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Joana Rosado Coelho1*, João André Carriço1,2, Daniel Knight3,4, Jose-Luis Martı́nez5, Ian Morrissey3,6,

Marco Rinaldo Oggioni7, Ana Teresa Freitas1

1 INESC-ID/IST, Technical University of Lisbon, Lisbon, Portugal, 2 Instituto de Microbiologia/Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de

Lisboa, Lisbon, Portugal, 3 Quotient Bioresearch, Fordham, United Kingdom, 4 University of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, Australia,

5 Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia-CSIC, Madrid, Spain, 6 IHMA Europe Sàrl, Epalinges, Switzerland, 7 Dipartimento
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Abstract

Background: The rise of antibiotic resistance in pathogenic bacteria is a significant problem for the treatment of infectious
diseases. Resistance is usually selected by the antibiotic itself; however, biocides might also co-select for resistance to
antibiotics. Although resistance to biocides is poorly defined, different in vitro studies have shown that mutants presenting
low susceptibility to biocides also have reduced susceptibility to antibiotics. However, studies with natural bacterial isolates
are more limited and there are no clear conclusions as to whether the use of biocides results in the development of
multidrug resistant bacteria.

Methods: The main goal is to perform an unbiased blind-based evaluation of the relationship between antibiotic and
biocide reduced susceptibility in natural isolates of Staphylococcus aureus. One of the largest data sets ever studied
comprising 1632 human clinical isolates of S. aureus originated worldwide was analysed. The phenotypic characterization of
13 antibiotics and 4 biocides was performed for all the strains. Complex links between reduced susceptibility to biocides
and antibiotics are difficult to elucidate using the standard statistical approaches in phenotypic data. Therefore, machine
learning techniques were applied to explore the data.

Results: In this pioneer study, we demonstrated that reduced susceptibility to two common biocides, chlorhexidine and
benzalkonium chloride, which belong to different structural families, is associated to multidrug resistance. We have
consistently found that a minimum inhibitory concentration greater than 2 mg/L for both biocides is related to antibiotic
non-susceptibility in S. aureus.

Conclusions: Two important results emerged from our work, one methodological and one other with relevance in the field
of antibiotic resistance. We could not conclude on whether the use of antibiotics selects for biocide resistance or vice versa.
However, the observation of association between multiple resistance and two biocides commonly used may be of concern
for the treatment of infectious diseases in the future.
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Introduction

Antibiotics are among the most successful therapeutic agents so

far developed by humankind. They have been used for decades for

the treatment of bacterial infections in humans and animals.

However, the widespread use of these compounds has led to the

selection of resistant microorganisms, and consequently, to a loss

of efficacy for this family of drugs [1,2]. This problem is further

increased by the circulation of microorganisms among humans,

animals and agricultural hosts creating the opportunity for the

exchange of resistance genes/mechanisms directing the spread of

resistance [3]. This is a public health problem on a global scale

since antimicrobial resistance can result in increased disease

burden, morbidity and mortality [4,5]. The problem is com-

pounded by the fact that the pace of introduction of new

chemotherapeutic drugs in the market and in clinical practice has
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slowed in the last few years [6]. The consequence of this slowdown

is that many antibiotics lose their treatment effect against

organisms that have developed antibiotic resistance and the use

of other drugs, which are often reserved for last line treatment, is

required. In some cases, therapeutic options are limited to just one

antibiotic.

Besides antibiotics, another group of antimicrobials that might

be relevant in selecting for antibiotic resistant bacteria are

biocides. Biocides, used in antiseptics, disinfectants and preserva-

tives, have been widely employed to control the growth of

microorganisms such as bacteria, fungi, protozoa or viruses [7].

Their use has increased in a wide range of applications, namely in

the domiciliary and in the healthcare environments, food industry

and industrial settings, and in veterinary environments [8].

