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We constructed a physiologically plausible computationally efficient model of a motor
unit and developed simulation software that allows for integrative investigations of the
input–output processing in the motor unit system. The model motor unit was first built by
coupling the motoneuron model and muscle unit model to a simplified axon model. To
build the motoneuron model, we used a recently reported two-compartment modeling
approach that accurately captures the key cell-type-related electrical properties under
both passive conditions (somatic input resistance, membrane time constant, and signal
attenuation properties between the soma and the dendrites) and active conditions
(rheobase current and afterhyperpolarization duration at the soma and plateau behavior
at the dendrites). To construct the muscle unit, we used a recently developed muscle
modeling approach that reflects the experimentally identified dependencies of muscle
activation dynamics on isometric, isokinetic and dynamic variation in muscle length
over a full range of stimulation frequencies. Then, we designed the simulation software
based on the object-oriented programing paradigm and developed the software using
open-source Python language to be fully operational using graphical user interfaces.
Using the developed software, separate simulations could be performed for a single
motoneuron, muscle unit and motor unit under a wide range of experimental input
protocols, and a hierarchical analysis could be performed from a single channel to the
entire system behavior. Our model motor unit and simulation software may represent
efficient tools not only for researchers studying the neural control of force production
from a cellular perspective but also for instructors and students in motor physiology
classroom settings.
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INTRODUCTION

A motor unit comprises a single motoneuron and the muscle fibers innervated by that
motoneuron and is the smallest functional element of all movements (Heckman and Enoka, 2012).
Spinal motoneurons receive both excitatory and inhibitory synaptic inputs from upper motor
centers in the brain and peripheral sensory organs. Muscle fibers transform the neural signals
from motoneurons into force output during movements. To accurately understand the neural
mechanisms controlling muscle contraction and force production, a systematic investigation of
the input-output properties of motor units at the system level, including both motoneurons
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and muscle subunits, is crucial due to the non-linearities inherent
in motoneuron and muscle behavior. Thus, a physiologically
plausible computational model and simulation software are
urgently needed to efficiently investigate complex interactions
between motoneurons and muscle fibers in neuromuscular
systems.

Motor unit models have been developed under static and
dynamic conditions. The static motoneuron models have been
used to represent the input–output relationship of motoneurons
at steady state (Heckman and Binder, 1991, 1993; Fuglevand
et al., 1993). Since those models have been phenomenologically
formulated it has been difficult to expand them to reflect
the non-linear properties experimentally observed from the
motor unit system. In contrast, the dynamic motoneuron
models have been mechanistically formulated to investigate
the influence of biophysical properties of motoneurons on
non-linear input-output behavior of motor unit system using
reduced modeling approach (Elias et al., 2012; Powers and
Heckman, 2017). However, there has been a lack of a suitable
method for determination of model parameters to reflect key cell
type associated properties (i.e., input resistance, time constant,
rheobase current, afterhyperpolarization duration and dendritic
signal attenuation) in the previous dynamic models (Kim, 2017a).
Furthermore, in all previous studies the muscle unit has been
represented using a simplified second-order mechanical system
exclusively for isometric contractions. In addition, the simulation
software providing graphical user interfaces have been developed
separately for nervous (Schutter, 1992; Brette et al., 2007; Muller
et al., 2015) and muscular (Cheng et al., 2000; Delp et al.,
2007) systems. To this end, the existing model and software
for the motor unit need to be improved to incorporate cell
type specific properties and non-linear behaviors allowing for
integrative investigations on the motor unit system under a broad
range of physiological input conditions.

Applying a computational analysis, the underlying mechanism
of the non-linear behavior of spinal motoneurons has been
successfully identified by testing an experimental hypothesis.
Since the discovery of persistence inward current (PIC) during
voltage clamp experiments (Schwindt and Crill, 1980), the
non-linear input-output relationship of motoneurons has been
intensively investigated in many species, including turtles
(Hounsgaard and Kiehn, 1989), mice (Carlin et al., 2000), rats
(Bennett et al., 2001) and cats (Lee and Heckman, 1998a).
In the presence of monoamines, during normal behaviors,
motoneurons display bistable behavior in which the firing state
transitions from quiescence to regular firing or from low-
frequency to high-frequency stable firing following the activation
of PICs by a brief excitatory pulse input. This bistability has
also been shown to lead to the production of counterclockwise
hysteresis in the motoneuron input-output relationship during
the slowly ascending and descending current stimulation at the
soma (Hounsgaard et al., 1986; Lee and Heckman, 1998b). The
underlying mechanism of this non-linear input–output process
has been investigated in both experimental and computational
studies, and the persistent inward current-generating channels in
the dendrites have been shown to be critical for the production
of the bistable and hysteretic firing behaviors of motoneurons

