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While the high year-round production of tomatoes has been facilitated by solar greenhouse
cultivation, these yields readily fluctuate in response to changing environmental conditions.
Mathematic modeling has been applied to forecast phenotypes of tomatoes using
environmental measurements (e.g., temperature) as indirect parameters. In this study,
metabolome data, as direct parameters reflecting plant internal status, were used to
construct a predictive model of the anthesis rate of greenhouse tomatoes. Metabolome
data were obtained from tomato leaves and used as variables for linear regression with the
least absolute shrinkage and selection operator (LASSO) for prediction. The constructed
model accurately predicted the anthesis rate, with an R2 value of 0.85. Twenty-nine of the
161 metabolites were selected as candidate markers. The selected metabolites were
further validated for their association with anthesis rates using the different metabolome
datasets. To assess the importance of the selected metabolites in cultivation, the
relationships between the metabolites and cultivation conditions were analyzed via
correspondence analysis. Trigonelline, whose content did not exhibit a diurnal rhythm,
displayedmajor contributions to the cultivation, and is thus a potential metabolic marker for
predicting the anthesis rate. This study demonstrates that machine learning can be applied
to metabolome data to identify metabolites indicative of agricultural traits.
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1 INTRODUCTION

Tomatoes (Solanum lycopersicum L.) are produced worldwide, with the highest rates of production
among non-grain crops after potatoes (FAOSTAT, 2018). The high year-round production of
tomato fruits has been facilitated by greenhouse cultivation in many countries. Greenhouse
cultivation provides the optimal environmental conditions, such as temperature, humidity, and
light conditions, needed to grow plants (Peet and Welles, 2005). However, in addition to the
automatic control of environmental conditions, prompt treatment by tomato growers is necessary to
mitigate the effects of extreme weather conditions. For example, extreme heat causes pre-harvest
physiological disorders, resulting in fruit cracking and blossom drop in tomato plants. For such
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extreme heat, temporary equipment and/or manual control is
required to lower the temperature in the greenhouse (Liebisch
et al., 2009; Saure, 2014). Therefore, for greenhouse cultivation,
there is a need to continuously and adequately manage the
environmental conditions inside greenhouses. Moreover, the
morphological or physiological status of tomato plants can be
used to infer subsequent plant growth and outcome (crop
harvest). This means that more favorable growth conditions
could be investigated and elucidated to enhance plant growth
and maximize tomato fruit production. At present, tomato
growers empirically control the growth conditions in
greenhouses according to extreme weather conditions and
plant vigor.

Recently, omics data have been utilized in phenotype
prediction and the identification of genes that control traits of
interest. Among the omics data, gene expression data have been
employed, as gene expression profiles can be easily collected by
microarray experiments or sequencing technologies (Yamamoto
et al., 2016; Gao et al., 2018; Liabeuf et al., 2018). Yano et al.
(2006) introduced an accurate prediction method for phenotypes
with comprehensive gene expression profiles using a model on a
statistical index and correspondence analysis (CA). In addition to
transcriptome analysis, comprehensive metabolite profiles
(patterns of metabolite contents across a wide range of
experimental conditions) have also become practical with
high-throughput mass spectrometry-based technologies. Since
metabolites are directly related to phenotypes rather than
events of gene expression, phenotype prediction using
metabolome data is a promising strategy with which to
considerably improve predictability.

There are both direct and indirect approaches to the omics
analysis of a target trait. Omics data (e.g., gene expression and/or
metabolic profiles) obtained from a given organ represent the
genetic and physiological status of the same organ. Therefore,
omics data are directly available to identify genes and/or
metabolites controlling a given trait in an organ. For example,
omics data from the fruit of tomato plants rather than other
organs (e.g., leaves) are suitable for the detection of genes and
metabolites that play a key role in fruit development. However,
the direct approach is unfavorable because for the collection of
omics data, fruits need to be removed from the plant. To
maximize the quantity of fruit production in the greenhouse,
it is better to use vegetative organs, such as, rather of the fruit, for
the collection of omics data. If omics data from vegetative organs
is able to accurately represent the status of tomato fruit, the
indirect approach could also prove to be effective and efficient for
the identification of genes and metabolites for a trait, as well as for
phenotype prediction.

The metabolic profiling of vegetative organs has been reported
to be highly correlated with the quantity of tomato fruit
produced. For example, the association between vegetative and
reproductive growth of greenhouse tomatoes has been studied for
a long time (Khan and Sagar, 1969; Tanaka and Fujita, 1974). The
allocation of assimilated carbon between vegetative organs
(leaves) and reproductive organs (flowers and fruits) is
controlled by genetic and environmental factors, such as light
intensity and temperature (Dinar and Rudich, 1985; Heuvelink

and Buiskool, 1995). Previous studies have also suggested that the
metabolic profiles of vegetative organs, rather than reproductive
organs, are attractive and suitable for the construction of a
prediction model for fruit yield.

When the metabolic profiles in a vegetative organ are effective
in accurately predicting fruit yield, the profiles of a metabolite(s)
must be strongly associated with yield. The metabolite(s) allows
us to predict not only the yield, but also the traits that are highly
correlated with the yield. For example, the effective number of
flowers that eventually develop mature fruits is correlated with
the yield. This suggests that the effective number of flowers newly
generated within a period (e.g., a week) in the greenhouse,
referred to as the “anthesis rate” in this study, is an effective
index for the prediction of fruit production. In addition, this
index has practical and diagnostic advantages for maximizing
fruit production. When the predicted anthesis rate is too low for
commercial fruit production, the environmental condition can be
reconsidered to increase the rate. The improvement enhances the
subsequent plant growth and increases the effective number of
flowers, then maximizes tomato fruit production.

