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Neonatal chronic lung disease, i.e., bronchopulmonary dysplasia, is characterized by
impaired pulmonary development resulting from the impact of different risk factors includ-
ing infections, hyperoxia, and mechanical ventilation on the immature lung. Remodeling
of the extracellular matrix, apoptosis as well as altered growth factor signaling character-
ize the disease. The immediate consequences of these early insults have been studied in
different animal models supported by results from in vitro approaches leading to the suc-
cessful application of some findings to the clinical setting in the past. Nonetheless, existing
information about long-term consequences of the identified early and most likely sustained
changes to the developing lung is limited. Interesting results point towards a tremendous
impact of these early injuries on the pulmonary repair capacity as well as aging related
processes in the adult lung.

Keywords: bronchopulmonary dysplasia, neonatal chronic lung disease, lung development, long-term
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CLINICAL BACKGROUND
The neonatal form of chronic lung disease (CLD), also known as
bronchopulmonary dysplasia (BPD), is one of the most common
forms of CLD in early infancy. The disease results from the impact
of different risk factors on the undeveloped neonatal lung and is
associated with a significantly increased risk for pulmonary and
neurologic impairment persisting into adulthood in the cohort
of formerly preterm infants (1). Defined by the need for supple-
mental oxygen and/or ventilatory support for >28 days, or beyond
36 weeks post-menstrual age (PMA), the disease can be classified
into three different severity grades (mild, moderate, severe) (1).

The incidence of BPD is reported to be up to 77% in infants
born at <32 weeks of gestation with a birth weight below 1 kg (2–
4) but varies between newborn care centers, reflecting differences
in patient population and infant management practices (2, 5–7).
Even significant improvements in perinatal care including surfac-
tant treatment, administration of antenatal corticosteroids, and
improvement of invasive and non-invasive ventilation strategies
could not significantly alter the incidence of long-term sequelae
associated with the disease in the most immature infants (8).

Clinically, this form of CLD presents with hypoxemia leading
to the need for supplemental O2 as well as hypercapnia, reflecting
impaired respiratory gas exchange and alveolar hypoventilation,
resulting in a mismatch of ventilation and perfusion (9). Lung
function is characterized by diminished compliance, tachypnea,
increased minute ventilation, and work of breathing and can be
accompanied by an increase in lung microvascular filtration pres-
sure leading to interstitial pulmonary edema (10). As a result of
increased respiratory tract resistance and hyper-reactive airways,

episodic bronchoconstriction and cyanosis can be observed (11),
with early lung function impairment indicating more severe dis-
ease at term (12). The increased lung vascular resistance, typically
associated with impaired responsiveness to inhaled nitric oxide
and other vasodilators, can progress to reversible or sustained
pulmonary hypertension and right heart failure (13, 14).

As a trigger for the onset of these pathophysiologic processes,
large clinical trials have identified important risk factors (15–
20). Besides postnatal infections, the requirement for prolonged
assisted ventilation to treat acute respiratory failure caused by
primary surfactant deficiency and the need for oxygen supplemen-
tation is known to injure the structural and functional immature
lung (21–24). Here, the use of large tidal volumes and high infla-
tion pressures, in concert with the magnitude and duration of
exposure to supplemental oxygen, are major risk factors for disease
development (25,26). The occurence of pulmonary complications,
e.g., air leaks, interstitial emphysema, and pneumothoraces, fur-
ther increase the risk (25). With respect to postnatal growth and
development, poor nutritional support, vitamin deficiency as well
as insufficient adrenal and thyroid hormone release in the very
premature infant is known to significantly contribute to adverse
pulmonary outcome (27–29).

These postnatal stressors are known to act beyond the back-
ground of both prenatal as well as genetic risk factors influencing
the capacity of the developing lung to respond to the indicated
postnatal injuries:

Intrauterine growth retardation increases the risk of BPD three
to fourfold (30–34), most likely through impaired alveolar and vas-
cular growth associated with altered growth factor signaling (35).
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The prenatal impact of cytokines, in the presence, i.e., chorioam-
nionitis or absence, i.e., fetal inflammatory response syndrome of
other signs of infection is known to prime the lung for a patho-
logic response to postnatal injury, thereby contributing to BPD
development (36).

