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Abstract

While recent scans for genetic variation associated with human disease have been immensely successful in uncovering large
numbers of loci, far fewer studies have focused on the underlying pathways of disease pathogenesis. Many loci which are
associated with disease and complex phenotypes map to non-coding, regulatory regions of the genome, indicating that
modulation of gene transcription plays a key role. Thus, this study generated genome-wide profiles of both genetic and
transcriptional variation from the total blood extracts of over 500 randomly-selected, unrelated individuals. Using
measurements of blood lipids, key players in the progression of atherosclerosis, three levels of biological information are
integrated in order to investigate the interactions between circulating leukocytes and proximal lipid compounds. Pair-wise
correlations between gene expression and lipid concentration indicate a prominent role for basophil granulocytes and mast
cells, cell types central to powerful allergic and inflammatory responses. Network analysis of gene co-expression showed
that the top associations function as part of a single, previously unknown gene module, the Lipid Leukocyte (LL) module.
This module replicated in T cells from an independent cohort while also displaying potential tissue specificity. Further,
genetic variation driving LL module expression included the single nucleotide polymorphism (SNP) most strongly
associated with serum immunoglobulin E (IgE) levels, a key antibody in allergy. Structural Equation Modeling (SEM)
indicated that LL module is at least partially reactive to blood lipid levels. Taken together, this study uncovers a gene
network linking blood lipids and circulating cell types and offers insight into the hypothesis that the inflammatory response
plays a prominent role in metabolism and the potential control of atherogenesis.
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Introduction

Blood lipid levels have long been known to be important

markers of coronary artery disease and the underlying pathology

of atherosclerosis [1,2]. High-density lipoprotein cholesterol

(HDL) is a small, dense complex of phospholipids and apolipo-

proteins, including apolipoprotein A1 (APOA1), which is synthe-

sized in the liver and has been shown to be negatively associated

with atherogenesis. Low-density lipoprotein cholesterol (LDL)

displays a positive association with atherogenesis and contains one

apolipoprotein, apolipoprotein B (APOB), as well as numerous

fatty acids, lipids, and cholesterols. Atherosclerosis entails the

buildup of LDL deposits in the arterial wall where they undergo

oxidation and subsequent internalization by macrophages, an
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inflammatory response, leading to the formation of foam cells and

further inflammatory signals which can exacerbate arterial LDL

adhesion, leading to stenosis [3].

Genome-wide association studies (GWAS) have yielded many

successes in the search for the common genetic variants

underlying blood lipid levels and other metabolic traits [4–7],

however systematic functional investigation of pathways, partic-

ularly lipid pathways, has lagged behind. Recently, the link

between the inflammatory response and metabolism has been

the subject of intense research [8,9]. Chronic inflammation has

been shown to lead to the activation of c-Jun amino-terminal

kinases [10,11], and plasma triglyceride levels have been

associated with various mediators of NF-KB, a key component

of the immune response [12–15]. Further, it has been shown

that postprandial triglyceride increase activates monocytes and

neutrophils and the cardioprotective properties of HDL might

be partially mediated by activation of the complement cascade

[16,17]. Recently, two companion studies demonstrated both an

enrichment of immune pathways in metabolic syndrome and the

utility of integrating genomic and transcriptional variation

[18,19]. In particular, they identify a gene expression network

of macrophage origin which is likely to be causative of various

metabolic traits.

The proximity of lipid compounds and leukocytes in peripheral

blood offers a uniquely accessible system in which to study their

interactions. We utilized total blood samples from a population-

based cohort of 518 unrelated individuals (240 males and 278

females, aged 25–74 years) from the Dietary, Lifestyle, and

Genetic determinants of Obesity and Metabolic syndrome

(DILGOM) study which have undergone both genome-wide

expression profiling and genome-wide genotyping with imputa-

tion. After quality filtering (Materials and Methods), 35,419

expression probes and 541,654 SNPs (2,061,516 SNPs after

imputation) were taken forward for further analyses. We first

assessed how single gene expression correlated with both the

specific lipid measurements of the DILGOM cohort and overall

variation in lipids (Table 1) then performed network analyses to

identify and characterize clusters of tightly co-expressed genes,

modules, which showed strong association with lipids. Replication

and tissue specificity of a particular module, termed the Lipid

Leukocyte (LL) module, was investigated in an independent cohort

of B cells and T cells. Finally, genetic variation was assessed both

to identify expression quantitative trait loci (eQTLs) driving

expression of LL module, thus connecting our findings with that of

a previously published GWAS, and to construct an edge-oriented

network to elucidate the chain of causality.

Results and Discussion

To assess how each lipid trait associated with gene expression,

levels of HDL, LDL, APOB, APOA1, total serum cholesterol

(TC), triglycerides (TG), and free fatty acids (FFA) were modeled

using multiple linear regression with appropriate covariates

(Table 2) and a Bonferroni adjusted significance level for each

trait, equivalent to a nominal P = 1.4161026. Models were fitted

with and without hypertension and cholesterol lowering medica-

tions as covariates; no difference in the results was found. Since

there are known gender-specific effects, traits were gender-

stratified and standardized to Z-scores. Overall, 49 significant

associations with gene expression were found (Table 3), however

none were observed for TC, LDL, or APOA1. All reported P

values are Bonferroni adjusted.

Mediators of inflammation and allergy are associated
with APOB, HDL, and TG levels

The strongest signals for FFA were from genes previously

known to be involved in b-oxidation and lipolysis. During fatty

acid metabolism, long-chain acyl groups are transported from the

cytosol into the mitochondrial matrix by carnitine. At the outer

mitochondrial membrane, acyl groups are attached to carnitine by

Table 1. Lipid traits of the DILGOM population sample.

Trait Units
Overall mean
(s.d.)

Male mean
(s.d.)

Female mean
(s.d.)

TC mmol/L 5.11 (0.95) 5.09 (0.95) 5.13 (0.95)

LDL mmol/L 3.07 (0.84) 3.17 (0.84) 2.98 (0.83)

HDL mmol/L 1.48 (0.36) 1.34 (0.30) 1.61 (0.36)

APOA1 g/L 1.63 (0.28) 1.53 (0.25) 1.72 (0.28)

APOB g/L 0.92 (0.21) 0.95 (0.21) 0.89 (0.20)

TG mmol/L 1.15 (0.64) 1.27 (0.78) 1.04 (0.47)

FFA mmol/L 0.36 (0.21) 0.33 (0.20) 0.38 (0.22)

doi:10.1371/journal.pgen.1001113.t001

Table 2. Multiple regression covariates.