In this study, we present a statistical model with
comprehensive metabolic profiles aimed at maximizing tomato
fruit production in greenhouses, wherein the metabolic profiles in
leaves were employed to predict the anthesis rate. Because
metabolome data is a high-dimensional multivariate data,
variable selection is a crucial step to characterize the
underlying patterns of these variables and narrow them down
to find significant variables. Sparse modeling including the least
absolute shrinkage and selection operator (LASSO)model that we
applied in this study is widely used in various areas of data-driven
science (Rasmussen and Bro, 2012; Rish and Grabarnik, 2014).
LASSO model has the ability to perform variable selection by
reducing the number of variables. In the LASSO model,
significantly contributing variables are weighted with large
coefficients, while non-contributing variables are weighted
with zero or near-zero coefficients. Consequently, we also
identified metabolites that strongly contributed to the
prediction of the anthesis rate. To date, the control of the
environmental conditions in greenhouses has mainly relied on
the experience and knowledge of experts in tomato fruit
production. However, the use of machine learning and
multivariate analysis with comprehensive metabolic profiles in
vegetative organs allows us to not only predict fruit production,
but also to adjust the environmental conditions for the
enhancement of tomato growth without a need for abundant
practical experience. This novel strategy will provide innovative
knowledge and skills in greenhouse cultivation for all tomato
growers, as well as facilitate the economically efficient production
of other crops under greenhouse conditions.

2 MATERIALS AND METHODS

2.1 Plant Materials and Growth Conditions
Tomato plants were grown in greenhouses located in Tsukuba
(36°2′4.88″ N, 140°6′2.9″ E) and Matsusaka (34°37′51.7″ N,
136°29′39.5″ E), Japan.
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2.1.1 Tsukuba Greenhouse (TK01)
In Tsukuba, in the experiment designated TK01, the seeds of the
tomato cultivar Ringyoku (National Agricultural Research
Organization, Tsukuba, Japan) and rootstock cultivar Maxifort
(S. lycopersicum × S. habrochaites; De Ruiter Seeds,
Bergschenhoek, Netherlands) were sown on 16 May 2016. CF
Momotaro York (CFMY) seeds (Takii Seed, Kyoto, Japan) were
sown on 23 May 2016. On day 14 after sowing (DAS), Ringyoku
scions were grafted onto Maxifort rootstocks. On DAS 28 (13
June 2016), all seedlings were transplanted into rockwool blocks
(Delta4, Grodan, Roermond, Netherlands) and placed on
rockwool slabs (Grotop expert, Grodan) in a greenhouse with
a plant density of 3.3 plants/m2. Culture liquid with an electrical
conductivity (EC) of 3.4 mS/cm (15.8 me/L nitrate, 4.5 me/L P,
9.8 me/L K, 9.3 me/L Ca, 4.6 me/L Mg, 0.07 me/L Fe, 0.103 me/L
B, 0.017 me/L Mn, 0.076 me/L Zn, 0.00120 me/L Cu, and
0.00083 me/L Mo) was administered via a drip. After 14 days
of transplanting, culture liquid with an EC of 2.6 mS/cm was
administered. To control the cultivation environment, a
ubiquitous environment control system (Fujitsu, Kawasaki,
Japan) was used. The greenhouse was ventilated during the
day and heated overnight so that the daily mean temperature
was maintained at 25°C. A heat pump (Green Package; Nepon,
Tokyo, Japan) was operated from 20:00 to 04:00, with a target
range of 16–20°C. The daytime relative humidity was controlled
at 75% until 30 days after transplanting, and maintained at 70%
thereafter. Nineteen days after transplanting, CO2 was added
from 05:00 to 07:00 to reach a concentration of 800 ppm. Then,
and until 105 days after transplanting (26 September 2016), CO2

was added to a concentration of 400 ppm all day.

2.1.2 Matsusaka Greenhouse (IA04)
In Matsusaka, two sets of experiments (IA04 and IA06) were
conducted. In the experiment designated IA04, the seeds of the
tomato cultivars CFMY, C5-159 (Sakata Seed Co., Japan), C5-160
(Sakata Seed Co.), and C6-164 (Sakata Seed Co.) were sown on 27
July 2016. The seedlings grafted onto Maxifort rootstocks were
transplanted on 1 September 2016. The plant density was set at
2.4 plants/m2 and then rearranged to be 3.6 plants/m2 in late
January 2017. A rockwool culture system with drip fertigation
was used in the greenhouse. The culture liquid was supplied with
an EC of 3.0 mS/cm (16 me/L N, 4 me/L P, 8.0 me/L K, 8 me/L
Ca, and 4 me/L Mg). The interior air temperature was controlled
within the range of 13–27°C. The ideal humidity was 80%, and the
CO2 concentration was 800 ppm normally without ventilation
and 400 ppm with ventilation during cloudy weather.

2.1.3 Matsusaka Greenhouse (IA06)
In another experiment, designated IA06, the seeds of the tomato
cultivars CFMY, Ringyoku, and Managua (RIJK ZWAAN,
Netherlands) were sown on 4 October 2016. The seedlings
grafted onto Maxifort rootstocks were transplanted on 31
October 2016. The plant density was 2.4 plants/m2 in the first
3 months and then rearranged to 3.6 plants/m2. A rockwool
culture system with drip fertigation was used in the
greenhouse. The culture liquid was supplied with an EC of
3.0 mS/cm (16 me/L N, 4 me/L P, 8.0 me/L K, 8 me/L Ca, and

4 me/L Mg). The environmental conditions were controlled as in
experiment IA04.

2.2 Measurement of Anthesis Rates
To measure the anthesis rates, we periodically counted the
number of flowers that had not fallen off of each plant. The
cumulative numbers of flowers (“cumulative anthesis”) were
plotted (see Section 3 for details). From the cumulative
anthesis plot, the anthesis rates were calculated from the
gradients of a straight line between two neighboring time-
points on the horizontal axis.