Regarding the impact of the genetic background, a study inves-
tigating twin preterm infants found genetic factors to account for
53% of the variance in liability for BPD (37). Several potential
candidate genes have been associated with BPD, where genetic
variants predisposing to BPD are usually polymorphisms, which
are not causative, but have been shown to increase disease sus-
ceptibility. Genetic abnormalities include variations affecting the
surfactant system or the innate immune response (38, 39). Such
conclusions are consistent with a genome-wide association study
involving more than 1700 very low birth weight infants that was
not able to link specific genomic loci or pathways with BPD (40).
Instead, gene linkage studies found that one of the corticotropin-
releasing hormone receptors (CRHR1) or cytochrome P450 2E1
(CYP2E1) in the preterm infant, and ectonucleotide pyrophos-
phatase 1 (ENPP1), insulin-like growth factor binding protein 3
(IFGBP3), 7-dehydrocholesterol reductase (DHCR7), or tumor
necrosis factor-associated factor 2 (TRAF2) in the mother were
highly associated with preterm birth (41). Nonetheless, gestational
age at birth still remains one of the most accurate ways to predict
the incidence of BPD (42). In addition, male preterm infants are
at a higher risk for the development of long-term impairment,
including BPD (43), and premature changes to hormonal regula-
tion have been discussed as an underlying cause (44). The effect
of gender seems to be different with respect to the adult popula-
tion, as female adult BPD patients are more severely affected with
respect to developing long-term pulmonary impairment (45).

Animal models were instrumental in elucidating some of
the underlying mechanisms by which the indicated risk factors
resulted in profound and durable structural changes in the devel-
oping lung and will be discussed in the pathophysiologic context.

PATHOPHYSIOLOGIC CHARACTERISTICS
With respect to histopathology, neonatal CLD is characterized by
impaired alveolarization and vascularization (1). Alveolarization
in humans begins during late fetal development and continues
into early childhood (46). Although continued growth of new
alveoli was observed in rhesus monkeys up into adulthood (47),
there is increasing evidence in both humans and rodents suggest-
ing alveolar development to occur in two phases (46, 48, 49). The
majority of alveoli develops in the early phase and occurs as dou-
ble micro-capillaries mature into a single capillary network. This
phase is followed by ongoing alveolar growth arising from exist-
ing alveoli. Knowledge about these two distinct phases in alveolar
development is critical to design therapeutic approaches aiming
to promote alveolar development in the injured neonatal lung. As
a well-known example, postnatal corticosteroids have been used
to promote lung function, facilitating extubation and thereby try-
ing to prevent or ameliorate BPD development. Although their
anti-inflammatory effects are potent (50), dexamethasone admin-
istered to newborn rats has been shown to cause alveolar thinning
and structural simplification, presumably by inhibiting the early
phase of alveolar development (51). Especially, the impact of

postnatal steroid therapy on extracellular matrix (ECM) compo-
sition as observed in rats may account for long-term effects (52).
Not only is the window of lung development a critical variable for
the decision on postnatal steroid therapy, but the increased risk
for gastrointestinal bleeding, cardiovascular disease, and cerebral
palsy in infants that had received steroid therapy (53, 54), strongly
limits dose, time-point, and length of treatment.

Besides the continuous changes in pre- and postnatal treatment
strategies in preterm care, the altered histo- and pathophysiolog-
ical picture of BPD over the last decades is mainly due to the
degree of immaturity in the preterm cohort studied. As the disease
was largely an atelectatic fibrosing disease attributed to persistent
oxygen exposure in late preterm infants (>34–36 weeks) in the
pre-surfactant era (55), the implementation of exogenous sur-
factant administration as well as improved ventilation strategies
and the induction of lung maturation by prenatal steroids signifi-
cantly increased the survival of infants as immature as 23–24 weeks
of gestation. Although the amount of interstitial fibrosis is sub-
stantially less in these infants and tends to be more diffuse when
compared to histopathology in the pre-surfactant era, extensive
ECM remodeling together with increased smooth muscle in small
pulmonary arteries and airways (56) remains a key finding in the
diseased lung.