TRAIT Abbrev. COVARIATES

Total serum cholesterol TC Age CM HTM

High density lipoprotein HDL Age CM HTM Alcohol

Low density lipoprotein LDL Age CM HTM Alcohol

Apolipoprotein A1 APOA1 Age CM HTM

Apolipoprotein B APOB Age CM HTM

Triglycerides TG Age CM HTM Alcohol

Free fatty acids FFA Age CM HTM

Meta-lipids - Age CM HTM Alcohol

CM = cholesterol lowering medication (Yes or No).
HTM = hypertension medication (Yes or No).
Alcohol = alcohol intake in previous 7 days (grams).
For those DILGOM individuals passing quality control (N = 518), the proportion
using HTM was 20.5% (18.7% of females, 22.5% of males) and the proportion
using CM was 14.3% (10.1% of females, 19.2% of males).
doi:10.1371/journal.pgen.1001113.t002

Author Summary

Circulating lipid concentrations are important predictors of
coronary artery disease. The main pathology of coronary
artery disease is atherosclerosis, a cycle of lipid adherence
to the walls of arteries and an inflammatory response
resulting in more adhesion. To investigate the link
between lipids and immune cells in circulation, we have
generated both genomic and whole blood gene expres-
sion profiles for a population-based collection of individ-
uals from the capital region of Finland. Key mediators of
inflammation and allergy were shown to be correlated
with lipid levels. Further, the expressions of these genes
operated in such a highly coordinated fashion that they
appeared to function as part of a single pathway, which
itself was both highly correlated with and reactive to lipid
levels. Our findings offer insight into how lipids activate
circulating immune cells, potentially contributing to the
pathogenesis of coronary artery disease.

Gene Networks and Blood Lipids
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Table 3. Genes showing significant evidence of association with specific lipid traits.

Trait Chromosome Position P value
P value
(corrected) Beta (95% CI) Gene

APOB 15 48321493 9.90E-10 3.51E-05 20.39 (20.51–20.27) HDC

APOB 3 129681589 6.11E-08 2.16E-03 20.62 (20.84–20.40) GATA2

APOB 3 150097094 1.54E-07 5.45E-03 20.53 (20.73–20.34) CPA3

APOB 1 204405726 1.96E-07 6.96E-03 20.93 (21.27–20.58) C1ORF186

APOB 1 203893823 2.51E-07 8.90E-03 20.61 (20.84–20.38) SLC45A3

APOB 1 157544285 3.83E-07 1.36E-02 20.34 (20.47–20.21) FCER1A

HDL 15 48321493 5.94E-08 2.11E-03 0.35 (0.23–0.48) HDC

HDL 1 203893823 5.36E-07 1.90E-02 0.60 (0.37–0.83) SLC45A3

HDL 1 157544285 8.56E-07 3.03E-02 0.33 (0.20–0.46) FCER1A

FFA 3 48869652 1.02E-41 3.63E-37 2.85 (2.47–3.22) SLC25A20

FFA 7 95051149 1.56E-25 5.51E-21 1.41 (1.16–1.66) PDK4

FFA 11 68283656 2.97E-13 1.05E-08 2.32 (1.71–2.93) CPT1A

FFA 9 19106194 1.34E-08 4.74E-04 0.86 (0.57–1.15) ADFP

FFA 9 19106260 1.35E-08 4.79E-04 1.25 (0.83–1.67) ADFP

FFA 4 159847295 1.94E-08 6.88E-04 1.45 (0.95–1.95) ETFDH

TG 15 48321493 2.46E-37 8.71E-33 20.79 (20.90–20.68) HDC

TG 3 150097094 1.47E-31 5.22E-27 21.15 (21.33–20.97) CPA3

TG 1 203893823 1.69E-28 5.97E-24 21.28 (21.50–21.07) SLC45A3

TG 3 129681589 2.22E-28 7.88E-24 21.24 (21.45–21.04) GATA2

TG 11 59622246 2.09E-27 7.40E-23 21.62 (21.90–21.35) MS4A2

TG 1 157544285 1.11E-26 3.92E-22 20.70 (20.82–20.58) FCER1A

TG 8 33490552 8.93E-22 3.16E-17 0.81 (0.65–0.97) SNORD13

TG 11 55415610 1.06E-21 3.74E-17 21.27 (21.51–21.02) SPRYD5

TG 1 204405726 3.06E-20 1.08E-15 21.63 (21.97–21.30) C1ORF186

TG 6 26212414 3.32E-18 1.17E-13 0.80 (0.62–0.97) HIST1H4C

TG 11 59594827 1.07E-15 3.79E-11 20.78 (20.96–20.59) MS4A3

TG 21 29469766 6.16E-12 2.18E-07 20.67 (20.86–20.49) C21ORF7

TG 1 245806385 4.76E-11 1.69E-06 22.10 (22.71–21.49) C1ORF150

TG 1 45014767 9.99E-11 3.54E-06 2.51 (1.77–3.26) SNORD46

TG 12 115953221 1.16E-10 4.09E-06 1.36 (0.96–1.77) FBXW8

TG 19 50688370 3.26E-10 1.16E-05 0.96 (0.67–1.26) RTN2

TG 6 16256091 1.06E-09 3.74E-05 21.22 (21.61–20.84) MYLIP

TG 9 89330079 4.45E-09 1.58E-04 0.34 (0.23–0.46) DAPK1

TG 9 106583321 4.93E-09 1.74E-04 20.61 (20.81–20.41) ABCA1

TG 1 152230698 5.35E-09 1.90E-04 0.41 (0.28–0.55) RPS27

TG 6 34339344 2.76E-08 9.76E-04 0.53 (0.34–0.71)

TG 6 132103151 5.03E-08 1.78E-03 21.74 (22.36–21.13) ENPP3

TG 5 85949563 5.95E-08 2.11E-03 0.37 (0.24–0.50) COX7C

TG 7 134500907 6.42E-08 2.27E-03 20.59 (20.79–20.38) TMEM140

TG 19 16129952 8.98E-08 3.18E-03 20.74 (21.01–20.47) HSH2D

TG 1 190421142 2.27E-07 8.05E-03 20.53 (20.72–20.33) RGS18

TG 11 54794809 2.72E-07 9.64E-03 21.92 (22.64–21.20) TRIM48

TG 1 154248226 3.65E-07 1.29E-02 1.14 (0.71–1.57) SSR2

TG 22 17803280 4.35E-07 1.54E-02 1.35 (0.83–1.87) MRPL40

TG 12 87929168 7.78E-07 2.75E-02 21.96 (22.73–21.19) HS.132563

TG 7 65709374 8.08E-07 2.86E-02 0.47 (0.28–0.65)

TG 1 26519273 9.00E-07 3.19E-02 0.38 (0.23–0.53) CD52

TG 1 235211299 9.25E-07 3.28E-02 0.42 (0.26–0.59)

TG 8 48812282 1.29E-06 4.57E-02 20.64 (20.89–20.38) CEBPD

Gene Networks and Blood Lipids
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carnitine palmitoyltransferase 1A (CPTA1, P = 1.0561028 for

FFA) and internalized by carnitine/acylcarnitine translocase

(SLC25A20, P = 3.63610237) [20]. Pyruvate dehydrogenase kinase

4 (PDK4, P = 5.51610221) resides in the mitochondrial matrix and

downregulates the activity of the pyruvate dehydrogenase

complex, a process important to the substrate competition

between fatty acids and glucose [21]. Further, two strongly

associated probes lie within adipose differentiation-related protein

(ADFP, P = 4.7461024 and P = 4.7961024) which encodes

adipophilin [22,23], and electron-transferring-flavoprotein dehy-

drogenase (ETFDH, P = 6.8861024) has been previously linked to

multiple acyl-CoA dehydrogenation deficiency disorders [24].