2.3 Metabolome Analysis
2.3.1 Sampling of Tomato Leaves
In Tsukuba (TK01), the most basal leaflet of a fully developed and
sunlit leaf was sampled for two replications every 2 h
continuously for 24 h at one-week intervals for 4 weeks. A
total of 192 leaf samples were collected from 16 August 2016
to 6 September 2016 (Ringyoku; n = 96, CFMY; n = 96). In
Matsusaka, the fully developed upper leaves were sampled during
10:00–14:00 on 13 October 2016, and 19 January 2017, for IA04
for three replications, except for C5-160 for two replications
(CFMY; n = 6, C5-159; n = 6, C5-160; n = 4, C6-164; n = 6) and on
19 January 2017 (6 replications) and 9 March 2017 (8 replicates)
for IA06 (Ringyoku; n = 14, CFMY; n = 14, Managua; n = 14). The
leaves were collected and flash-frozen in liquid nitrogen.

2.3.2 Widely Targeted Metabolomic Analysis
The frozen leaf samples were freeze-dried and powdered. A small
amount of samples (0.5–8.9 mg dry weight) was weighed and 1 ml/
10mg (TK01) or 4 mg (IA04 and IA06) dry weight of extraction
solvent [80% (v/v) methanol and 0.1% (v/v) formic acid, with
8.4 nmol/L lidocaine and 210 nmol/L 10-camphorsulfonic acid as
internal standards] was added. This mixture was shaken using a
ShakeMasterNeo for 2 min at 1,000 rpm to extract themetabolites.
After centrifugation for 1 min at 9,100 × g, the supernatant was
diluted with the extraction solvent to obtain 0.4 mg/ml extracts.
Next, 25 µL of the extract was dried, dissolved in 250 µL of ultra-
pure water, and filtered using Millipore MultiScreenHTS384 well
(Merck KGaA, Darmstadt, Germany). A 1-µL aliquot of this filtrate
(0.04mg/ml) was subjected to widely targeted metabolomics using
liquid chromatography coupled with a tandem quadrupole mass
spectrometer (LC-QqQ-MS) (UPLC coupled with Xevo TQ-S,
Waters, Milford, MA, United States) (Sawada et al., 2009;
Sawada et al., 2019). The analytical conditions are described in
detail in Supplementary Tables S1–S3. Themetabolome data were
deposited in the DROP Met in PRIMe (the Platform for RIKEN
Metabolomics) (DM0041, http://prime.psc.riken.jp/archives/data/
DropMet/059/).

2.3.3 Measurement of Relative Metabolite Contents
For the Tsukuba data (TK01), the peak areas of 501 target
metabolites (including two internal standards) were processed
as follows. Values below the detection limit were set to zero. The
peak area of each metabolite in a leaf sample was divided by the
mean peak area in the extraction solvent control from the same
leaf sample to obtain the signal-to-noise ratio. In total, 161
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metabolites were detected with signal-to-noise ratios above two in
more than half of the leaf samples (Supplementary Table S3).
The peak area of each metabolite was divided by that of the
internal standard (lidocaine or 10-camphorsulfonic acid) to
obtain the relative metabolite content.

The peak areas from theMatsusaka data (IA04 and IA06) were
processed in the same manner as those from the Tsukuba data
(TK01). After calculating the signal-to-noise ratio, the peak area
of each metabolite was divided by that of the internal standard
(lidocaine or 10-camphorsulfonic acid) to obtain the relative
metabolite content.

2.4 Least Absolute Shrinkage and Selection
Operator Regularized Linear Regression
Model Analysis
LASSO regularization was used to extract essential metabolites to
predict an anthesis rate. We constructed a predictionmodel of the
anthesis rate using LASSO regularized linear regression analysis,
called the LASSO model, to identify the “predictor metabolites”
for the anthesis rate.

2.4.1 Least Absolute Shrinkage and Selection
Operator Model to Predict the Anthesis Rate in TK01
A LASSO model using metabolome data from TK01, named “M-
model”, was constructed. Before training the model, the relative
metabolite contents of each metabolite in all leaf samples were
normalized to have a mean of zero and a standard deviation of
one (that is, standardization). The LASSO model was
implemented using sklearn.linear_model.Lasso in the Scikit-
learn package (McKinney, 2010; Pedregosa et al., 2011).

The M-model was constructed by training the metabolic
profiles of 161 metabolites from 192 leaf samples. The linear
regression is expressed as:

yi � w0 + w1Xi1 + . . . + wmXim, i ∈ [1, n], (1)
where yi is the anthesis rate of the plant with the ith leaf samples
(1 ≤ i ≤ n, n = 192), Xij is the relative metabolite content of the jth
metabolite in the ith sample (1 ≤ j ≤m,m = 161), wj is the model
coefficient of the jth metabolite (1 ≤ j ≤m), and w0 is an intercept
term. Here, yi and Xij are elements of a vector y = (y1, . . . , yn)

T and
an n × mmatrix X, respectively. The linear regression was trained
with L1 regularization to perform both feature selection and
regularization. The objective function to minimize is:

min
w

1
2n

∣∣∣∣
∣∣∣∣Xw − y

∣∣∣∣
∣∣∣∣
2

2
+ α

∣∣∣∣
∣∣∣∣w
∣∣∣∣
∣∣∣∣1, (2)

where ||Xw − y||22 = ∑n
i�1 (Xiw − yi)2 is the sum of the squared

errors, ||w||1 = ∑m
j�1 |wj| is the L1-norm of the coefficient vector,

and α ≥ 0 is the penalty constant (Tibshirani, 1996). Thus, in the
M-model, significantly contributing metabolites, called the
selected metabolites, were weighted with large coefficients
(either positive or negative), while non-contributing
metabolites were weighted with zero coefficients. R2 value of
the M-model was calculated. The prediction accuracy was
assessed by 10-fold cross-validation. R2 value and the mean
squared error (MSE) were used as accuracy metrics.