In recent years, there has been considerable discussion and

controversy on whether biocide and antibiotic decreased suscep-

tibility are connected [6,9,10]. This was highlighted some years

ago, with the remarkable discovery of a shared bacterial target

(FabI) between a biocide (triclosan) and an antibiotic (isoniazid)

[11]. In the same study, it was described that triclosan exposure

was followed by mutations in this bacterial target, which led to

antibiotic resistance. Furthermore, even for those biocides which

do not share a target with any antibiotic, reduced susceptibility can

be achieved either when two elements, one conferring antibiotic

resistance and another conferring reduced susceptibility to

biocides are present in the same mobile element (co-resistance),

or when a single resistance determinant, such as a multidrug

(MDR) efflux pump, can provide resistance to both antibiotics and

biocides (cross-resistance).

In this regard, some authors have suggested that there is an

association between biocide-resistance and enrichment of antibi-

otic-resistance genes [12–14] and others have described increased

bacterial resistance to biocides in areas where they have been used

[15–17].

Despite the fact that the term resistance to biocides has been used in

some papers [18,19], resistance to these compounds is still to be

clearly defined, unlike the case of antibiotics. Chapman suggests

that the definition of resistance to biocides should proceed in

a manner analogous to the definition for antibiotic resistance [18].

For antibiotics, there are two definitions of resistance, either based

on the clinical breakpoints or on the epidemiological cut-off values

(ECOFFs) of the minimal inhibitory concentration (MIC) whose

values may differ. The setting of clinical breakpoints is a widely

debated topic among the scientific, regulatory, and industrial

community. Clinical breakpoints are discriminatory antimicrobial

concentrations used to classify isolates as resistant, intermediate or

susceptible, on the basis of the relevance of these values for

treatment of infections [20]. Breakpoints are defined based on

many factors, namely pharmacokinetic, dose-effect relationships

from in vitro studies and animal studies, available formulations,

clinical indications and practices, and target organisms [21].

Moreover, Monte Carlo simulations have been applied to help in

establishing clinical breakpoints [22]. On the other hand, ECOFFs

are used to define the intrinsic susceptibility to antibiotics of a given

microbial species based on the MICs of wild type populations [23].

The ECOFF is independent of clinical treatment and will not be

altered by changing circumstances [21]. Under this definition, any

isolate presenting a MIC above the ECOFF value of the agent in

question is considered as being non-susceptible. In the case of

biocides, to date, none of these definitions have been established

and we still do not have any regulatory or industrial organization

involved in the normalization of classical breakpoints or of

ECOFF values, which is important for studying biocide reduced

susceptibility and changes therein.

There are many studies on the evaluation and evolution of

antibiotic resistance [24–27] and some on the efficacy of biocides

[27–29]. However, studies comparing biocide and antibiotic

resistance are less common and the data sets used in these studies

are typically small. Some studies follow the approach of simple

statistical analysis using bivariate correlations and tests for

independence [30–33]. Another study [34] uses a simple statistical

analysis approach and hierarchical clustering on a small data set to

identify statistical correlations between bacterial patterns of

reduced susceptibility for disinfectants and antibiotics. Another

paper [35] describes the use of classical association tests as

ANOVA, Spearman-Rho correlations and principal component

analysis to investigate the existence of correlations between the

biocides and the antibiotics tested. The authors do not conclude

whether there is an association or not, but with the data and tools

used in the analysis it is hard to conclude if increased biocide

resistance is a cause of increased antibiotic resistance. All of these

studies deal with small data sets and the results present no evidence

of statistical correlation between those antimicrobials, either

antibiotics or biocides.

In this paper, we propose a new framework to analyse and cope

with the scale and complexity of biocide susceptibility data,

antibiotic susceptibility data and patient demographic data. In one

of the largest phenotype studies ever performed on biocide and

antibiotic reduced susceptibility, a total of 1632 world-wide clinical

strains of Staphylococcus aureus (S. aureus) strains were analysed.