(Hounsgaard and Kiehn, 1993; Ballou et al., 2006). The PIC
channels must be clustered over the dendritic regions and
separated from the soma by 0.3 – 0.8 mm (Carlin et al.,
2000; Elbasiouny et al., 2005; Bui et al., 2006). Furthermore,
the type-specific electrical properties of motoneurons, such as
input resistance, membrane time constant and signal attenuation
properties over the passive dendrites, have also been shown to be
fundamental determinants that modulate the effects of dendritic
PIC activation on the input-output processing of motoneurons
(Kim, 2017a). In summary, the dendritic PIC location and type-
specific properties of motoneurons are primary factors that
determine the non-linear firing behavior of motoneurons.

The dependencies of muscle activation on neural signals from
motoneurons and the length variation during movements have
also been extensively investigated using both experimental and
computational approaches. Under full-excitation conditions, the
force-length (F-L) and force-velocity (F-V) relationships are the
fundamental properties of muscle units (Gasser and Hill, 1924;
Hill, 1970; Zajac, 1989; Brown et al., 1996). The bell-shaped
F-L relationship represents the optimal length at which the
peak force is produced as the muscle length increases under
isometric (constant-length) conditions. The F-V relationship
represents the velocity dependency of force degradation during
the shortening of muscle length and force potentiation during
the lengthening of muscle length under isokinetic (constant-
velocity) conditions. Based on these fundamental input-output
properties, the muscle has been modeled as a mechanical
system known as the Hill-type model, and this model includes
a contractile element representing the muscle fibers, serial
elastic elements representing the tendon organs and parallel
elastic and viscous elements representing the connective tissues
surrounding the muscle fibers (Zajac, 1989). In the Hill-type
muscle, the peak force at the optimal length during an isometric
contraction under full excitation is scaled proportionally by three
factors (muscle activation level and F-L and F-V relationships)
ranging from 0 to 1, while the stimulation rate and muscle
length vary over time. However, this modeling approach does
not sufficiently reflect the overall input–output properties of
a muscle unit for the full physiological range of stimulation
rates and muscle lengths (Sandercock and Heckman, 1997;
Millard et al., 2013). In particular, under the physiological range
(<20 Hz) of stimulation rates, the muscle force for shorter-
than-optimal muscles is much smaller than that for longer-
than-optimal muscles during isometric contractions. During
locomotor-like movements, the force under a low-frequency
(<20 Hz) stimulation rate is much more degraded than that
under a high-frequency stimulation rate (Perreault et al., 2003).
In summary, the complex interactions among the sarcoplasmic
calcium dynamics, cross-bridge formation and length variation
should be considered to realistically model the force production
of muscle units over the full physiological range of stimulation
rates and muscle lengths.

First, we constructed a computationally efficient
physiologically plausible model of motor units. To model
the motoneuron, we used a newly developed reduction modeling
approach in which the reduced motoneuron could reflect the key
system properties that determine the non-linear input–output
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processing of real motoneurons (Kim et al., 2014). We modeled
the force production of muscle units using a recently developed
muscle-tendon modeling approach that matches a wide range of
experimental measurements obtained from cat soleus muscles,
including the force production during twitch, sub-tetanic and
tetanic contractions under both static and dynamic variations in
muscle length, and the length- and velocity-tension properties
under full muscle activation (Kim et al., 2015). Then, we
developed a simulation software for systematic investigations
and analyses in the Python development environment and
validated the simulation capability and functionality of this
software by reproducing the simulation results obtained using
existing simulation software under physiological conditions. It
is notable that the current version of the simulation software
was designed to operate based solely on graphical user interfaces
for easy use so that the flexibility in extending the model
and simulation by the user may be limited in comparison to
script-based simulation software.

MATERIALS AND METHODS

Canonical Modeling of a Motor Unit
A motor unit comprises a single motoneuron and the set of
muscle fibers (or muscle unit) innervated by the motoneuron
through its axon. In this study, the model motor unit was
constructed by coupling two subunit models of a motoneuron
and muscle unit to the axon model (see Figure 1 for a
schematic diagram). The motoneuron and muscle unit were
biophysically modeled by applying the recently developed
reduction method, which allowed all model parameters to be
directly constrained from the key system properties that are
experimentally measurable in real motoneurons (Kim et al.,
2014) and muscle-tendon complexes (Kim et al., 2015). The
reduced motoneuron model consisted of two compartments (i.e.,
one component included the soma, axonal hillock and initial
segment and the other compartment included the dendrites)
coupled with an electrical conductance (upper panel in Figure 1).
The point model of a muscle unit is composed of a contractile
element representing the muscle fibers and a serial elastic element
representing the tendon (bottom panel in Figure 1). The axon
was modeled to simply represent the perfect transduction of
neural signals over the axonal nerve with a single parameter of
conduction delay time from the motoneuron to the muscle unit
(middle panel in Figure 1).