In addition, the second and third LASSO model training with
environmental data (E-model) and combined metabolome and
environmental data (C-model), respectively, were constructed in
the same manner as the M-model. In the E-model, the X matrix
contained only environmental factor data (solar irradiance,
ambient temperature, relative humidity, and CO2

concentration). The X matrix in the C-model consisted of the
metabolic profiles of 161 metabolites and environmental
factor data.

2.4.2 Least Absolute Shrinkage and Selection
Operator Model for the Assessment of the Prediction
Accuracy of the Predictor Metabolites
We also used the LASSO model to assess the ability and strength
of the predictor metabolites in the M-model by expanding the
metabolome data from different experimental designs. The
predictor metabolites selected from the M-model were used to
reconstruct the LASSO model with additional leaf samples from
IA04 and IA06. Themodel was reconstructed in the samemanner
as the M-model by training the metabolic profiles of the predictor
metabolites of 256 leaf samples from three greenhouses (TK01,
IA04, and IA06).

2.5 Classification of Leaf Samples by
Principal Component Analysis
The differences in leaf samples were evaluated by the PCA of their
metabolic profiles. The relative metabolite content of each
metabolite in all leaf samples was standardized. The PCA tool
in the Scikit-learn package was used. The first two principal
components of each leaf sample were used to project the leaf
samples into a two-dimensional space. PCA was performed with
two datasets, TK01 and a combined data of TK01, IA04, and
IA06. For the PCA of TK01, the metabolic profiles of 161
metabolites from 192 leaf samples were used. For the PCA of
data combined from TK01, IA04 and IA06, the metabolic profile
of the predictor metabolites of 256 leaf samples from the three
greenhouses (TK01, IA04, and IA06) were used.

2.6 Hierarchical Clustering Analysis of the
Predictor Metabolites
To evaluate the similarities among the predictor metabolites, the
metabolic profiles of 256 leaf samples from the three greenhouses
(TK01, IA04, and IA06) were used for HCL. The Pearson
correlation coefficient (r) of the relative metabolite contents
for each pair of metabolites was calculated (Supplementary
Figure S3 and Supplementary Table S4). Then, the distances
between metabolites, namely, the “correlation distance” (1–r),
were employed for agglomerative clustering. Linkage methods
were applied to compute the distances between sub-clusters; then,
a dendrogram was generated to mine metabolites showing similar
profiles. The optimum linkage method was determined based on
the cophenetic correlation coefficient. The best linkage method,
which yielded the maximum cophenetic correlation coefficient,
was used to create a hierarchical dendrogram (Jones et al., 2001).
HCL was implemented using the Python library Scipy.
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FIGURE 1 | Experimental design of TK01. (A) Experimental timeline for leaf sampling and observation of anthesis of cultivars CFMY and Ringyoku. The blue
rectangle indicates the period of the measurement of environmental factors (e.g., temperature). (B) Cumulative anthesis. The arrows and gray vertical lines indicate the
dates of leaf sampling for metabolome analysis. (C) Distributions of anthesis rates were statistically the same between cultivars (Mann-Whitney U test, p > 0.05, CFMY;
n = 21, Ringyoku; n = 21). (D)Box plot of the standardized relative metabolite contents of 161metabolites in 192 leaf samples (CFMY; n = 96, Ringyoku; n = 96). (E)
PCA score plot of the first two components (PC1 and PC2) of leaf samples (CFMY; n = 96, Ringyoku; n = 96). The metabolic profiles of the 161metabolites were used for
PCA. The numbers in parentheses in the axes are contribution ratios. (F) Environmental conditions measured in the experimental timeline. The environmental data in the
blue background color used for LASSO analysis (E-model and C-model). The period in the blue background color is consistent with the period for leaf sampling.
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2.7 Network Analysis of the Predictor
Metabolites With Correspondence Analysis
CA is a multivariate technique and is conceptually similar to PCA.
In previous studies, CA has been used to clarify the associations
between genes and experimental conditions in microarray analyses
(Yano et al., 2006; de Tayrac et al., 2009). We employed CA for
network analysis to discover the associations between the predictor
metabolites and the associations between the predictor metabolites
and the leaf sample characteristics, that is, experimental designs,
cultivars, and sampling times.

CA was executed against metabolic profiles. The metabolome
data were arranged in a matrix where the columns and rows
correspond to the predictor metabolites selected by the M-model
and 256 leaf samples from the three experimental designs,
respectively. The relative metabolite contents of each
metabolite in all leaf samples were standardized, and the
minimum value was subtracted to prevent negative values. CA
was performed using the FactoMineR library in R (Lê et al., 2008).
Coordinates with m-1 dimensions were assigned to each
metabolite and leaf sample, where m is the number of
predictor metabolites. The coordinate values of all dimensions
were retrieved (Supplementary Table S5).

2.7.1 Network Analysis Between the Predictor
Metabolites and the Leaf Sample Characteristics
The Euclidean distances for each pair of a metabolite and leaf
sample were calculated using coordinates in all dimensions from
CA. Theoretically, a smaller Euclidean distance indicates a higher
association. Based on the histograms of the Euclidean distance
(Supplementary Figure S4A), the 15th percentile of all distances
was set as a threshold value to define a significant association.
Pairs of a metabolite and leaf sample with distances less than the
threshold were selected (Supplementary Table S6). The mean of
the distances between each metabolite and each leaf sample
characteristics were integrated to construct metabolic
networks. Networks were constructed using py2cytoscape and
NetworkX libraries in Python, and Cytoscape software (version
3.6.1) (Shannon et al., 2003; Hagberg et al., 2008; Ono et al.,
2015). The associations between the metabolites were also
evaluated in the same manner.