While lipid traits were correlated with each other (Figure S1), it

was of particular interest that the top associations across APOB,

HDL and TG were largely shared (Table 3). These genes

included histidine decarboxylase (HDC), the alpha subunit from

the Fc fragment of high affinity IgE receptor (FCER1A), prostein

(SLC45A3), GATA binding protein 2 (GATA2), and carboxypep-

tidase A3 (CPA3). These genes were also significant predictors of

the APOB-APOA1 ratio, the strongest cholesterol-based risk

factor for atherosclerosis and coronary artery disease [25]

(Table 4). Differences in transcript levels between samples can

arise from the relative expansion or contraction of cell populations,

thus to test whether the associations could be due to variation in

the relative abundance of a range of blood cell types, previously

identified cell type expression markers [26] were added as

covariates in the model; significance was unchanged (Table 5).

Given inter-trait correlations, multivariate approaches may offer

better power to detect relationships between lipids and gene

expression by incorporating information from cross-trait covari-

ance [27,28] (Materials and Methods). When predicting

multiple traits simultaneously (termed meta-lipids), 85 unique

associations were observed at an equivalent Bonferroni-corrected

significance level and the above genes remained strongly

associated (Table S1). This represented an almost two-fold

increase in the number of significant associations using single lipid

traits and offered a unified ranking for assessing each gene’s

involvement in lipid levels.

The most strongly associated genes for APOB, HDL, and TG

present intriguing candidate genes for metabolic dysfunction,

inflammation, and atherosclerosis. HDC encodes the catalyst for

the conversion of histidine to histamine, a well-known pro-

inflammatory molecule that is secreted by basophils and mast cells

(BMCs). Histamine plays a role in atherogenesis and HDC

expression has been previously associated with atherosclerotic

status [29]. Importantly, lipoproteins, in particular very low-

density lipoprotein, have been shown to cause secretion of

histamine from basophils [30]. HDC may also play a more general

role in metabolic syndrome as murine knockouts display

hyperleptinemia, obesity, and glucose intolerance [31,32]. On

the cell surfaces of BMCs, FCER1A plays a powerful role in the

immune response and in histamine release as the encoded receptor

subunit directly interacts with antigen-bound IgE, an antibody

isotype capable of the most potent immune reactions [33].

FCER1A was also found to be the strongest signal in a recent

GWAS of serum IgE levels [34]. Interestingly, biochemical studies

of mast cell specific CPA3 have shown its involvement in the

degradation of APOB from LDL thus leading to the potential for

LDL fusion [35–37]. Our observation of a negative correlation

between CPA3 expression and APOB concentrations was consis-

tent with these findings. The transcription factor GATA2 has been

shown to both attenuate inflammation in murine adipose tissue

and allow for normal mast cell development [38]. Weidinger et al.

previously observed the co-expression of GATA2 and FCER1A

[34]. The correlation of FCER1A and GATA2 expression in the

DILGOM cohort was also extremely strong (Spearman’s

r= 0.664), therefore we investigated the hypothesis that HDC,

FCER1A, SLC45A3, GATA2, and CPA3 function as part of the

same pathway.

Network analysis of gene co-expression and module
replication

In biological pathways, many genes tend to co-express thus it is

natural to incorporate these correlations into a network-based

framework. Within this framework, pairwise correlations between

genes are used to describe the connectedness of the network, and

clusters of tightly correlated genes (modules) can define pathways.

To construct a co-expression network that characterizes lipid

traits, the method of Horvath and Langfelder [39,40] was used to

assess the top 10% of expression signals for meta-lipids (3,520

Table 4. HDC, FCER1A, CPA3, SLC45A3, and GATA2 show significant association with the APOB/APOA1 ratio.

Trait Chromosome Position P value
P value
(corrected) Beta (95% CI) Gene

APOB/APOA1 15 48321493 3.17E-09 1.12E-04 20.39 (20.51–20.26) HDC

APOB/APOA1 1 157544285 7.28E-08 2.58E-03 20.37 (20.50–20.23) FCER1A

APOB/APOA1 1 203893823 2.29E-07 8.11E-03 20.63 (20.86–20.39) SLC45A3

APOB/APOA1 3 150097094 5.12E-07 1.81E-02 20.52 (20.72–20.32) CPA3

APOB/APOA1 3 129681589 5.40E-07 1.91E-02 20.59 (20.82–20.36) GATA2

doi:10.1371/journal.pgen.1001113.t004

Table 3. Cont.

Trait Chromosome Position P value
P value
(corrected) Beta (95% CI) Gene

TG 2 192407481 1.36E-06 4.82E-02 20.47 (20.65–20.28) SDPR

doi:10.1371/journal.pgen.1001113.t003

Gene Networks and Blood Lipids
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unique signals, Materials and Methods). Twenty-three

modules were identified and each module’s summary expression

profile (defined by its first principal component) was tested for

correlation with individual lipid traits (Figure 1). The strongest

expression associations identified above for HDL, APOB, and

TG clustered into the same pathway, module K, hereafter

referred to as the Lipid Leukocyte (LL) module (Figure 2). The

strongest signals for FFA did not cluster into a module. Summary

expression of LL module was associated with HDL

(P = 5.6261027), APOB (P = 3.0661026), and TG levels

(P = 2.44610229), results which were significant after correcting

for the estimated number of co-expression modules in the whole

gene set (Materials and Methods). It is composed of 11 genes

(12 probes) including HDC, FCER1A, GATA2, CPA3, MS4A2 (the

beta subunit of high affinity IgE receptor’s Fc fragment), SPRYD5

and SLC45A3 (Table S2). Module membership, a measure of

intramodular connectivity, showed that the afore mentioned

genes constitute the core of the module and are the most

correlated with lipid traits (Figure 3).

In order to replicate LL module’s existence and investigate

tissue specificity, we utilized expression data from the GenCord

cohort [41], a unique resource which includes both EBV-

immortalized B cell lines (LCLs) and primary T cells drawn from

individual umbilical cord blood. LL module co-expression was

highly significant in T cells, however LCLs from the same

individuals showed a marked absence of any co-expression

(Table 6). This suggests that this co-expression module is tissue

specific among blood cell types, however it is not clear whether,

or to what extent, laboratory treatment might also contribute to

the obscurity of co-expression networks. The possibility exists

that significant changes in host-cell gene expression patterns

occur upon both infection of B cells with EBV, which binds to

complement receptors thus initiating the complement system,

and the selection of B cells which have successfully integrated

episomal EBV. We therefore emphasize caution when interpret-

ing correlations in gene expression from non-primary tissues and

encourage further studies into the effects of laboratory treat-

ments.

eQTL analysis of the Lipid Leukocyte module
Gene expression itself is a quantitative trait of genetic variation

[42–44]. Using genome-wide SNP genotypes from individuals in

DILGOM, we investigated the genetic effects on expression for

each gene in LL module and for the LL module as a whole

(Materials and Methods). For those SNPs in cis, within 1 Mb

of the expression probe midpoint, a simple linear regression was

performed. In order to determine significance, a permutation

procedure was implemented [43]. For trans SNPs, greater than

5 Mb away or on a different chromosome, the non-parametric

Spearman rank correlation was used [42], offering a more robust

test of association since permutation across the whole genome

would be computationally prohibitive. To determine the signifi-

cance of the nominal Spearman P value, a threshold of 5.061027

was implemented.