Many studies have shown that characteristic inflammatory
changes and altered growth factor signaling precede and accom-
pany these changes to the pulmonary scaffold that may not only
hinder physiologic lung development but also transfer its long-
term effects into adulthood. The characteristic degradation of
lung elastin that accompanies its pathologic distribution pattern
in infants who later acquire BPD manifests in increased urinary
excretion of desmosin, a breakdown product of the mature elastic
fiber, preceded and paralleled by an associated increase in pro-
tease activity (57–62). Nonetheless, studies in an inflammatory
model of BPD have shown that a delicate balance of protease
activity is critical for normal lung development, as complete
matrix-metalloproteinase deficiency worsened lung injury (63).
Experimental studies in rodents recapitulated the changes to the
ECM and allowed further insight into disease relevant pathophys-
iology, linking ECM remodeling to apoptosis, inflammation, and
growth factor signaling (64–67). First attempts were made in order
to therapeutically prevent ECM degradation, thereby preserving
lung growth in the presence of mechanical ventilation (68, 69).

Pulmonary inflammation induced by both non-infectious
processes, such as positive-pressure ventilation or oxygen ther-
apy aggravated by primary surfactant deficiency, or patent ductus
arteriosus, as well as pre- or postnatal infections play an important
role in the translation of different injury mechanisms to structural
and functional changes as well as in the aggravation of ongoing
pathologic processes in the developing lung (18, 22, 70, 71). The
characteristic initial influx of neutrophils into the lung is accom-
panied and followed by increased numbers of macrophages in the
course of the disease (32, 72, 73). Explaining the perpetuation
of the inflammatory response, animal studies indicate that lung
injury leading to ECM remodeling or early alveolar epithelial dys-
function further promotes lung inflammation (68, 74). In contrast,
inflammation in fetal sheep infected with Ureaplasma parvum, a
common microorganism present in chorioaminionitis, did not
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affect lung development (75), suggesting that inflammation acts
in concert with other risk factors to provoke the development
of BPD.

The release of cytokines and disturbance of growth factor sig-
naling, [e.g., transforming growth factor (TGF)-β], leads to the
activation of different transcription factors, and results in a char-
acteristic increase in apoptosis affecting all different cell types
(76). With relevance to the mesenchymal cells, the platelet derived
growth factor-α, characterizing the myofibroblast driving sec-
ondary crest formation, and the fibroblast growth factor family
[for review see Ref. (77)] are known to be of importance. The pres-
ence of dysmorphic capillaries is related to an altered pattern of
angiogenic growth factors such as reduced expression of the vascu-
lar endothelial growth factor (VEGF) and its receptors (78–80) in
the lung, accompanied by diminished endothelial nitric-oxide syn-
thase (eNOS) and soluble guanylate cyclase (sGC) in lung blood
vessels and airways (81, 82). These changes contribute to subse-
quent development of pulmonary hypertension and impaired lung
lymphatic drainage (13, 14).

The growing evidence that prenatal factors impact on the inci-
dence of childhood asthma (83) further underlines the importance
of studies focusing on the role of prenatal variables in respiratory
development following premature birth including the broad issue
of maternal health. Suggested by a study in newborn mice exposed
to hyperoxia after maternal exposure to LPS during pregnancy,
the enhancement of cardiovascular disease in the animals points
to an impact of chorioamnionitis not only on surfactant produc-
tion but also on cardiovascular health in children born premature
undergoing early oxygen treatment (84).

Relative deficiencies of anti-oxidants and inhibitors of prote-
olytic enzymes render the very immature lung, especially vulnera-
ble to the effects of toxic oxygen metabolites and proteases released
by the ECM, resident lung cells, or activated neutrophils and
macrophages (85–88). Elevated urinary malondialdehyde concen-
trations in the first week of life, generated by peroxidation of lipid
membranes after oxidant-mediated injury, were correlated with
the risk for oxygen radical diseases including BPD (89). The associ-
ation of genetic polymorphisms of the superoxide dismutase with
the development of BPD underlines the importance of a balanced
redox system (90).