Electrical Behavior of Motoneurons
Passive dynamics
In our conductance-based two-compartment modeling
framework, the passive dynamics of a motoneuron are captured
using the following five cable parameters: two specific membrane
conductances (Gm,S and Gm,D) at the somatic and dendritic
compartments, two specific membrane capacitances (Cm,S
and Cm,D) at the somatic and dendritic compartments, and
one coupling conductance (GC) between the somatic and
dendritic compartments. In a top–down manner, all five cable
parameters are analytically constrained simultaneously to retain

FIGURE 1 | Schematic diagram of a model motor unit system. Reduced
motoneuron model consisting of somatic and dendritic compartments with
coupling conductance (upper), axon model for the perfect transmission of
neural signals from the motoneuron (middle) and muscle-tendon model
consisting of a contractile element (CE) and serial elastic element (SE) in series
(bottom). Input signals (red) to the motor unit model include the intracellular
current injection at the soma (Isoma), excitatory and inhibitory synaptic inputs
at the soma (Iesyn,soma and Iisyn,soma) and the dendrite (Iesyn,dend and Iisyn,dend),
current impulse stimulation over the axon (Iaxon) and length variation at the
muscle (Xm). Output signals (blue) from the motor unit model include the
membrane voltage at the soma (Vsoma) and the dendrites (Vdend) and force at
the muscle (FT). XCE, FT and EM indicate the length of the contractile element,
force transducer and electrical motor, respectively.

the following five system properties: two whole-cell properties
[input resistance (RN) and membrane time constant (τm)]
measured at the soma and three signal propagation properties
over the dendrites for direct current (DC) signals flowing
between the soma and the dendrites and alternating current (AC)
signals transferred from the soma to the dendrites (see Kim et al.,
2009; Kim and Jones, 2012 for details). These DC and AC signal
transductions over the dendrites are represented by the voltage
attenuation (VA) factor, which is defined as the ratio of the
voltage at the measurement site to the voltage at the stimulation
site. In this study, the three VA factors, i.e., the soma-to-dendrite
VA with DC input at the soma, the soma-to-dendrite VA with
AC input at the soma and the dendrite-to-soma VA with DC
input to all points of the dendrite, are referred to as VASD

DC,
VASD

AC and VADS
DC, respectively.

Active mechanisms
All active membrane properties considered in previous
computational studies investigating spinal motoneurons were
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incorporated in the present version of the simulation software
(Booth et al., 1997; Hornby et al., 2002; Powers et al., 2012;
Elbasiouny, 2014). The rhythmic firing activity of motoneurons
was produced at the somatic compartment via interactions
between the following six active currents: fast sodium (INa,f),
delayed rectifier potassium (IK,dr), N-type calcium (ICa,N),
calcium-dependent potassium (IK(Ca)), persistent sodium
(INa,p) and hyperpolarization-activated mixed-cation (IH)
currents. The rheobase current and afterhyperpolarization
duration of an action potential could be separately modulated
by varying the conductance [i.e., GNa,f in Equation (1.8) in
the Appendix] for INa,f and the percentage [i.e., fS in Equation
(1.11) in the Appendix] of free to bound Ca2+ ions in the
soma, respectively (Kim, 2017a). The plateau potentials and
voltage oscillations at the dendritic compartment were produced
using the following seven active currents: fast sodium (INa,f),
delayed rectifier potassium (IK,dr), N-type calcium (ICa,N),
calcium-dependent potassium [IK(Ca)], persistent sodium (INa,p),
hyperpolarization-activated mixed-cation (IH) and low-voltage-
activated L-type calcium (ICa,L) currents. The dynamics of the
calcium concentration were also considered to update the IK(Ca)
(Booth et al., 1997) and equilibrium potential of the calcium
current (ECa) (McIntyre and Grill, 2002) in both the somatic and
dendritic compartments. The Hodgkin-Huxley type formulation
was applied for modeling the voltage-gated ion currents: INa,f,
IK,dr, ICa,N, INa,p, ICa,L (McIntyre and Grill, 2002) and IH
(Powers et al., 2012). The system equations used to generate
the reduced motoneuron model, including all transmembrane
ionic currents and calcium dynamics, are presented in full in the
Appendix.