At a permutation threshold of 0.05, only two cis SNP

associations associated with genes in LL module (Table S3),

SLC45A3 expression was associated with variation at rs12569123

and rs12569261, however there was insufficient evidence for either

SNP’s association with overall expression of the LL module

(P = 0.18 and P = 0.057 respectively). It was of note that

rs2251746, an experimentally verified eQTL of FCER1A and the

strongest signal in a recent GWAS for serum IgE levels [34,45],

Table 5. Significance of HDC, FCER1A, CPA3, SLC45A3, and GATA2 with cell-type specific expression markers as covariates.

Trait Chromosome Position P value P value (corrected) Beta (95% CI) Gene

APOB 15 48321493 1.62E-09 5.74E-05 20.40 (20.53–20.28) HDC

APOB 3 150097094 6.71E-08 2.38E-03 20.58 (20.79–20.37) CPA3

APOB 1 157544285 9.24E-08 3.27E-03 20.38 (20.52–20.24) FCER1A

APOB 1 203893823 1.72E-07 6.11E-03 20.66 (20.90–20.41) SLC45A3

APOB 3 129681589 5.58E-07 1.98E-02 20.60 (20.84–20.37) GATA2

HDL 15 48321493 5.13E-07 1.82E-02 0.34 (0.21–0.46) HDC

HDL 1 157544285 5.81E-07 2.06E-02 0.35 (0.22–0.49) FCER1A

HDL 1 203893823 1.34E-06 4.75E-02 0.60 (0.36–0.84) SLC45A3

FFA 3 48869652 2.11E-39 7.48E-35 2.93 (2.53–3.33) SLC25A20

FFA 7 95051149 1.72E-26 6.10E-22 1.63 (1.35–1.91) PDK4

FFA 11 68283656 8.81E-13 3.12E-08 2.32 (1.70–2.94) CPT1A

FFA 9 19106260 1.88E-08 6.66E-04 1.32 (0.87–1.77) ADFP

FFA 9 19106194 2.30E-08 8.14E-04 0.94 (0.62–1.26) ADFP

FFA 4 159847295 3.92E-07 1.39E-02 1.53 (0.95–2.11) ETFDH

TG 15 48321493 3.59E-38 1.27E-33 20.82 (20.93–20.71) HDC

TG 1 157544285 4.05E-32 1.43E-27 20.80 (20.93–20.68) FCER1A

TG 3 150097094 1.58E-31 5.60E-27 21.20 (21.38–21.01) CPA3

TG 1 203893823 1.72E-29 6.10E-25 21.36 (21.58–21.14) SLC45A3

TG 3 129681589 4.16E-28 1.47E-23 21.27 (21.49–21.06) GATA2

The linear models are the same as in Table 1 of the main text, except for the addition of covariates for each of the cell-type specific expression profiles in Whitney et al
[26]. These include proportions of lymphocytes, neutrophils, reticulocytes, B cells, cytotoxic T lymphocytes/natural killer cells, erythrocytes, myeloid cells, and Myc-
regulated cells (profiles for the time of day were also included). There were no T cell specific markers available on the Illumina HT-12. Covariates were constructed via an
average standard score across all cell-type specific markers for each sample.
doi:10.1371/journal.pgen.1001113.t005
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nominally influenced FCER1A expression (Figure 4, nominal

P = 1.8361024). In testing association with LL module expression,

rs2251746 showed strong evidence (P = 4.2861026). For trans

SNPs, only three significant associations were observed, all

between MS4A3 expression and a haploblock on chromosome 6

containing PNRC1 and SRrp35. These SNPs also strongly

predicted LL module expression (Table S4). Overall, the

strongest signal for LL module expression corresponded to

rs2251746, evidence that LL module contains both transcriptional

and genetic components of the immune response.

Structural equation modeling shows Lipid Leukocyte
module is reactive to lipids

Genetic variation can be used to orient network edges and

infer causality [46–48]. Since we have identified genetic

variation driving expression of LL module, we can construct a

directed network of core LL module and other lipid measures

which have been strongly associated with genetic variants (TG

and HDL). To do this, we use SEM as implemented in Network

Edge Orienting (NEO) methods [48]. A Local Edge Orienting

(LEO) score was calculated to infer edge orientation (Materials
and Methods). Simulation studies have previously shown that

a LEO score threshold of 0.3 corresponds to a false positive rate

less than 0.05 [48]. With this approach, we show that both HDL

and TG may be causative of LL module by driving expression of

SPRYD5 (LEO score = 0.67) and MS4A2 (LEO score = 0.33)

respectively (Figure 5). Interestingly, HDL also appears to

influence TG levels (LEO score = 0.75). In addition, core LL

module genes were predicted to drive expression of FCER1A

(minimum LEO score = 1.4) with the exception of MS4A2, high

affinity IgE receptor’s beta subunit. However, for these

particular edges it should be noted that while deviation from

the causal model was at least 25 times less likely than all other

models considered, the causal model P values indicated that the

causal model itself was likely a poor fit (Table 7). As more

eQTLs are uncovered for LL module genes it is likely that

model fitting will improve and the chain of causation within LL

module will become clearer.

Conclusions
In this report, a previously uncharacterized, potentially tissue-

specific gene network (LL module) has been shown to be

associated with blood lipid levels. The LL module not only

harbors key components of inflammation and allergy which

strongly suggest a role for basophils and mast cells but also

associates with the SNP that most strongly regulates serum IgE

levels. BMCs themselves have been previously associated with

atherosclerosis and myocardial infarction [25,29,49,50], however

their precise role remains to be elucidated. The LL module

described here offers genomic evidence in support of previous

functional studies that LL module genes are linked to lipids and

metabolism and, importantly, shows that these genes operate as a

single gene module. This work provides a general framework to

understand how lipid levels might activate cellular pathways in

circulating nucleated peripheral blood cells contributing to

cascades potentially resulting in atherosclerosis. Our findings

should stimulate further, better-targeted molecular experiments to

characterize details of this link.