To understand how oxygen affects lung development, non-
human primates, preterm sheep, newborn guinea pigs, and new-
born rodents have been exposed to excessive levels of oxygen [for
review in Ref. (91)]. Early-life oxygen exposure leads to many char-
acteristic pathologic features of the so called “new” BPD, including
inhibition of microvascular development, alveolar simplification,
inflammation, and mild interstitial thickening [Figure 1 and Ref.
(92, 93)]. It also recapitulates many diseases in children who
were born preterm, including altered host response to respira-
tory viral infections, mild cognitive changes, and cardiovascular
disease. Despite the widespread use of hyperoxia as a tool to study
BPD, a codified model of oxygen exposure has yet to be established,
making the extrapolation of outcomes between different investiga-
tors using different doses and durations of hyperoxia on different
developmental windows possible (91). Today, preterm infants are
often exposed to excess oxygen during the saccular stage of lung
development, and discharged breathing room air when entering

FIGURE 1 | Neonatal hyperoxia disrupts postnatal alveolar
development in the lung. Representative tissue slides (H&E stains) of
newborn mouse lung exposed to room air or 100% oxygen from birth to
PN10. Thickened alveolar septae (thick arrow), inflammatory cells (thin
arrow), and simplified alveoli (asterisks).

the first phase of completion in alveolarization. In order to mimic
these clinically relevant conditions, the influence of oxygen on sac-
cular stages in lung development, i.e., mouse E17.5 to PN should
be separated from its impact on the phase of alveolarization, i.e.,
mouse PN5–PN14 (94). Models using oxygen exposure during
alveolar development may therefore better resume the character-
istic picture of the so called “old BPD,” the scarring lung disease
seen in infants born in late gestation in the pre-surfactant era.
The process of organ maturation clearly is a modifier of the pul-
monary response to oxygen exposure, as hyperoxia has been shown
to reduce bone marrow, circulating and lung endothelial progen-
itor cells in the developing but not in the adult mouse lung (95).
Additionally, different oxygen concentrations affected lung devel-
opment and the host response to influenza A virus in neonatal mice
(96). Hence, a better understanding of how dose and duration of
the respective harmful agent interfere with a certain developmen-
tal window is important to make progress in the development
of treatment strategies that could improve pulmonary health in
preterm infants.

LONG-TERM CONSEQUENCES
Minimizing long-term pulmonary impairment, and neurologic
complications associated with BPD has become the main focus of
perinatal care (97, 98). Nonetheless, increasing evidence suggests
that the early pathologic changes observed in BPD contribute to
long-lasting consequences including premature aging of the lung.

Although only some affected infants remain oxygen dependent
beyond 2 years of age, oxygen dependency for months or years
is frequently described (99, 100) indicating the most severe lung
disease. These infants require hospital readmission twice as often
compared to infants who are not oxygen dependent. Even after
having outgrown the need for oxygen supply, high readmission
rates remain common in infants with BPD, with up to 70% requir-
ing a hospital stay in the first 2 years of life (101). Here, infections
with respiratory syncytial virus are the major cause for readmission
among preterm infants regardless of BPD status (102). Further-
more,patients with moderate or severe BPD suffer more frequently
from episodes of wheezing and need for inhalation therapies (12).
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Up to 80% of these infants demonstrate airway obstruction in
early childhood and adolescence, with the majority being sympto-
matic (103–105). About 20–30% of infants with BPD suffer from
those symptoms at 6 and 12 months of age (106, 107) and res-
piratory symptoms remain common at preschool and school age
(99, 108). The most severely affected children remain symptomatic
into adulthood (109). The described clinical symptoms are under-
lined by changes in pulmonary function as identified by clinical
studies, suggesting that the presence of persistent airflow limita-
tions and reduction in alveolar surface area as well as impaired
lung growth, significantly lower peak oxygen consumption, forced
expiratory volume at 1 s (FEV1), and gas transfer at school age
after premature birth are accompanied by significantly lower peak
workload, higher respiratory rates in combination with lower tidal
volumes during peak exercise (110) as well as lower lung vol-
umes and decreased gas mixing efficiency during infancy in BPD
patients (111, 112).

As young adult BPD survivors present with a reduced maximal
airway function and some even show a trend towards an early and
steeper decline in lung function with age, the concern was raised
that BPD may be a precursor of a COPD-like phenotype later in life
(113) although the incidence has yet to be defined in this patient
cohort (114).