S. aureus is a major human pathogen, a major cause of nosocomial

infections, and also a significant cause of food borne infection. We

combined different machine learning methodologies, namely

decision trees and clustering, to explore the data in order to find

biological and statistical significant results. Machine learning

methods can be very powerful in finding unexpected patterns and

hidden knowledge as well as establishing new rules from large data

sets [36,37]. Furthermore, using this approach we established

a framework of analysis that may help determine values for the

ECOFF of two biocides commonly used in our daily lives.

Materials and Methods

Strain Collection
A total of 1632 S. aureus strains were analysed in this study, taken

from the collection of Quotient Bioresearch (Fordham, UK) [15].

The strains were collected between 2002 and 2003, from different

geographical origins (including Europe, East Asia, Oceania and

both North and South Americas) and represented both hospital

and community acquired infections.

Antibiotic and Biocide Susceptibility Testing
The study was conducted using the Clinical and Laboratory

Standards Institute (CLSI) standardised broth MIC and MBC

(minimum bactericidal concentration) methodology [38,39]. Ap-

plication of CLSI procedures to the study ensured that MIC data

was generated using internationally recognized and standardised

methods. Biocide and antibiotic susceptibility was determined by

measuring both bacteriostatic activity (MIC) and bactericidal

activity (MBC). The MIC was determined as the lowest

concentration of compound required to completely inhibit the

growth of an organism. The MBC was determined as the lowest

concentration of a compound required to produce a 1|103

reduction in colony forming units [38,39].

Bivariate Correlations
A bivariate correlation analysis was performed between biocides

and antibiotics’ variables. Spearman’s correlation coefficient was

Antimicrobials Susceptibility Statistical Analysis

PLOS ONE | www.plosone.org 2 February 2013 | Volume 8 | Issue 2 | e55582



computed for each bivariate combination of these variables in

order to find non-linear associations between the biological

variables. Bivariate correlations were calculated using MatlabH
7.10.0.499 (R2010a). For each computed Spearman’s correlation

coefficient, a hypothesis test was performed in order to test for

statistical association between each pair of variables and a p-value

calculated, assuming statistical significance at a level of 5%. When

performing a set of multiple statistical inferences it is likely that

a multiple testing problem of incorrectly rejecting the null

hypothesis will occur [40]. To control the family-wise error rate,

the classical conservative approach of Bonferroni correction was

applied [41] leading to a critical value at level

apt&
apf
nt

~
0:05

12|13
&3:2|10{4

where apt is the probability of Type I error (false positive) per test;

apf is the probability of Type I error per family of tests, also called,

familywise or the experimentwise alpha; nt is the number of pairwise

tests performed.

Decision Trees with Permutation Tests validation and
Visualisation

Within Machine Learning, Decision Tree algorithms are some

of the most widely used for classification [37]. Learned trees have

an intuitive form and represent a set of if-then rules. This method

is generally very well accepted by domain experts since it is very

simple to understand and interpret. For this particular case,

decision trees were built using all the data as a training set. A

decision tree inductor algorithm was applied in such a way that

whenever it encountered a set of items (training set), it identified

the attribute that discriminated the various instances most clearly.

Features that lead to the highest information gain were

successively chosen to build the decision tree. Trees complexity

was controlled by a pruning stopping criteria. In the context of this

analysis, the objective was to apply a pruning that could generate

less complex decision trees: on the one hand it would have better

readability, and on the other, it would include enough features to

explain the data. Leaves were allowed to have a minimum number

of objects of 1% of the data set dimension.

Thirteen different decision trees were obtained, one for each

different antibiotic. The antibiotic classification (Susceptible or

Non-Susceptible) was selected as the dependent variable whereas

the independent variables included MIC and MBC values for the

four biocides’, the year and region of collection, the age and

gender of the host, the source and type of infection as well as the

status of the host: hospital inpatient or outpatient. Decision trees

were produced using Weka (Waikato Environment for Knowledge

Analysis) Version 3.6.4.

rmine whether the observed decision trees is due to the

randomness introduced in the sampling or not [42].These are non-

parametric statistical tests for determining statistical significance by

rearranging the labels of a data set.Permutation tests can help

reducing the multiple testing burden [43] and can be used to

compare statistical tests [44].

ngement of the labels is performed n times and the values of the

statistic in use are calculated giving rise to a distribution of

permutation values.On the other hand, a test statistic is computed

from the experimental data set and then compared with the

distribution of permutation values previously obtained. The main

drawback of this method is that it needs a very large number of

permutations to accurately estimate small p-values, a procedure

that is computationally expensive [45].

