Tris-Cl, pH 7.5, 100 mM NacCl, 0.5 mM EDTA, T mM
DTT, 1% [wt/vol] Triton X-100, 10 pg/ml leupeptin, and 10 M APMSF),
the bound proteins were eluted by boiling the beads in an SDS sample
buffer (60 mM Tris-Cl, pH 6.7, 3% SDS, 2% [vol/vol] 2-mercaptoethanol,
and 5% glycerol) for 5 min. The samples were then analyzed by Western
blotting. For analysis of ternary complex formation of CAST, RIM1, and
Munc13-1, immunoprecipitation was performed as follows. Each expres-
sion plasmid of EGFP-CAST-1, HA-RIM1, or Myc-Munc13-1 was trans-
fected into HEK293 cells. Each protein was extracted with buffer B and
then mixed in various combinations. After incubation at 4°C overnight, im-
munoprecipitation was performed as described using 2.0 pg of the anti-
GFP or anti-HA Ab. The samples were then analyzed by Western blotting.
For analysis of the interaction of the PDZ domain of RIM1 and the COOH
terminus of CAST, immunoprecipitation was also performed as described
above using the indicated plasmids.

Assay for cosedimentation of CAST and RIM1

HEK293 cells expressing Myc—CAST and Myc-RIM1 were lysed in 600 pl
of buffer C (20 mM Tris-Cl, pH 7.5, 75 mM NaCl, 0.5 mM EDTA, 1 mM
DTT, 0.4% [wt/vol] Triton X-100, 0.1% SDS, 10 wg/ml leupeptin, 10 pM
APMSF) and buffer B at RT for 30 min, respectively. The sample was centri-
fuged at 100,000 g at 4°C for 30 min to collect the supernatant. The super-
natant was incubated with 8 pg of the anti-Myc Ab coupled with protein
A-Sepharose beads to prepare the Myc—CAST- or Myc—RIM1-coupled affinity
beads. As for the control beads, native HEK293 cells were used under the
same conditions. Proteins were extracted from the P2 fraction (5 mg of pro-
tein) with buffer C. The extract (~2.8 ml) was incubated with the control,
Myc—CAST-coupled affinity beads, or Myc—RIM1-coupled affinity beads at
4°C overnight. After the beads were extensively washed with buffer C, the
bound proteins were eluted by boiling the beads in the SDS sample buffer
for 5 min. The samples were then analyzed by Western blotting.

Expression of CAST and RIM1 in HEK293 cells

HEK293 cells in 6-cm dishes were transfected with the indicated expres-
sion vectors by lipofectAMINE 2000 (Invitrogen). At 24 h after the transfec-
tion, one fifth of the cells were replated on cover glasses, followed by im-
munofluorescence microscopic analysis (Takeuchi et al., 1997). The
remainder of cells was replated on a 10-cm dish and further incubated for
48 h. The cells were collected and proteins were extracted from the cells
with 500 pl of buffer B. The sample was centrifuged at 10,000 g at 4°C for
30 min to collect the supernatant and pellet fractions, which were kept as
the Triton X-100-soluble and —insoluble fractions, respectively.

Assay for pull-down of CAST and RIM1

HEK293 cells expressing Myc-RIM1 or Myc—CAST-4 in 10-cm dishes were
lysed in 2.0 ml of buffer B at 4°C for 30 min. The sample was centrifuged
at 100,000 g at 4°C for 30 min to collect the supernatant. The supernatant
was divided into five fractions. Each extract was then incubated with 50 wl
of glutathione-Sepharose beads containing the indicated GST fusion pro-
teins (~1 pg of protein each) at 4°C overnight. After the beads were exten-

sively washed with a wash buffer (20 mM Tris-Cl, pH 7.5, 100 mM NaCl,
0.5 mM EDTA, 1T mM DTT, 0.02% SDS, and 0.4% [wt/vol] Triton X-100),
the bound proteins were eluted by boiling the beads in the SDS sample
buffer for 5 min. The samples were then analyzed by Western blotting.
Pull-down assay was performed as described above to estimate the RIM1-
binding activity of CAST mutants. In brief, the lysate of HEK293 cells ex-
pressing each CAST mutant was incubated with 20 wl of glutathione-Seph-
arose beads containing GST-RIM1 PDZ at 4°C overnight. After the beads
were extensively washed with buffer B, the bound proteins were eluted by
boiling the beads in the SDS sample buffer for 5 min. The samples were
then analyzed by Western blotting.