With respect to the pathophysiologic concepts discussed, the
effect of injury mechanism and treatment regimen has to be
considered in the context of different stages in pulmonary devel-
opment. Here, the inhibition of secondary alveolar formation
in patients with BPD could result in premature lung structure
degradation with age. Furthermore, the sustained and potentially
irreversible reorganization of the ECM as observed after mechan-
ical ventilation, oxygen exposure or steroid therapy may affect its
function as a scaffold for lung development as well as its long-term
repair potential, both resulting in long-term consequences. Latest
studies have shown a “memory function” of the ECM as the fate of
different pulmonary cell types re-populating the pulmonary scaf-
fold was defined by its composition (115, 116). With respect to
the lung vasculature, changes in angiogenic growth factor expres-
sion resemble the pattern observed in aged mice and are associated
with reduced plasticity of the lung capillaries, potentially leading
to sustained changes for lung development and injury response
through life (117, 118). In line with this, oxygen exposure in the
first week of life (FiO2 1.0) has been shown to increase mortal-
ity by inducing pulmonary vascular disease in mice (119). Again,
maturational differences need to be considered and studied in
more detail with respect to their initial impact and their con-
sequences for aging related processes. Whereas oxygen enhances
lung vascular and airway smooth muscle contraction and reduces
nitric-oxide relaxation in the neonatal rat lung, the opposite occurs
in the adult animal (120). These changes are associated with altered
lung function and right ventricular hypertrophy at 10 months of
age, indicating significant pulmonary hypertension. At this late
stage, bone morphogenetic protein signaling is altered and may
contribute to the cardiovascular phenotype observed in the adult
lung. Furthermore, recent studies suggest that long-term respira-
tory abnormalities after preterm birth may be associated with a
sustained alteration of the oxidative stress response. Here, adoles-
cent BPD patients show evidence of heightened oxidative stress

in the airways (121). Likewise, the early interference with differ-
ent transcription factors disrupts normal lung morphogenesis in
fetal life (122), subsequently resulting in pulmonary emphysema
in adult mice preluded by severe chronic bronchial inflammation
(123). Underlining these findings, studies showed that suppression
of the nuclear factor kappa B (NF-κB) worsened pathophysiologic
changes that potentially lead to BPD development, e.g., impaired
alveolarization and vascularization (122, 124, 125). Studies focus-
ing on the differential response to injury in the developing lung
will help to broaden the understanding of identified targets and
processes with a critical role in adult lung diseases.

With respect to early treatment regimen, different findings indi-
cate the need for a careful investigation of their potential to induce
long-term effects. As an example, the prenatal administration of
betamethasone, although widely used to enhance lung maturation
thereby preventing respiratory distress and reducing BPD rates
(126, 127), has been shown to be associated with an increase in
lipid membrane peroxidation (89). In addition, postnatal dexam-
ethasone treatment in the neonate, besides its negative effects on
neurologic and alveolar development, led to systolic dysfunction
and reduced life expectancy in elderly rats (128, 129). Further-
more, the broad use of antibiotic treatment in the mother at risk
for premature delivery leads to a sustained alteration of the bacte-
rial flora of the child (130), affecting immune function long-term
as shown in neonatal in contrast to adult-germ free mice (131).

Some therapeutic agents with suggested immediate effects on
the redox system, displayed their treatment potential more with
respect to middle and long-term effects (132, 133). Although
improving oxygenation and pulmonary vascular development
in preterm sheep, intra-tracheal administration of recombinant
human CuZn superoxide dismutase did not diminish the inci-
dence of BPD, but reduced respiratory morbidity at 1 year of age
and the incidence of retinopathy (ROP) (134–136). As inflamma-
tory cells recruited to the sites of oxidative damage or attracted
during infections are very likely to contribute to disease devel-
opment, a combination of anti-oxidant and anti-inflammatory
therapies may be most efficacious for the treatment of the struc-
tural and functional immature lung in the preterm infant. Here,
studies in newborn mice showed that blocking neutrophil influx
using anti-CINC antibody in diminished hyperoxia-induced DNA
damage and alveolar simplification (137, 138).