2.7.2 Network Analysis Among the Predictor
Metabolites
CA was used to determine the association among the predictor
metabolites. The same process was performed to obtain pairwise
Euclidean distances between the metabolites (Supplementary
Tables S7, S8). The distances that passed the threshold were
integrated to construct the metabolite networks.

Statistical Analysis for the Anthesis Rates
In TK01, the significance of the anthesis rates between the
cultivars was analyzed using the Mann-Whitney U test. The
significance of the anthesis rates among the experimental
designs (TK01, IA04, and IA06) was analyzed using the
Kruskal–Wallis test with Conover’s multiple comparison test.
Scipy in Python was used for the statistical analyses.

3 RESULTS

3.1 Data Collection for Anthesis Rate, Leaf
Metabolome, and Environmental Factors
In the experiment designated TK01, two tomato cultivars,
Ringyoku and CFMY, were grown in Tsukuba, Japan. After
transplanting the tomatoes into a greenhouse, the cumulative
number of anthesis occurrences was recorded in parallel with
leaflet sampling (Figure 1A). The cumulative number of anthesis
occurrences was used to calculate anthesis rates (Figures 1B,C,
respectively). The anthesis rates of the Ringyoku and CFMY
cultivars were similar and gradually decreased over the growing
period. No significant differences were observed between
cultivars. During the growing period, fully developed basal and
sunlit leaves were collected from plants. Leaf sampling every 2 h
for 24 h was conducted four times at one-week intervals. The
sampled leaves were subjected to a widely targeted metabolome
analysis using a liquid chromatography-mass spectrometer. From
a total of 499 targeted metabolites, 161 metabolites above the
signal-to-noise ratio threshold were selected (Supplementary
Table S3). The relative metabolite contents of each metabolite
in all leaf samples were standardized prior to further analysis. The
boxplot (Figure 1D) and PCA score plot (Figure 1E) indicated
that Ringyoku and CFMY had similar metabolic profiles. Thus,
we pooled the metabolic profile data obtained from the two
cultivars (192 leaf samples × 161 metabolites) for further
analysis. In addition, environmental data (solar irradiance,
ambient temperature, relative humidity, and CO2

concentration) were also obtained (Figure 1F).

3.2 Least Absolute Shrinkage and Selection
Operator Model for Anthesis Rate
Prediction in TK01
We constructed three models (M-model, E-model, and C-model)
to predict the anthesis rates in TK01. The model was trained and
optimized to obtain predictor metabolites.

For the construction of the M-model, the metabolic profiles of
161 metabolites in 192 leaf samples were employed. During
model training, we optimized the model by assigning a range
of the penalty constant (α) and then measuring the prediction
accuracy by cross-validation. The penalty constant (α) of the
M-model was fine-tuned to optimize the best prediction model
with the selected metabolites. The iteration training was
performed by varied α from 5 × 10−5 to 0.5 (Supplementary
Figure S1A). At each given α, different sets of metabolites with
optimized LASSO coefficients (w) were selected (Supplementary
Figure S1A). In each loop of a given α, the R2 value of the
M-model was calculated, and the prediction accuracy of the
M-model was assessed by 10-fold cross-validation. The R2

value and the mean squared error (MSE) of the 10-fold cross-
validation were also calculated (Supplementary Figure S1B). The
R2 values of the training and cross-validation were used to
determine an optimum M-model that contained the selected
metabolites as the predictor metabolites for the anthesis rate
(Figure 2A).

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8390516

Siriwach et al. LASSO on Tomato Anthesis Rate

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Frommodel optimization, increasing the number of metabolites
in the model increases the predictive accuracy (R2 values) in both
training and cross-validation. Until cross-validation R2 stopped
improving while model R2 continued to increase, this indicates
overfitting in a high number of metabolites. Thus, we selected α,
where the cross-validation R2 started to plateau and was closest to
training R2 as our optimal model. In Figure 2A, the optimum
number of metabolites was determined to be 29 at the elbow point
on the graph that yielded the closest R2 values between the training
and cross-validation. Using the contributions of these 29
metabolites (Figure 2B) as predictor metabolites, we constructed
a prediction model for TK01 (M-model). The M-model provided
good prediction performance for the anthesis rates (Figure 2C).
The R2 value of the M model, R2 s value, and MSE of the 10-fold
cross-validation are summarized in Table 1.

To examine the possibility of including environmental factors in
the prediction model, we also attempted to construct a LASSO
model, the E-model, using four environmental parameters (interior
air temperature, interior relative humidity, interior CO2

concentration, and cumulative solar irradiance) recorded at 5-

min intervals (Figure 1F). The prediction performance of the
environmental parameters was poor (Table 1 and Supplementary
Figure S2A). Finally, the C-model model was constructed using a
combination of metabolites and environmental factors. The
combination slightly improved the prediction accuracy of the
anthesis rate (Table 1 and Supplementary Figure S2B).

3.3 Assessment of the Accuracy of Anthesis
Rate Prediction Using the Predictor
Metabolites
To assess the prediction accuracy of the anthesis rates by the
contents of the 29 selected metabolites as the predictor
metabolites from the M-model, datasets from two greenhouses
(IA04 and IA06) were used.

3.3.1 Differences in Metabolic Profiles Among
Experimental Designs
In IA04 and IA06, the experimental designs were conducted at a
different greenhouse location (Matsusaka) from TK01 (Tsukuba).