Figure 1. Network module associations with lipid traits. For each lipid trait and each module expression profile, a Spearman rank correlation
was performed. Each row corresponds to a module (arbitrarily lettered from A to W) and each column a particular lipid trait. Each cell contains the
probability that a correlation exists by chance and is color-coded with red indicating a strong positive correlation and green a strong negative
correlation. The module most strongly associated with lipid traits was module K. The genes composing this module, the Lipid Leukocyte (LL) module,
show that many of the top signals from a standard linear regression were part of the same sub-network.
doi:10.1371/journal.pgen.1001113.g001
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Materials and Methods

Ethics statement
The DILGOM participants provided written informed consent.

The protocol was designed and performed according to the

principles of the Helsinki Declaration and was approved by the

Coordinating Ethical Committee of the Helsinki and Uusimaa

Hospital District.

Trait measurements and sample collection
The study samples included a total of 631 unrelated Finnish

individuals aged 25–74 years from the Helsinki area, recruited

during 2007 as part of the Dietary, Lifestyle, and Genetic

determinants of Obesity and Metabolic syndrome (DILGOM)

study, an extension of the FINRISK 2007 study. Extensive trait

information was collected, including lifestyle factors. Study partic-

ipants were asked to fast overnight (at least 10 hours) prior to giving a

blood sample. After extraction, the blood samples were left at room

temperature for 45 minutes then centrifuged to separate the serum

and plasma. Samples were kept in a 270uC freezer.

Total serum cholesterol (TC), high density lipoprotein choles-

terol (HDL), low density lipoprotein cholesterol (LDL), apolipo-

protein B (APOB), apolipoprotein A1 (APOA1), triglycerides (TG),

and fasting free fatty acid (FFA) levels were determined in the

Laboratory of Analytical Biochemistry of the Institute of Health

and Welfare (Helsinki, Finland). TC measurements were carried

out with the CHODPAP-assay (Abbott Laboratories, Abbott Park,

Illinois, USA). HDL measurements used a direct enzymatic assay

(Abbott Laboratories, Abbott Park, Illinois, USA). TG was

measured with the enzymatic GPO assay (Abbott Laboratories,

Abbott Park, Illinois, USA). APOB and APOA1 levels were

determined using an immunoturbidometric method (Abbott

Laboratories, Abbott Park, Illinois, USA). For APOB, the

coefficients of variation (CVs) were 3.8%, 3.4% and 2.1% at the

levels 0.35 g/L, 0.90 g/L and 1.66 g/L respectively. For APOA1,

the CVs were 2.0%, 1.4% and 1.6% at the levels 0.91 g/L,

1.19 g/L and 2.15 g/L respectively. All methods used manufac-

turer protocols. FFA was determined using the enzymatic

colorimetric ACS-ACOD method, as implemented in the

NEFA-C assay kit, using the Architect c8000 (Abbott Laborato-

ries, Abbott Park, Illinois, USA). Between series repeatability were

0.73 mmol/L, CV = 2.4% (n = 143) for level 1 and 0.99 mmol/L,

CV = 2.3% (n = 139) for level 2. All methods used manufacturer

protocols.

Genotyping and expression microarrays
DNA was extracted from 10 ml EDTA whole blood samples

with salt precipitation using Autopure (Qiagen GmbH, Hilden,

Germany). DNA purity and quantity were assessed with Pico-

Green (Invitrogen, Carlsbad, CA, USA). Genotyping used 250 ng

of DNA and proceeded on the Illumina 610-Quad SNP array

(Illumina Inc., San Diego, CA, USA) using standard protocols.

Figure 2. Topology of the network and the LL module. The co-expression patterns of the network and the LL module were rendered using
BiolayoutExpress3D [60]. Each node is a gene (node size is not significant) and each edge is colored according to the absolute value of the Pearson
correlation between two nodes, red being strong and blue being weak. The LL module has been colored yellow and, within the topology of the
network (right panel), has been enlarged relative to other nodes. The topology of the network has been edge filtered (Pearson,0.65) in order to
make strong correlations clearer.
doi:10.1371/journal.pgen.1001113.g002
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After excluding chip failures and poor quality samples (as

determined by visual inspection of a 0.75% agarose gel or low

Sequenom call rate), 555 samples were successfully genotyped.

To obtain stabilized total RNA, we used the PAXgene Blood

RNA System (PreAnalytiX GMbH, Hombrechtikon, Switzerland),

which included collection of 2.5 ml peripheral blood into

PAXgene Blood RNA Tubes (Becton Dickinson and Co., Franklin

Lakes, NJ, USA) and total RNA extraction with PAXgene Blood

RNA Kit (Qiagen GmbH, Hilden, Germany). We used the

protocol as recommended by the manufacturer.

The integrity and quantity of the RNA sample was evaluated

with the 2100 Bioanalyzer (Agilent Technologies, Santa Clara,

CA, USA). Biotinylated cRNA was produced from 200 ng of total

RNA with Ambion Illumina TotalPrep RNA Amplification Kit

(Applied Biosystems, Foster City, CA, USA), using the protocol

specified by the manufacturer. 750 ng of biotinylated cRNA were

hybridized onto Illumina HumanHT-12 Expression BeadChips

(Illumina Inc., San Diego, CA, USA), using standard protocol. For

each sample, biotinylated cRNA preparation and hybridization

onto BeadChip were done in duplicates. For expression arrays,

585 samples were successfully completed.

Data quality, processing and imputation
After each expression array was scanned, background corrected

probe signal intensities and bead counts were outputted from

Illumina’s BeadStudio software in order to undergo further

processing. Strip-level quantile normalization was then used to

force probe intensity distributions for all samples on all arrays to be

the same [51]. Since each sample was technically replicated, the

normalized values were then used to measure their correlation via

Pearson’s product moment correlation coefficient (R) and Spear-

man’s rank correlation coefficient (r). Generally, reproducibility

was high (Figure S2). To further assess data quality, we also

generated MA plots between replicate arrays after normalization

[52]. We manually inspected each sample’s MA plot for curvature

or overt deviation from the M = 0 axis, none exhibited these

characteristics. A sample was removed from further analysis if its R
was ,0.94 or r was ,0.60 (9 samples fail).

To combine raw signal intensities from corresponding repli-

cates, the signals (S) were weighted by the number of beads (b)

contributing to each signal and summed to arrive at one measure

of signal intensity (d) for each sample at each probe:

d~S1
b1

b1zb2

� �
zS2

b2

b1zb2

� �

Probes that did not meet certain criteria were removed from

further analysis: (a) non-autosomal (b) complementary to cDNA

from erythrocyte globin components (c) map to more than one

genomic position.

For each genotyping array, Cy3 and Cy5 signal intensities were

exported from BeadStudio and pooled together for clustering with

the Illuminus genotype calling algorithm [53]. Samples were

removed from further analysis if they showed low quality (call rate

,0.95, 19 samples removed), failed to match Sequenom genotype

fingerprinting (concordance ,0.90 for at least 10 genotypes, 0

Figure 3. Connectivity and trait association within the LL module. In the LL module, there is a strong positive correlation between the intra-
modular connectivity of a node (gene) and its association with APOB, HDL, and TG levels, showing that the approximately eight genes inter-
connected are also the most associated with lipid traits. These genes constitute the core of the LL module.
doi:10.1371/journal.pgen.1001113.g003
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samples removed), or were a previously unknown close relation or

duplication (pairwise identity by descent pi-hat .0.10, 1 sample

removed). SNPs failing to meet the following quality thresholds

were also removed from further analysis: call rate .0.95, minor

allele frequency .0.01, and Hardy-Weinberg equilibrium P value

.1.061026. 37,558 SNPs were removed in total.