As oxygen is a leading risk factor but as well remains the main
treatment option in infants suffering from impaired lung growth
when diagnosed with BPD, the definition of the adequate dose for
oxygen therapy will remain of critical importance. Several clinical
trials have attempted to identify adequate therapeutic oxygen con-
centrations providing maximal benefit with minimal harm. Early
trials found that the incidence of ROP correlated with unrestricted
use of oxygen (139) and the benefits of oxygen-saturation target-
ing (BOOST) trial found that a higher oxygen-saturation range
prolonged oxygen dependence (140). However, the surfactant,
positive pressure, and pulse oximetry randomized trial (SUP-
PORT) showed in 1300 infants between 24 and 28 weeks gestation
treated with low oxygen saturation (85–89%) to have reduced ROP
but higher mortality compared to infants with high (91–95%)
oxygen-saturation target (141). These findings were confirmed in
the BOOST II trial, which enrolled 2400 infants at 54 hospitals in

Frontiers in Medicine | Pulmonary Medicine February 2015 | Volume 2 | Article 2 | 4

http://www.frontiersin.org/Pulmonary_Medicine
http://www.frontiersin.org/Pulmonary_Medicine/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hilgendorff and O’Reilly BPD – early hit & long-term injury

FIGURE 2 | Summary of important pathophysiologic processes and long-term consequences following early pulmonary injury.

United Kingdom, Australia, and New Zealand (142). Finally, the
supplemental therapeutic oxygen for pre-threshold retinopathy
of prematurity (STOP-ROP) trial found high oxygen-saturation

levels did not increase the severity of ROP in those infants with pre-
threshold ROP (143). Taken together, preterm infants are likely to
be treated with high oxygen saturations despite the increased risk
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for ROP. With respect to its effect on lung function, infants with the
highest quartile of oxygen exposure as a cumulative dose of inhaled
gas over the first 3 days of life were two to three times more likely
to experience symptomatic airway dysfunction than infants in the
lowest quartile (144). In line with this quantifying cumulative oxy-
gen exposure in newborn mice can successfully predict an altered
host response of adult mice infected with influenza A virus infec-
tion (145). These findings suggest that the quantification of FiO2

may be a better indicator of oxygen toxicity and risk for long-term
respiratory morbidity than pAO2 or days on oxygen therapy.

Figure 2 summarizes some important pathophysiologic
processes and long-term consequences following early pulmonary
injury dicussed here.

In order to consequently evaluate existing and further develop
new treatment strategies, significant findings from disease mod-
els in rodents, allowing for the comprehensive investigation of
pathophysiologic processes and long-term effects, need to be re-
evaluated in animal models that very closely mimic clinical con-
ditions in the preterm infant. Here, the premature baboon model,
originally developed in the pre-surfactant era, has been shown
to be very meaningful in the investigation of treatment strategies
including antenatal exposure to maternal glucocorticoids, postna-
tal surfactant treatment, and assisted ventilation with more modest
inflating pressures and concentrations of inspired oxygen (146).
A similar strategy was followed in the studies performed in pre-
mature lambs (57, 81, 146–155). These studies in larger animals
were integral in allowing mechanistic insight into the pathology of
BPD, and permitting the evaluation of therapeutic strategies cur-
rently used in the care of premature infants, including surfactant
replacement therapy (156, 157), high-frequency oscillatory venti-
lation (HFOV) (158), and nitric oxide (152). Further modification
of these models to allow for the investigation of long-term effects
as well as the evaluation of results obtained from clinical trials may
provide more insight into the pros and cons of current and future
treatment strategies.

To conclude, the unique response to injury observed in the
immature lung including the effects on oxidative stress, ECM
composition, growth factor signaling, and the sustained inflam-
matory response translate into a characteristic histophathologic
picture. Furthermore, these changes rather contribute to a pul-
monary “memory effect” than being erased over time. We now
understand that early organ injury in the lung provokes pulmonary
long-term consequences including alteration of physiologic aging
processes as well as a characteristic response to challenges imposed
on the adult lung. These considerations as well as the possible
impact of an injured lung on the process of extra-pulmonary organ
developmental, i.e., the brain have to be taken into account, when
treatment strategies are designed and life-style issues are advo-
cated to this patient population. Furthermore, the translation of
the indicated findings into other fields of lung research and back
holds great potential to inspire future ideas for the process of repair
and re-programing in the diseased neonatal and adult lung.
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