FIGURE 2 | LASSOmodel with ten-fold cross-validation for the prediction of the anthesis rate in TK01. For LASSO regression analysis, the metabolic profiles of 161
metabolites in 192 leaf samples were employed. (A) The numbers of metabolites used for predictor variables versus R2 value. The elbow point suggests the optimum set
of metabolites for the prediction model. (B) Comparison of anthesis rates between observed and predicted values. Predicted values were obtained from the M-model
with 29 selectedmetabolites. The dotted line represents the agreement between the observed and predicted values. (C)Coefficients (w) of 29metabolites selected
by the M-model. Red dots are positive coefficients, while blue dots are negative coefficients.
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In addition, these three experiments were performed in different
growth seasons. Moreover, in addition to Ringyoku and CFMY,
four additional cultivars were also used in IA04 and IA06 (section
2.1). During the recording of the cumulative numbers of anthesis
occurrences, the leaflets were sampled for metabolome analysis at
one time point around noon on 2 days (Figure 3A). Therefore,
metabolic profiles must be varied by differences in the
experimental designs. The relative metabolite contents of the
29 predictor metabolites on TK01, IA04, and IA06 is shown in a
boxplot in Figure 3B. The distribution of the relative metabolite
contents in TK01 was relatively compact, while the IA04 and
IA06 data exhibited relatively larger variances. This was caused by
the mixed effects of different cultivars, greenhouse conditions,
and seasons. In addition, PCA for the relative metabolite contents
of the 29 predictor metabolites and all leaf samples (n = 256) from
the three greenhouses were performed to investigate the
differences among the experimental designs. The TK01 leaf
samples were noticeably separable from the IA04 and IA06
leaf samples, while the IA04 and IA06 leaf samples were
clustered together (Figure 3C). In addition to the metabolic
profiles, the anthesis rates differed among the three
experimental designs (Figure 3D). The anthesis rate in IA04
was slightly higher than that in TK01, while IA06 showed the
highest anthesis rate among the three experimental designs. The
differences in the metabolic profiles and anthesis rate of TK01
and the two experimental designs (IA04 and IA06) made it
difficult to obtain a good prediction by imputing data from
IA04 and IA06 into the M-model.

3.3.2 Least Absolute Shrinkage and Selection
Operator Model to Assess the Prediction Accuracy of
the Predictor Metabolites
We evaluated the predictive ability of 29 predictor metabolites
selected from the M-model. If the predictor metabolites are
biologically associated with the anthesis rate, broaden number
of leaf samples from different experimental designs should
provide a good prediction model. To clarify whether a more
universal model could be established, the relative metabolite
content of the 29 predictor metabolites and the anthesis rates
obtained in TK01, IA04, and IA06 were combined and subjected
to the LASSO model. A total of 13 out of the 29 metabolites that
yielded the minimum MSE were selected (R2 = 0.75)
(Figure 3E). The 10-fold cross-validation results
demonstrated the acceptable fitting and prediction accuracy
of the model (MSE = 0.26). The model showed good prediction
performance across the three datasets (cross-validated R2 =
0.69) (Figure 3F). This result indicates that the predictor
metabolites selected by the LASSO model as contributing

variables in a specific dataset (TK01) could be effective for
the prediction of the anthesis rate in general.

Among the two sets of metabolites selected from the M-model
and this combined data model, the LASSO coefficients of the
selected metabolites showed that tyramine, trigonelline,
glycerophosphocholine, and L-threonic acid had a high
association with the anthesis rate in both models.

3.4 Candidate Metabolites Associated With
the Anthesis Rate
Metabolites showing significant associations with anthesis rates
are attractive candidates for markers of reproductive traits,
including anthesis rates, fruit development, and production.
We detected candidate metabolites related to anthesis rates by
LASSO analysis (Section 3.3). To understand the biological
characteristics of the 29 predictor metabolites and identify
candidate metabolites for future use as prediction markers, we
investigated the association between the 29 selected metabolites
and anthesis rates using hierarchical clustering analysis (HCL)
and correspondence analysis (CA).

First, HCL was used to visualize the metabolic profiles of
TK01, IA04, and IA06. Pearson correlation coefficients (r)
between each pair of the 29 predictor metabolites were
obtained to evaluate the similarity in the profiles
(Supplementary Figure S3). Strong correlations were
observed, particularly in the top selected metabolites, such as
tyramine, trigoneline, glycerophosphocholine, and serotonin, of
the M-model (Figure 4A). This result suggests that each of these
metabolites plays a similar and important role in anthesis rate
estimation. It indicates that it is possible to choose only a small
number of metabolites as key predictors of anthesis rates.

Next, CA was conducted for network analysis to elucidate the
associations among the 29 predictor metabolites. In the metabolic
network (Figure 4B), all of the connected metabolites were
amines, except for chlorogenic acid, rhoifolin, and L-threonic
acid. Thus, the nitrogen-containing metabolites showed similar
accumulation patterns across the leaf samples (Figure 4B).
Among all metabolite-to-metabolite edges, trigonelline has the
most edges linked to other metabolites, indicating that
trigonelline is a major coexisting metabolite with others.

CA was also conducted for network analysis to elucidate the
associations between the 29 predictor metabolites and leaf sample
characteristics, that is, experimental designs, cultivars, and
sampling times. Among the leaf sample characteristics, the
experimental design was the only factor displaying a clear
separation in PCA (Figure 3C), whereas the cultivars and
sampling times did not show distinct separation

TABLE 1 | The prediction accuracies of the three models in TK01.

Variable used for LASSO model construction R2 value (LASSO model) Cross-validation

R2 value MSE

The M-model with metabolic profiles of 29 metabolites 0.85 0.75 0.013
The E-model (only environmental factors) 0.11 0.10 0.055
The C-model with metabolic profiles of 36 metabolites and environmental factors 0.89 0.83 0.010