A hypothesis test was performed where the null hypothesis, H0,

represents the absence of the effect given by the decision tree

profile obtained. Small p-values are evidence against the null

hypothesis and in favour of a real effect in the population. The

statistic used is based on the conditional probability of the Fisher’s

Exact Test [46].

In order to visualise the distribution of the antibiotic resistance

patterns found in the dataset and its relationships with the biocide

MICs, graphic matroids were created. Graphic matroids are

representations of unrooted trees similar to a minimum spanning

tree but using a set of rules instead of distances. For each isolate,

a pattern of susceptibility was obtained by binary coding the

antibiotic susceptibility of each of the 13 antibiotics. Each node on

the resulting tree represents a unique antibiotic susceptibility

pattern found in the dataset. The graphic matroid was created

using the goeBURST algorithm rules [47] with the different

susceptibility patterns as an input. The size of each node is

a function of the number of isolates found in the dataset with that

pattern.PHYLOViZ software [48] was used to create the graphic

matroid and the visualisation of the decision tree rules.

Clustering
The goal of clustering is the separation of objects into groups or

clusters using only the input vectors. This separation is based on

a measure of similarity between objects [49,50].

Hierarchical clustering was used to produce dendograms that

could demonstrate co-resistance of antibiotics among the isolates.

The measure of dissimilarity was based on the Euclidean distance

metric and the hierarchical clustering method with average linkage

was chosen. Clustering was obtained with Cluster 3.0 using the C

Clustering Library version 1.50 and the visualisation was

performed with Java TreeView 1.1.6r2.

Results

In this paper, we first performed the standard approach

described in the literature [30–33] for epidemiological data

analysis by calculating the bivariate correlations between biocide

and antibiotic phenotypes. This approach failed to find any

associations between the variables in analysis (data not shown). We

then followed a different approach represented in Figure 1 by

applying machine learning techniques, namely decision trees

validated by permutation tests and clustering analysis of the data

set followed by a visualisation step. We propose this new

framework, based on machine learning methodologies, to analyse

the scale and complexity of molecular epidemiology data and its

application to study the potential linkage between antibiotic

resistance and biocide reduced susceptibility.

Generation of the Data Set
A collection of 1632 S. aureus strains isolated between 2002 and

2003, from different geographical origins, and representing both

hospital and community acquired infections was analysed [15].

For all isolates, the MIC values of 13 different antibiotics, namely

amoxicillin/clavulanate, cefuroxime, cefaclor, cefpodoxime, clin-

damycin, erythromycin, clarithromycin, azithromycin, telithromy-

cin, ciprofloxacin, levofloxacin, gatifloxacin and moxifloxacin,

were determined in addition to the susceptibility data for

methicillin. A bacterial isolate was considered non-susceptible to

an antibiotic agent when it tested resistant or intermediate when

using clinical breakpoints as interpretative criteria according to the

Clinical and Laboratory Standards Institute (CLSI) [51]. In

addition, for all isolates, susceptibility data for four different

biocides (MIC and MBC), namely chlorhexidine, benzalkonium

Antimicrobials Susceptibility Statistical Analysis
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chloride, sodium hypochlorite and triclosan, were obtained. Since

there are no established breakpoints for biocides the information

on the susceptibility to these compounds was introduced in the

data set as actual MIC and MBC values and not as categories

(susceptible or non-susceptible) like in the case of antibiotics.

According to the classification of Magiorakos et al [52], strains

were considered as multidrug resistant (MDR) when they were

resistant to at least three different families of antibiotics. All the

MIC and MBC values are in a log2 scale due to the methodology

used to determine the phenotypic data.