Table 6. LL module core gene co-expression in the GenCord cohort.

DILGOM (whole blood) GenCord (T cells) GenChord (LCLs)

Gene A Gene B Spearman rho P value Spearman rho P value Spearman rho P value

CPA3 FCER1A 0.701 ,2.2E-16 0.917 ,2.2E-16 20.055 0.636235841

CPA3 GATA2 0.705 ,2.2E-16 0.917 ,2.2E-16 0.035 0.767344119

CPA3 HDC 0.774 ,2.2E-16 0.650 ,2.2E-16 0.060 0.607446891

CPA3 MS4A2 0.682 ,2.2E-16 0.866 ,2.2E-16 0.135 0.246666555

CPA3 SLC45A3 0.812 ,2.2E-16 0.843 ,2.2E-16 0.058 0.618207944

CPA3 SPRYD5 0.619 ,2.2E-16 0.160 0.168711659 20.060 0.607702148

FCER1A CPA3 0.701 ,2.2E-16 0.917 ,2.2E-16 20.055 0.636235841

FCER1A GATA2 0.657 ,2.2E-16 0.858 ,2.2E-16 20.104 0.375296225

FCER1A HDC 0.684 ,2.2E-16 0.576 1.18E-07 20.115 0.325281824

FCER1A MS4A2 0.734 ,2.2E-16 0.880 ,2.2E-16 20.319 0.005509442

FCER1A SLC45A3 0.651 ,2.2E-16 0.852 ,2.2E-16 0.006 0.961262695

FCER1A SPRYD5 0.605 ,2.2E-16 0.237 0.041109859 0.276 0.016997624

GATA2 CPA3 0.705 ,2.2E-16 0.917 ,2.2E-16 0.035 0.767344119

GATA2 FCER1A 0.657 ,2.2E-16 0.858 ,2.2E-16 20.104 0.375296225

GATA2 HDC 0.890 ,2.2E-16 0.655 ,2.2E-16 0.104 0.371949805

GATA2 MS4A2 0.739 ,2.2E-16 0.882 ,2.2E-16 20.009 0.935643163

GATA2 SLC45A3 0.828 ,2.2E-16 0.795 ,2.2E-16 0.086 0.464335679

GATA2 SPRYD5 0.762 ,2.2E-16 0.055 0.638233048 20.063 0.591125476

HDC CPA3 0.774 ,2.2E-16 0.650 ,2.2E-16 0.060 0.607446891

HDC FCER1A 0.684 ,2.2E-16 0.576 1.18E-07 20.115 0.325281824

HDC GATA2 0.890 ,2.2E-16 0.655 ,2.2E-16 0.104 0.371949805

HDC MS4A2 0.770 ,2.2E-16 0.623 3.99E-09 0.020 0.865198439

HDC SLC45A3 0.856 ,2.2E-16 0.599 2.82E-08 20.277 0.016265791

HDC SPRYD5 0.791 ,2.2E-16 20.056 0.630865052 20.171 0.141566903

MS4A2 CPA3 0.682 ,2.2E-16 0.866 ,2.2E-16 0.135 0.246666555

MS4A2 FCER1A 0.734 ,2.2E-16 0.880 ,2.2E-16 20.319 0.005509442

MS4A2 GATA2 0.739 ,2.2E-16 0.882 ,2.2E-16 20.009 0.935643163

MS4A2 HDC 0.770 ,2.2E-16 0.623 3.99E-09 0.020 0.865198439

MS4A2 SLC45A3 0.718 ,2.2E-16 0.783 ,2.2E-16 20.003 0.981884832

MS4A2 SPRYD5 0.674 ,2.2E-16 0.199 0.087013944 20.347 0.002401304

SLC45A3 CPA3 0.812 ,2.2E-16 0.843 ,2.2E-16 0.058 0.618207944

SLC45A3 FCER1A 0.651 ,2.2E-16 0.852 ,2.2E-16 0.006 0.961262695

SLC45A3 GATA2 0.828 ,2.2E-16 0.795 ,2.2E-16 0.086 0.464335679

SLC45A3 HDC 0.856 ,2.2E-16 0.599 2.82E-08 20.277 0.016265791

SLC45A3 MS4A2 0.718 ,2.2E-16 0.783 ,2.2E-16 20.003 0.981884832

SLC45A3 SPRYD5 0.758 ,2.2E-16 0.202 0.082789037 0.083 0.479958577

SPRYD5 CPA3 0.619 ,2.2E-16 0.160 0.168711659 20.060 0.607702148

SPRYD5 FCER1A 0.605 ,2.2E-16 0.237 0.041109859 0.276 0.016997624

SPRYD5 GATA2 0.762 ,2.2E-16 0.055 0.638233048 20.063 0.591125476

SPRYD5 HDC 0.791 ,2.2E-16 20.056 0.630865052 20.171 0.141566903

SPRYD5 MS4A2 0.674 ,2.2E-16 0.199 0.087013944 20.347 0.002401304

SPRYD5 SLC45A3 0.758 ,2.2E-16 0.202 0.082789037 0.083 0.479958577

Each core gene in the LL module was tested for co-expression against all other core genes in the LL module using Spearman’s rank correlation coefficient. This was done
across three datasets: whole blood extracts from the DILGOM cohort (N = 518), primary T cells from GenChord individuals (N = 75), and EBV-transformed B cells from the
same GenCord individuals. Given 21 tests for each cohort, the Bonferroni corrected significance level is 2.3861023.
doi:10.1371/journal.pgen.1001113.t006
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Figure 4. Association of genetic variation with expression of FCER1A and SLC45A3. For each cis SNP proximal to FCER1A and SLC45A3, a simple linear
model is fitted and the regression P value (2log10 transformed) plotted along the vertical axis with genomic position of the SNP along the horizontal axis (both
on chromosome 1). The two adjacent SNPs passing a permutation threshold of 0.05 are denoted by red dots while the SNP (rs2251746) within FCER1A found to
drive expression of the LL module is circled in red. The position of the expression probe and the direction of transcription are denoted by a green arrow.
doi:10.1371/journal.pgen.1001113.g004

Figure 5. The directed network of core LL module, HDL, and triglycerides. NEO was used to generate an edge-oriented network of
triglycerides, HDL, and core LL module genes. Blue edges denote significant correlations between SNPs and nodes (orange circles), black edges denote
significant correlations between nodes with a corresponding LEO score greater than 0.3 (predicted as a causal edge) while grey edges denote significant
correlations between nodes with a LEO score less than 0.3 (causality is inconclusive). Dotted edges signify causal model fitted P values ,0.05.
doi:10.1371/journal.pgen.1001113.g005
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Un-observed SNPs were imputed with the software IMPUTE

version 5 using phased HapMap release 22 haplotypes from the

CEU panel [54]. A genotype was assigned if its posterior

probability was .0.95 or missing if not, and all SNPs

underwent the same filtering as those above. 249,345 SNPs

were removed in total, leaving 2,061,516 SNPs for further

analysis.