Sucrose gradient ultracentrifugation and immunoisolation
Discontinuous sucrose gradient ultracentrifugation was performed as pre-
viously described with slight modifications (Zhai et al., 2001). In brief, E18
rat brain was homogenized in a homogenization buffer (5 mM Hepes, pH
7.4, 0.5 mM EDTA, 0.3 M sucrose, and a protease inhibitor cocktail
[Roche]). The homogenate was centrifuged at 800 g for 20 min, and the
crude membrane in the supernatant was hypotonically lysed by adding
nine volumes of H,O. The crude membrane was then centrifuged at
100,000 g for 1 h. The pellet is referred to as P100 and the supernatant is
referred to as S100. The P100 fraction was then layered on a discontinuous
sucrose gradient of 0.3, 0.8, and 1.2 M. After the centrifugation at 350,000 g
for 3 h, fractions between 0.3 and 0.8 M and between 0.8 and 1.2 M and
the bottom fraction were collected and analyzed by Western blotting.
Continuous sucrose gradient ultracentrifugation (0.3-1.2 M sucrose) was
performed as previously described (Fujita et al., 1998). Fractions (360 wl of
each fraction) were taken from the top of the gradient to the bottom. Frac-
tion 14 is the bottom fraction.

Immunoisolation of vesicles was performed as previously described
(Zhai et al., 2001). In brief, tosylated superparamagnetic beads (Dynabeads
M-500 Subcellular; Dynal Inc.) were incubated with a goat anti-rabbit or
anti-mouse linker 1gG (Jackson ImmunoResearch Laboratories) at 10 pg/
mg beads in 0.2 M phosphate buffer at pH 7.4 overnight. For all subse-
quent steps, beads were collected with a magnetic device (MPC; Dynal
Inc.). Beads were washed with PBS containing 0.1% BSA and blocked with
a Tris blocking buffer (0.2 M Tris-Cl, pH 8.8, and 0.1% BSA) at 37°C for
4 h. The linker IgG-coupled beads were then incubated at 4°C overnight with
control IgG, the anti—-CAST-2 Ab, or the antibassoon Ab at a concentration
of 10 pug/mg beads in an incubation buffer (PBS, 2 mM EDTA, and 5%
FBS). The Ab-coupled beads were incubated with the light membrane frac-
tion at 4°C overnight. The beads were then collected and washed five times
with the incubation buffer and three times with PBS at 5 min each and kept
as a bound fraction. Supernatants were kept as a nonbound fraction. The
bound and nonbound fractions were analyzed by Western blotting.

Other procedures

Protein concentrations were determined as previously described (Takeuchi
et al., 1997). MALDI-TOF mass spectrometry was performed as previously
described (Jensen et al., 1996). In vitro translation was performed with the
reticulocyte lysate system (Promega). The prestained markers used in
Western blotting and Coomassie brilliant blue staining were myosin (203
kD), B-galactosidase (123 kD), BSA (83 kD), ovalbumin (50.7 kD), and car-
bonic anhydrase (36.8 kD). The standard markers used in silver staining
were myosin (200 kD), B-galactosidase (116 kD), phosphorylase b (97 kD),
and BSA (66 kD). Preparation and staining of a sagittal section of adult
mouse brain was performed as previously described (Shigemoto et al.,
1993). Immunohistochemical analysis of mouse hippocampus was per-
formed as previously described (Kawabe et al., 1999). Electron micro-
scopic analysis of mouse hippocampus was performed as previously de-
scribed (Kinoshita et al., 1998).
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