A data set was generated which included, for each S. aureus

isolate: the MIC value and the susceptible/non-susceptible

classification for each of the 13 antibiotics; the MIC and MBC

values for each biocide; the year (2002 or 2003) and region of

collection (Europe, East Asia, Oceania and both North or South

Americas); the age (ranging from 0 to 97 years old) and gender of

the host; the source of the sample and infection type; and if the

host was an inpatient or outpatient of the hospital were collection

occurred.

Bivariate Correlations
This is the standard approach reported in the literature to

analyse data of epidemiological data sets. However, using this

methodology there was no clear correlation between the biocide

and antibiotic phenotype variables. Indeed, the data analysed

showed weak bivariate correlations. This is a result that matches

with previous studies of smaller data sets. After performing the

correction for family-wise error rate, we found some pairs of

variables (represented in bold in Figure S1, in supporting material)

with a statistically significant Spearman’s correlation coefficient. In

spite of having a statistically significant correlation coefficient, the

pair of variables in bold have a considerably low absolute value for

the coefficient so one cannot assume a strong correlation between

those variables. The ratio between MBC and MIC (Fold Change)

of each biocide was also analysed as this may indicate a difference

in biocide reduced susceptibility. Kendall’s correlation coefficient

was also computed for the same pairwise test variables and the

results were similar (data not shown).

Decision Trees
Since standard statistical tests did not enable us to obtain a clear

picture of the relationships between antibiotic and biocide reduced

susceptibilities, we decided to apply a different approach. The

approach is shown in Figure 1 and is based on the application of

machine learning methodologies that allow extraction of hidden

knowledge and unexpected patterns from data as well as

establishing new rules from large data sets [36].

After applying the tree induction algorithm to each of the 13

antibiotics under analysis, a common pattern emerged from the

decision trees. The structure of these trees shows interesting

relationships. Among all independent variables, the decision trees

modelled the dependent variable based on two specific predictor

variables as shown in Figure 2. Whereas most independent

variables, including region and year of collection, were not the

ones that better discriminate antibiotic susceptibility, the MICs of

two common biocides chlorhexidine (CLX) and benzalkonium

chloride (BZC) are the best predictors of susceptibility and non-

susceptibility to each of the 13 antibiotics, with

a p-valuev1|10{4, validated with permutation tests. This is

a common profile to all 13 antibiotics and basically it can be

summarized in two simple rules:

1. MIC(CLX) #2 mg/L: strains are susceptible to the

antibiotic in test

2. MIC(CLX) .2 mg/L ^ MIC(BZC) .2 mg/L: strains

are non-susceptible to the antibiotic in test

The leaf MIC(CLX) .2 mg/L ^ MIC(BZC) #2 mg/L
involves a small number of strains, a total of 13 strains for each of

the 13 antibiotics, representing less than 0.8% of the data set

dimension.

The decision tree leaves have an average misclassification rate

of 16% and 23% for the first and second rule, respectively.

Addressing this misclassification rate, we have further analysed

these isolates. In fact, the leaf of the first rule has an average of

84% true positives, which represent 74% of the total number of

isolates of the data set. On the other hand, the second rule has an

average of 77% correctly classified isolates representing 8% of the

total number of isolates of the data set. Furthermore, the

population of non-susceptible isolates is, on average, divided in

a proportion of 2:1 between the first and second rules.

In spite of not having strong correlations between any biocide or

antibiotic variables, we have found interesting relationships

between two specific biocides and all the 13 antibiotics analysed.