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8390518

Siriwach et al. LASSO on Tomato Anthesis Rate

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


FIGURE 3 | Predictability assessment of the 29 predictor metabolites with expanding metabolome datasets. (A) Experimental timeline for leaf sampling and
anthesis measurements in IA04 (cultivars: CFMY, C5-159, and C5-16) and IA06 (cultivars: CFMY, Ringyoku, and MNG). (B) Box plot of standardized relative metabolite
contents of the 29 predictor metabolites in each cultivar in three experimental designs (TK01, IA04, and IA06). The numbers of leaf samples (n): CFMY (n = 96) and
Ringyoku (n = 96) in TK01, CFMY (n = 6), C5-159 (n = 6), C6-164 (n = 6), and C5-160 (n = 4) in IA04, and Ringyoku (n = 14), CFMY (n = 14), and Managua (n = 14) in
IA06. (C) PCA score plot of leaf samples (n = 256) by using metabolic profiles of the 29 predictor metabolites from three experimental designs (TK01, IA04 and IA06). The
contribution ratio is shown in parentheses for the first and second principal component (axis). The colors indicate the experimental designs, and the markers represent
the cultivars. (D) Anthesis rates used for the LASSO model (TK01, n = 16; IA04, n = 8; IA06, n = 6). Asterisks indicate significant differences according to the Kruskal-
Wallis test with Conover’s multiple comparison test (*, p < 0.05; **, p < 0.01; and ***, p < 0.001). (E)Model coefficients (w) of 13metabolites selected in the LASSOmodel
construction with metabolome datasets from three experimental designs (TK01, IA04 and IA06). The red dots are positive coefficients, while the blue dots are negative
coefficients. (F) Comparison of anthesis rates between observed and predicted values obtained from the model constructed by the three datasets. The dotted line
represents the agreement between the observed and predicted values.
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(Supplementary Figures S4B,C). Thus, in CA, we first examined
the network between the predictor metabolites and the
experimental designs (TK01, IA04, and IA06). In the network
(Figure 5A), IA04 and IA06 shared seven similarly dominant
metabolites. Four out of the seven metabolites,
glycerophosphocholine, serotonin, trigonelline, and tyramine,

were in the top five of the 29 predictor metabolites
(Figure 2C). TK01 had nine highly associated metabolites.
Among them, one metabolite, trigonelline, was linked to all
three experimental designs in the network (Figure 5A). Next,
we examined the association between metabolites and cultivars.
In the metabolite to cultivar network (Figure 5B), a network

FIGURE 4 | Metabolite association of 29 predictor metabolites. (A) Dendrogram representing agglomerative clustering of the correlation distances of the 29
selected metabolites in average linkage. The cluster threshold was 0.5, as indicated by the black dotted line. Lines of the same color represent the same clusters. (B)
Network for metabolites (threshold: ≤15th percentile of Euclidean distances). The node size represents the number of edges linked to other metabolites.
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FIGURE 5 | Metabolite association with experimental designs, cultivars, and sampling times. (A) Network of metabolites and growth conditions. (B) Network of
metabolites and cultivars. The cultivars were divided into subcategories of experimental design; for example, the CFMY samples were divided into three and labeled
CFMY_TK01, CFMY_IA04, and CFMY_IA06. (C) Network of metabolites and sampling times. (D) Diurnal changes of the relative content of phosphocholine (scaled
between 0 and 1).
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pattern similar to the experimental design was observed. The
cultivars IA04 and IA06 shared highly associated metabolites but
did not share with the cultivars in TK01, except trigonelline,
which was associated with all cultivars (Figure 5B).

3.5 Candidates of Stable Metabolites for the
Prediction of the Anthesis Rate
Taking into account the leaf sampling time, metabolite content
generally changes according to the circadian rhythm. For future
use as key indicators of anthesis rate, metabolites whose contents
do not change depending on the leaf sampling time are preferred.
Because the leaf samples from TK01 were collected every 2 h for a
day in time-series format, we constructed a Euclidean distance
network of TK01 samples to identify the metabolite associated
with leaf sampling time, namely day (06:00‒18:00) or night (20:
00‒04:00) (Figure 5C). Among the nine metabolites strongly
associated with TK01, phosphocholine was highly associated only
at night. This result is consistent with the accumulation pattern of

phosphocholine, which showed a diurnal bell-shaped pattern
peaking at night (Figure 5D). Eight other metabolites,
including trigonelline, shared associations during both day and
night, indicating high metabolite production, which may produce
stable production throughout the day.

To further evaluate the diurnal fluctuations of the 29 LASSO-
selected metabolites in TK01, the relative contents of each
metabolite were scaled between 0 and 1. The distribution of
the standard deviations (SD) of the 29 metabolites is shown in
Figure 6A. The standard deviations of the metabolite contents
ranged from 0.148 to 0.230. Among these, the standard deviation
of trigonelline was relatively small (SD = 0.167). In addition, the
trigonelline content was relatively stable over the course of a day
(Figure 6B) compared to that of the other metabolites, such as
phosphocholine, glycerophosphocholine, L-glutamic acid, and 4-
aminobutyric acid, which exhibited strong diurnal fluctuations
(Supplementary Figure S5).

Taken together, our results suggest that trigonelline is an
attractive metabolite for use as a marker of the anthesis rate of

FIGURE 6 | Diurnal fluctuations of metabolite content in tomato leaves. (A) Distribution of the standard deviations of 29 metabolites. The red arrow indicates the
standard deviation of trigonelline at 0.167. (B) Diurnal fluctuations of the relative content of trigonelline (scaled between 0 and 1).
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tomatoes. Trigonelline was one of the top five LASSO-selected
metabolites for the prediction of the anthesis rate (Figures 2C,
3E), showed no diurnal changes, and exhibited stable content
among the different cultivation conditions and varieties (Figures
6A,B). Other metabolites among the top five, such as tyramine,
were also available not only for the prediction of the anthesis rate,
but also as markers under specific cultivation conditions.

4 DISCUSSION

Machine learning approaches have the potential to provide
prediction models for agricultural traits and effectively identify
metabolites, genes, or environmental factors associated with these
traits (Menéndez et al., 2011; Acharjee, 2013; Das et al., 2018; Du
et al., 2019; Sawada et al., 2019). Our study employed LASSO
regularized linear regression model analysis to construct a
prediction model of the anthesis rate using leaf metabolome
data as predictor variables and identify the 29 predictor
metabolites as candidate biomarkers. Importantly, we
identified trigonelline as a key metabolite for anthesis rate
prediction using the LASSO models and CA. Moreover,
because the trigonelline content in the leaf was relatively stable
over the course of a day, it was identified as an attractive
biomarker of anthesis rate.