Population structure
To control for structure in the Finnish population, we used

principal components analysis (PCA) on the genotypic data in

order to identify outliers who descend from outside the Helsinki

region (Figure S3). All SNPs underwent PCA with the

EIGENSOFT software [55]; regression residuals involving the 2

previous SNPs were used as inputs to correct for SNP linkage

Table 7. LL core directed network statistics.

Edge (ARB) LEO score (LEO.NB.OCA) Model P value (ARB) Pearson Path Z statistic

HDLRTG 0.746 0.888 20.34 28.22

HDLRSPRYD5 0.671 0.466 0.19 4.52

TGRMS4A2 0.334 0.825 20.45 211.4

FCER1ARHDL 0.29 0.718 0.23 5.69

HDLRHDC 0.259 0.732 0.24 5.59

TGRCPA3 0.214 0.676 20.49 213

FCER1ARMS4A2 0.259 0.135 0.74 25.3

SPRYD5RFCER1A 1.41 1.35E-05 0.62 18.1

HDCRFCER1A 1.76 5.84E-06 0.7 22.2

CPA3RFCER1A 2.31 1.93E-06 0.71 23.1

SLC45A3RFCER1A 2.53 1.48E-06 0.66 20

GATA2RFCER1A 3.54 3.32E-08 0.67 20.3

MS4A2RHDL 26.22 3.75E-07 0.17 3.87

GATA2RHDL 26.29 5.15E-07 0.2 4.56

SLC45A3RHDL 26.02 6.86E-07 0.22 5.15

CPA3RHDL 26.06 6.85E-07 0.19 4.5

HDCRHDL 25.8 1.17E-06 0.24 5.59

SPRYD5RHDL 25.24 2.69E-06 0.19 4.52

MS4A2RFCER1A 20.259 0.000297 0.74 25.3

FCER1ARGATA2 24.15 4.33E-05 0.67 20.3

FCER1ARSLC45A3 22.53 0.00245 0.66 20

FCER1ARCPA3 22.31 0.00274 0.71 23.1

GATA2RTG 22.23 0.00431 20.45 211.5

FCER1ARTG 20.035 0.288 20.45 211.4

SLC45A3RTG 22.22 0.00504 20.46 211.8

SPRYD5RTG 22.1 0.00585 20.4 29.9

FCER1ARHDC 21.76 0.00796 0.7 22.2

HDCRTG 21.94 0.00887 20.51 213.6

FCER1ARSPRYD5 21.41 0.0224 0.62 18.1

CPA3RTG 21.48 0.0225 20.49 213

MS4A2RTG 21.51 0.0255 20.45 211.4

TGRFCER1A 20.224 0.186 20.45 211.4

TGRGATA2 20.826 0.109 20.45 211.5

HDLRSLC45A3 20.204 0.451 0.22 5.15

HDLRMS4A2 20.553 0.175 0.17 3.87

TGRHDL 20.884 0.116 20.34 27.85

TGRSPRYD5 20.671 0.156 20.4 29.9

HDLRCPA3 20.223 0.475 0.19 4.5

HDLRFCER1A 20.616 0.174 0.23 5.34

TGRSLC45A3 20.783 0.137 20.46 211.8

TGRHDC 20.464 0.268 20.51 213.6

HDLRGATA2 20.495 0.319 0.2 4.56

doi:10.1371/journal.pgen.1001113.t007
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disequilibrium. Samples exceeding eight standard deviations along

any statistically significant principal component were removed

from further analysis (Figure S4, 17 samples removed). A

principal component was considered significant if its Tracy-

Widom P value was ,0.01.

Trait distributions and correlations
Trait distributions and inter-trait correlations were also

examined. Given well-known gender differences between many

of the traits, distributions for males and females were treated

separately. If a trait was not normally distributed as determined by

an Anderson-Darling test (P,0.01), a Box-Cox power transfor-

mation was implemented to achieve normality and each trait

measurement was converted to a Z score. The Z scores for males

and females were then combined for further analyses. Inter-trait

correlations were calculated via Spearman’s rank correlation

coefficient, see Figure S1.

Association analysis and multiple test correction
All univariate statistical tests and permutations were done using

PopGenomix, a C++ package developed in the Dermitzakis

laboratory for the analysis of gene expression data. To test the

association of a transcript’s expression with a given SNP, linear

regression was used. A simple model was constructed where Yi is

the probe’s log2-normalized expression for individual i, Xi is the

genotype of the individual at a given SNP (encoded as 0, 1, or 2 for

the number of minor alleles), and ei is a normally distributed

random variable with mean equal to zero and constant variance:

Yi~azbXizei

Nominal P values were calculated for the test of no association,

b = 0.

In the case of Spearman’s r, the coefficient is a function of

ranks, xi is the rank of the log2-normalized expression value for

individual i, yi is the genotypic rank (0, 1, or 2), and n is the

corresponding number of measurements:

r~1{
6
P

xi{yið Þ2

n n2{1ð Þ

Since sample sizes were large, a t-test with n-2 degrees of freedom

was used to determine a nominal P value.

Null distributions of P values were generated in order to

evaluate the significance of the observed P value [43,56], with

expression levels permuted relative to genotypes. Unless otherwise

specified, 10,000 permutations were performed, and each test was

considered at an alpha level of 0.05.

Multiple and multivariate modeling was done using the R

statistical computing language (http://www.r-project.org/). To

test the association of a transcript’s expression with a given trait,

linear regression was used with appropriate covariates that include

age, gender, or other correlated traits (see Table 2).

Given the highly correlated nature of the trait measurements,

the construction of meta-traits was investigated. The meta-lipids

(TC, FFA, HDL, LDL, TG, APOB, APOA1) trait was treated as

the response variable in a multivariate linear model with probe

expression, age, hypertension medication, and cholesterol medi-

cation as regressors (Table 2).

Y~XbzE

where Y is a matrix of normalized individual lipid trait values for

genes; X is a matrix of log2-normalized expression values, age

values, hypertension and cholesterol medication (as factors) for each

individual; and E is a data matrix of error terms. Similarly, when

testing SNP association with expression of all LL module genes

simultaneously, a simple multivariate linear model was used. In

which case Y is a matrix of log2-normalized individual expression

values for genes in LL module, X is a vector of individual SNP

genotypes (encoded 0, 1, 2), and E is a data matrix of error terms.

Reported P values are from the Wilks’ lambda test statistic [57].

Multiple and multivariate modeling use the Bonferroni correction

to control for multiple tests. All reported P values are corrected

unless otherwise noted.