This methodology allows finding out relationships other than non-

linear monotonic ones. The CLX and BZC MICs that separate

antibiotic susceptible from non-susceptible are very consistent

among all the 13 antibiotics, 2 mg/L being the borderline for two

biocides. These two biocides commonly used in our daily life

belong to different structural families: Chlorhexidine a bisbigua-

nide and Benzalkonium Chloride a quaternary ammonium

compound. Furthermore, using this approach we can suggest

values for the ECOFF of Chlorhexidine and Benzalkonium

Chloride, indicating a potential ECOFF of MIC ,2 mg/L for

Figure 1. New framework of analysis. In this paper, we propose the
use of machine learning techniques to analyse epidemiological data
sets, namely decision trees validated by permutation tests and
clustering analysis of the data set followed by a visualisation step of
the results. This methodology is successful in dealing with the
complexity of molecular epidemiology data and its application in
studying the potential linkage between antibiotic resistance and
biocide reduced susceptibility.
doi:10.1371/journal.pone.0055582.g001
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the susceptible population and of MIC .2 mg/L for the non-

susceptible strains for both biocides.

Visualisation
Figure 3 shows the distribution of the susceptibility patterns.

Each link represents a unique change in the overall pattern.

Individual clusters are produced that are different among

themselves by two or more differences (variations) in the pattern.

A Blue to Red colour map was created to help the visualisation of

the overall antimicrobial resistance dispersal on the tree: the

isolates in dark blue are susceptible to all of the antibiotics, while

isolates in red share a greater non-susceptibility to antibiotics. The

isolates in blue are clearly concentrated on the right-hand side of

the graph and the isolates in red, on the left-hand side, represent

a gradient of multidrug resistance in our dataset.

Based on this distribution of susceptible complexes we can also

visualise each of the decision tree rules previously described. Since

all the antibiotics have the same two rules obtained using the

decision trees approach, we can colourmap each of these rules in

order to visualise them in the graphic matroid. Figure 4 represents

the isolates classified as susceptible to a given antibiotic in green

based on rule 1. They are predominantly present on the right-

hand side of the graph, which corresponds to the region of

antibiotic susceptible strains. There are some false positive strains

represented in green on the left-hand side of the graph. Moreover,

Figure 5 represents in red the isolates classified as non-susceptible

based on rule 2. These isolates are largely represented on the left-

hand side of the graph; however, some isolates in red are also

present on the right-hand side, corresponding to the susceptible

antibiotic region of the tree.

Clustering
We found two groups of antibiotic resistant strains: those that

are misclassified as susceptible according with rule 1 and those that

are correctly classified as non-susceptible according to rule 2. To

address whether these subpopulations represent specific subsets of

non-susceptible strains they were further analysed. For this

purpose, a hierarchical clustering analysis was performed on the

two subpopulations of non-susceptible strains.

Of note here is that even for each single antibiotic whose

number of misclassified strains is low according to rule 1 (in the

range of 16%), the final percentage of isolates presenting resistance

to at least one antibiotic is higher, about 34%. In agreement with

this issue, the clustering of misclassified isolates of rule 1, which are

in fact non-susceptible isolates, shows that few of them have

cumulative resistance to different antibiotic families (Figure 6)

sharing only 17.5% of co-resistance. This result suggests that, for

this group of non-susceptible strains, acquisition of resistance to

one antibiotic is independent of the acquisition of resistance to

another and is independent as well of the development of reduced

susceptibility to the tested biocides. A different situation can be

observed for the non-susceptible isolates, classified based on rule 2
(Figure 7). This population presents a high prevalence of strains,

about 62%, displaying a phenotype of multiple resistance to the

different families of antibiotics tested and presents as well reduced

susceptibility to both biocides analysed.

Discussion

The possibility that the use of biocides might be a risk for the

selection of antibiotic resistant bacteria is a controversial issue still

under discussion. Two fundamental concerns are raised: 1) there

are some elements such as multidrug efflux pumps that can confer

simultaneously resistance to antibiotics and biocides (cross-re-

sistance) when they are over expressed, and 2) antibiotic resistance

determinants transferred by horizontal gene transfer are usually

associated to other determinants that are transferred together on

the same genetic element, some of which are involved in resistance

to biocides (co-resistance). In both situations, the presence of the

biocide will select for antibiotic resistance and vice versa.