4.1 Possible Uses of Least Absolute
Shrinkage and Selection Operator-Selected
Metabolites as Biomarkers
The prediction of reproduction and fruit development in tomato
is a powerful tool for the diagnosis of plants and the optimal
management of the environmental conditions to maximize
plant yields. Since anthesis is directly linked to tomato fruit
production, it is a good index with which to evaluate tomato
cultivation. The identification of metabolites involved in
anthesis can be employed as metabolite markers for the
prediction of anthesis and yield.

In the construction of the models using LASSO, unimportant
metabolites were penalized by L1 regularization, leaving more
prominent metabolites after variable selection. A reduction in
the number of metabolites is desirable, because a smaller
number of metabolites can be more easily measured for
future use as biomarkers. As a result, 29 metabolites,
including both primary and specialized (secondary)
metabolites, were selected from among 161 metabolites. Most
of the 29 selected metabolites were nitrogen-containing
compounds, such as amino acids and their derivatives,
alkaloids, amines, and phospholipids. The LASSO-selected
metabolites could indicate the nitrogen status associated with
the anthesis rate in tomatoes.

Among the 29 metabolites, trigonelline (N-methylnicotinate),
a quaternary ammonium, exhibited a metabolic profile similar to
that of the majority of the selected metabolites. (Figure 4B). In
addition, trigonelline demonstrated the greatest association with
all three growth conditions and all cultivars, while other
metabolites were associated with only leaf samples from

particular experiments (Figures 5A–C). Moreover, compared
to other metabolites, trigonelline showed a relatively stable
accumulation over the course of a day (Figures 5D, 6B and
Supplementary Figure S5). Among 29 metabolites associated
with anthesis rate, trigonelline was shown to be a key metabolite
related to anthesis rate. These results support that trigonelline is a
suitable biomarker without diurnal fluctuations.

Trigonelline is known to increase in tomato leaves in
response to increased nitrogen content in nutrient
solutions (Tyihák et al., 1988), and can thus serve as a
possible indicator of nitrogen status within the plant body.
Therefore, we investigated the correlation between
trigonelline content in leaves and nitrogen fertilizer
absorption in IA04 and IA06 (Supplementary Table S9).
The results showed a positive correlation (r = 0.56, p <
0.05) in IA06 and a weak correlation (r = 0.30, p < 0.05) in
IA04, supporting this hypothesis. Trigonelline is synthesized
from nicotinic acid, which is a metabolite of the nicotinamide
adenine dinucleotide (NAD) synthesis/degradation
(Ashihara, 2006). The functions of trigonelline in plants
have been reported in terms of various aspects, such as cell
cycle regulation, nodulation, and reduction of oxidative stress
(Minorsky, 2002). A recent study reported on the function of
trigonelline as a detoxified metabolite of excess nicotinic acid
in the NAD cycle (Li et al., 2017). The demethylation of
trigonelline regenerated nicotinic acid for utilization in
NAD synthesis as a reservoir metabolite. Demethylating
activity has also been observed in the leaves of some plants,
as well as in coffee plant seeds, during germination (Ashihara,
2006). In Arabidopsis thaliana, NAD is known to play an
important role in growth phase transition (Hashida et al.,
2016). In a previous study, the perturbation of NAD redox
homeostasis due to the overexpression of genes involved in
NAD synthesis resulted in the ectopic generation of reactive
oxygen species, leading to early flower stalk wilting and
shortened plant longevity (Hashida et al., 2016). In
addition, NAD accumulation was reported in pollen before
germination, indicating that NAD metabolism plays a crucial
role in pollen maturation (Hashida et al., 2013). Our
hypothesis is that trigonelline may be involved in flower
development via NAD homeostasis, however, further
experiments are required to confirm this hypothesis.

4.2 Improving Predictability by Using
Environmental Data
Although we attempted to use environmental factors to predict
reproductive traits, the prediction performances of the generated
models were poor (Table 1 and Supplementary Figure S2A).
These results support our understanding that short-term
environmental data are insufficient for yield prediction.
Accumulated historic datasets of environmental factors may be
required to achieve more accurate predictions (Adams, 2002;
Qaddoum et al., 2013; Saito et al., 2020). On the other hand, the
combination of metabolome and environmental factor data
resulted in improved prediction performance (Table 1).
Considering a plant as an autotrophic production system, it is
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reasonable that a combination of environmental factors (system
inputs) and metabolic status (a system internal condition) can
produce more accurate production estimates (system outputs)
than either one individually. Thus, monitoring both types of
factors in a greenhouse system management is likely to yield the
best prediction performance.

4.3 Machine Learning Algorithms for
Metabolome Data
Among the machine learning approaches, LASSO linear
regression analysis was chosen for the following reasons. First,
linear regression is often used to estimate biological rates
(Schneider et al., 2010). Thus, linear regression seems to be an
appropriate choice for our experiments. Second, our dataset
contained more variables than samples, which could lead to
severe overfitting in a more complex model (Trunk, 1979). A
simpler model, such as a linear regression model combined with
LASSO regularization, is preferred; therefore, the LASSO linear
regression method is employed in this study. In fact, we have
previously tested several other regression algorithms, including
ridge regression, random forest regressor, k-nearest neighbor
regression, and support vector regression (Pedregosa et al.,
2011; VanderPlas, 2016), all of which performed worse than
or the same as the LASSO model with our dataset (data not
shown). A detailed comparison of these algorithms will be
described elsewhere. Based on this knowledge, LASSO was
chosen for this study.
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