Correction for cell type expression markers
To correct for relative cell type numbers, we use the expression

markers defined in Whitney et al. [26]. The cell type proportions

corrected for include lymphocytes, neutrophils, reticulocytes, B

cells, cytotoxic T lymphocytes/natural killer cells, erythrocytes,

myeloid cells, and Myc-regulated cells (profiles for the time of day

were also included), however correction for T cells (uncovered on

HT-12 array), mast cells (not assessed in Whitney et al.), and

basophils specific markers (not assessed in Whitney et al.) was not

possible. Covariates for the cell types were defined as the average

standard score across all cell-type specific markers for each sample.

Network analysis
Network analysis was done using the R packages, WGCNA

[39,40,58] and NEO [48].

The undirected transcription network considered the top 10%

of expression signals for meta-lipids (3,520 unique signals). The

correlation matrix was constructed via all against all Pearson

correlation coefficient calculations and the adjacency matrix was

calculated with a soft threshold power of nine (Figure S5). Genes

were then hierarchically clustered and visualized in a dendrogram

(Figure S6), where a ‘leaf’ constitutes an individual gene and

‘branches’ are clusters of tightly correlated genes. The dynamic

tree cut function in WGCNA with a minimum module size of 10

genes was used to determine initial modules. Individual module

expression profiles underwent singular value decomposition and

the summary module profiles from the vector corresponding to the

first singular value were clustered to identify modules that were

highly correlated (those less than a dendrogram height of 0.20).

These modules were then merged.

To correlate module summary profiles with lipid traits, a t-test

of Spearman’s rank correlation was used. The corresponding

Spearman correlation coefficients and P values can be observed in

Figure 1. Statistical significance was determined by estimating the

number of co-expression modules in the entire dataset. Given the

23 modules calculated from 1000 expression probes, we estimated

the total number of modules to be (23635419/1000) = 814.637.

Therefore, the appropriate alpha level was determined to be

(0.05/814.637) = 6.1461025. Calculations of module membership

and individual gene significance (Figure 3) have been previously

defined [39]. Only module K (the Lipid Leukocyte, LL, module)

was used in further analyses.

NEO was used to predict the directedness of the network using

causal SNPs as anchors. Of the lipid traits associated with LL

module expression, HDL and TG were selected because the

genetic variation underlying them has been studied extensively.

Since the choice of SNPs can have a large impact on the

directedness of the network (non-causal SNPs can introduce

noise) and the DILGOM dataset (N = 518) is not sufficiently

powered to significantly detect many of the known variants, we

use only the strongest signals from recent genome-wide
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association studies [4,59]; rs3764261 (CETP) was included for

HDL and rs1260326 (GCKR) was included for TG. In our

dataset, the strongest signal previously found for TG, rs964184

(APOA1-C3-A4-A5), did not pass quality control filters. Since

rs2251746 has been shown to be an eQTL for FCER1A and LL

module expression, we also include it as a causal anchor. To

further verify that these loci can be considered causal anchors in

the DILGOM dataset, we adopt the automatic SNP selection

approach in NEO using both a greedy method and forward-

stepwise regression [48]. We observed that all SNPs were

correctly assigned to their respective nodes. An edge exists if

the edge score (the absolute value of the Pearson correlation

between nodes A and B) exceeds a threshold of 0.3. Since all

nodes have a causal anchor, the NEO score (the log10 ratio of a

fitted causal model P value to the next best causal model P value)

defined in the main text is the NEO.NB.OCA score. An edge is

considered significantly oriented if the NEO score exceeds a

threshold of 0.3. Simulation studies have shown that a

NEO.NB.OCA score of 0.3 or more corresponds to a false

positive rate of 5% or less (cite NEO). We further considered the

path coefficient for ARB (Z test statistic .1.96 or ,21.96) and,

since the NEO score is a ratio of model P values, the fit of the

primary model MARARBrMB (P value should be .0.05). See

Table 7 for directed network edge statistics.

Data availability
The expression data for the individuals analyzed in this study

has been made publicly available through the ArrayExpress

database (accession number E-TABM-1036).

Supporting Information

Figure S1 Inter-trait correlations from the DILGOM popula-

tion sample. Each tile is the color-coded Spearman rank

correlation coefficient between any two trait measurements across

the assessed DILGOM samples. Using the color bar on the right, a

red tile indicates a strong positive correlation while a green tile

indicates a strong negative correlation. No inter-trait correlation is

signified by a white tile (the main diagonal is white by default).

Found at: doi:10.1371/journal.pgen.1001113.s001 (0.24 MB

TIF)

Figure S2 Pearson and Spearman correlation coefficient

distributions for technical replicates. Technical replicates of the

Illumina HT-12 expression arrays displayed high reproducibility.

Found at: doi:10.1371/journal.pgen.1001113.s002 (0.13 MB TIF)

Figure S3 PCA of genotype data with no outliers removed.

Principal components analysis was used to identify ethnically

outlying samples.

Found at: doi:10.1371/journal.pgen.1001113.s003 (0.13 MB TIF)

Figure S4 PCA of genotype data after ethnic outlier removal.

Seventeen samples were identified as ethnically differentiated from

the rest of the DILGOM cohort (see Materials and Methods).

After removal, the cohort shows no significant population

structure.

Found at: doi:10.1371/journal.pgen.1001113.s004 (0.24 MB TIF)

Figure S5 Selection of adjacency matrix soft threshold power.

To better differentiate strong and weak correlations and

approximate scale-free network topology, each element of the

expression correlation matrix is raised to a power b. Here, the

selection of b follows the following criteria [58] (a) it maximizes the

connectivity of network and (b) approximates scale-free network

topology at a signed R2.0.80.

Found at: doi:10.1371/journal.pgen.1001113.s005 (0.15 MB TIF)

Figure S6 Transcription network dendrogram and module

determination. Modules are determined via hierarchical clustering

and dynamic branch cutting with a minimum module size of 10

genes. The module assignments are color-coded under ‘Dynamic

Tree Cut’. Since initial branch cutting can produce modules which

are themselves correlated with each other, a module merging step

was implemented where all modules underwent singular value

decompositions and were clustered [39]. The merged modules are

color-coded under ‘Merged dynamic’. After merging, 23 modules

were taken forward for further analysis.

Found at: doi:10.1371/journal.pgen.1001113.s006 (1.23 MB TIF)

Table S1 Genes showing significant evidence of association with

lipid meta-trait.

Found at: doi:10.1371/journal.pgen.1001113.s007 (0.04 MB

XLS)

Table S2 Genes comprising the LL module.

Found at: doi:10.1371/journal.pgen.1001113.s008 (0.02 MB

XLS)

Table S3 Cis expression quantitative trait loci in the LL module.

Found at: doi:10.1371/journal.pgen.1001113.s009 (0.02 MB

XLS)

Table S4 Trans expression quantitative trait loci in the LL

module.

Found at: doi:10.1371/journal.pgen.1001113.s010 (0.02 MB

XLS)
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