Several articles have shown the existence of the aforementioned

linkage between antibiotic resistance and biocide reduced suscep-

tibility [19,53–59], however, most of these studies have been

performed in vitro using model strains and the evidence of such

association by means of epidemiological studies is much weaker. In

fact, some papers that describe the use of classical association tests

such as ANOVA, Spearman-Rho correlations and principal

component analysis, arrive at the conclusion that ‘‘it is very

difficult to support a hypothesis that increased biocide resistance is

a cause of increased antibiotic resistance’’ [35]. The authors do not

conclude whether there is or there is not an association, but that

with the data and tools used in the analysis ‘‘it is very difficult’’ to

reach such a conclusion.

In the case of the potential associations between biocides and

antibiotic resistance, there are mainly two reasons for this lack of

potential association. First, the number of isolates analysed in

Figure 2. Decision tree profile for each of the 13 antibiotics. The level of the MIC of two common biocides is the best feature to predict the
susceptibility and non susceptibility to each of the 13 antibiotics with ap-valuev1|10{4 .
doi:10.1371/journal.pone.0055582.g002

Antimicrobials Susceptibility Statistical Analysis
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Figure 3. Graphic matroid of S. aureus antibiotic susceptibility. Graphic matroid of S. aureus antibiotic susceptibility with a red-blue colour
map. Isolates in blue are susceptible to a greater number of antibiotics and isolates in red share a greater non susceptibility to antibiotics. S-
Susceptible. NS-Non-susceptible. ATB-Antibiotics.
doi:10.1371/journal.pone.0055582.g003

Figure 4. Graphic matroid of S. aureus isolates colour mapped based on the first decision tree rule. Isolates with CLX MIC#2 (classified as
susceptible to each antibiotic, based on the first rule) are coloured in green. In grey are represented the remaining isolates.
doi:10.1371/journal.pone.0055582.g004

Antimicrobials Susceptibility Statistical Analysis
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Figure 5. Graphic matroid of S. aureus isolates colour mapped based on the second decision tree rule. Isolates with CLX MIC .2^BZC
MIC .2 (classified as non-susceptible to each antibiotic, based on the second rule) are coloured in red. In grey are represented the remaining isolates.
doi:10.1371/journal.pone.0055582.g005

Figure 6. Clustering of the non-susceptible population for rule 1. The different clusters for the non-susceptible population of rule 1 are
shown in the dendogram with the respective global percentage of shared resistance of each set of antibiotics. Among the 487 isolates eligible for the
clustering analysis, only 17.5% isolates are non-susceptible to all the 13 antibiotics. We have identified 4 clusters of antibiotics which may be related
with the potential mechanisms of resistance already reported on the literature [60].
doi:10.1371/journal.pone.0055582.g006

Antimicrobials Susceptibility Statistical Analysis
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epidemiological studies with antibiotic and biocide susceptibility

data is not usually high enough to get statistically robust

conclusions. Secondly, performing these epidemiological studies

highlights several difficulties due to the complexity of this type of

data, mainly because of the large number of variables from

different sources and the typical non-linearities of biological

signals. To improve our current analysis, we have used decision

trees validated with permutation tests for analysing biological data

sets and in particular to unveil hidden associations between

antibiotic resistance and biocide reduced susceptibility in S. aureus.

These methodologies were successful in finding rules within the

data set where the standard and most used statistical approaches

found no associations. We studied the largest collection of isolates

so far analysed for this purpose (1632 isolates). The main

conclusion emerging from these unbiased analyses is that reduced

susceptibility to two biocides, CLX and BZC, which belong to

different structural families, is associated with resistance to several

antibiotics, whereas resistance to just one antibiotic is not rare even

in biocide-susceptible populations. A recent paper has proposed

a classification of strains presenting resistance in three categories:

multidrug resistant (MDR), when they present resistance to

antibiotics belonging to three different families; extensively drug

resistant (XDR), when they remain susceptible just to one or two

families of antibiotics; and pan-drug resistant (PDR) when they are

resistant to all known antibiotics [52]. Following these rules, 73.5%

of isolates presenting low susceptibility to biocides are MDR S.

aureus (Figure 7). The fact that neither the time nor the place of

isolation were relevant predictors of resistance indicates that there

is not a bias in the type of isolates used in our study.

As stated above, simultaneous reduced susceptibility to biocides

can be achieved either by the acquisition of elements containing

an array of genes, each one encoding resistance to a different drug,

or by the overproduction of efflux pumps capable of extruding

both biocides and antibiotics. Although we have not studied here

the molecular basis of resistance of our isolates, our results strongly

suggest that reduced susceptibility to CLX and BZC is associated

to multidrug resistance in S. aureus. Whether this association is the

consequence of biocide usage or it is a side effect of the selection of

resistance by antibiotics remains to be established. It is relevant to

note that using machine learning technologies we have been able

to define two subpopulations with very different patterns of

antibiotic non-susceptibility and the phenotype of two biocides,

CLX and BZC, is enough to discriminate them. These populations

were not apparent using more classical statistical tests. We have

consistently found that a CLX MIC greater than 2 mg/L and

a BZC MIC greater than 2 mg/L is related to antibiotic non-

susceptibility in S. aureus. Given that those values distinguished

between two populations presenting different phenotypes, it might

be possible that these values represent cut-off values for biocide

non-susceptibility. In this regard, our study may help establishing

the ECOFF value of two biocides, CLX and BZC, commonly used

in our daily lives. Nevertheless, the ECOFF values need to be

Figure 7. Clustering of the non-susceptible population for rule 2. The different clusters for the non-susceptible population of rule 2 are
shown in the dendogram with the respective global percentage of shared resistance of each set of antibiotics. Among the 155 isolates eligible for the
clustering analysis, 61.9% isolates are non-susceptible to all the 13 antibiotics. We have identified 4 clusters of antibiotics which may be related with
the potential mechanisms of resistance already reported on the literature [60].
doi:10.1371/journal.pone.0055582.g007

Antimicrobials Susceptibility Statistical Analysis

PLOS ONE | www.plosone.org 8 February 2013 | Volume 8 | Issue 2 | e55582



confirmed with other types of analyses [15]. These studies are now

in progress in our laboratories. Two important results, one

methodological and another with relevance in the field of

antimicrobial resistance emerge from our work. Machine learning

methods are useful for the extraction of hidden knowledge and

unexpected patterns from large datasets, such as those generated

in our work, in situations in which more classical statistical tests

may fail to find associations. Multidrug resistance is associated

with reduced susceptibility to benzalkonium chloride and

chlorhexidine in S. aureus, whereas this association is not observed

at the level of resistance to a single antibiotic. From our results, we

cannot conclude on whether the use of antibiotics selects for

biocide resistance or vice versa. However, the observation of

association between multiple resistance and two biocides com-

monly used may be of concern for the treatment of infectious

diseases, in the future.

Supporting Information

Figure S1 Matrix with Spearman’s correlation coeffi-
cients between biocides phenotypes (MIC, MBC or fold

change) and antibiotics MIC values. P-values were also

computed in order to find statistical significant associations. In blue

and bold, we have the statistical significant associations, i.e., the

correlation coefficients whose p-value is lower than the critical value
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Available: http://cat.inist.fr/?aModele = afficheN&cpsidt = 3969009. Accessed

2012 Sep 7.

Antimicrobials Susceptibility Statistical Analysis

PLOS ONE | www.plosone.org 9 February 2013 | Volume 8 | Issue 2 | e55582



27. Espigares E, Bueno A, Espigares M, Gálvez R (2006) Isolation of Salmonella

serotypes in wastewater and effluent: Effect of treatment and potential risk.
International Journal of Hygiene and Environmental Health 209: 103–107.

Available: http://www.ncbi.nlm.nih.gov/pubmed/16373208. Accessed

2012 Sep 6.
28. Rouillon S, Ourdanabia S, Jamart S, Hernandez C, Meunier O (2006) Étude de
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