Force Production of Muscle Fibers
The multiple signal transformations that occurred in the
sarcomere for force production are represented by the three sub-
modules reported in a previous study (Kim et al., 2015). In this
modular muscle modeling approach, model parameters could be
constrained separately based on experimental data obtained for
individual sub-modules.

Module 1
The first module represents the transformation of the spike
signals from the motoneurons into the concentration dynamics
of calcium (Ca) and Ca bound to troponin (CaT) in
the sarcoplasm (SP). The dynamics of the Ca and CaT
concentration in the SP were modeled by simplifying the
chemical reactions experimentally identified in single mouse
muscle fibers (Westerblad and Allen, 1994). The sarcoplasmic
Ca concentration was determined by the release (R) and
reuptake (U) of Ca through the membrane of a sarcoplasmic
reticulum (SR) containing free Ca and calsequestrin (CS), and
the interactions with free Ca-buffering proteins (B) and troponins
(T) in the SP.

Module 2
The second module addresses the conversion of the CaT
concentration in the SP to the level of muscle activation [A(t)].
This conversion was modeled based on the non-linear (i.e.,
sigmoidal) relationship between the Ca concentration in the

SP and force production that has been experimentally observed
under steady-state conditions, reflecting the cooperativity in
cross-bridge formation (Shames et al., 1996). In this module,
the steady-state relationship of Ca-force was first mapped to
that of CaT-activation level (Ã∞) for the steady Ca stimulation.
The dynamics of Ã was further represented applying the
Morris–Lecar formulation that has been used to mathematically
represent the dynamics of gating variables underlying membrane
excitability (Morris and Lecar, 1981). Then, the Ã(t) was updated
to the A(t) in the exponential form [Ã(t)]α, where the exponent
α represents the transient variation in the sarcoplasmic Ca
concentration during neural excitation.

Module 3
Considering the length- and velocity-tension properties, the
third module simulates the transformation of A(t) into the
muscle force based on Hill-type muscle mechanics consisting
of contractile element (CE) and serial elastic element (SE)
lumping tendon and aponeurosis compliance. The force output
was determined by multiplying the stiffness of SE by the
difference between the deviation in the total muscle (Xm) and
contractile element length (XCE) from their initial lengths.
The XCE was determined at various muscle lengths and levels
of activation using the modified Hill-Massima equations to
represent the velocity-tension relationship for both muscle
shortening and lengthening at various levels of muscle length
and activation. All four coefficients [i.e., a0-d0 in Equation
(2.7) in the Appendix] in the Hill-Massima equations could be
analytically determined using the inverse equations against the
velocity-tension curve experimentally characterized (Sandercock
and Heckman, 1997) (see the Methods in Kim et al., 2015 for
details). All experimentally identified dependencies of soleus
muscle activation dynamics on muscle length during isometric
contractions were incorporated into the present muscle unit
model by making the rate constant [i.e., K5 in Equation (2.5) in
the Appendix] a function of the muscle length in the first module
and embedding the length-tension relationship of the soleus
muscle in the third module. The velocity-tension relationship
of the muscle unit (or muscle fibers innervated by a single
motoneuron) was scaled by multiplying two coefficients [i.e., a0
and c0 in Equation (2.7) in the Appendix] in the Hill-Massima
equations by the ratio of the peak force of the muscle unit to
the peak force of the entire muscle at the optimal muscle length
during an isometric contraction under full excitation.

The equations used to generate the individual sub-modules are
fully presented in the Appendix.

Considerations for the Motor Unit
Simulation
Topology and Geometry
Motoneuron
The morphological characteristics of the motoneuron dendrites
and the cable properties determine the electrotonic structure
of the dendrites depending on both the direction and type
of electrical signals propagating between the soma and the
dendrites (Carnevale and Johnston, 1982; Zador et al., 1995).
In our reduced modeling approach, the complex motoneuron
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structure is collapsed into two compartments (i.e., somatic
and dendritic). The electrotonic structure of the motoneuron
dendrites is physiologically reflected between the somatic and
dendritic compartments, allowing all cable parameters (i.e., Gm,S,
Gm,D, GC, Cm,S, and Cm,D) of the reduced motoneuron to
be analytically determined simultaneously to retain the three
voltage attenuation factors (i.e., VASD

DC, VADS
DC, and VASD

AC)
calculated along the paths of the dendritic trees as a function of
the path length from the soma (Kim et al., 2014). The voltage
attenuation factors between the soma and a single point over the
dendrites (i.e., point-to-point condition) (Zador et al., 1995; Bui
et al., 2003) or between the soma and all points over dendrites
at the same path length (i.e., point-to-all condition) have been
characterized (Kim et al., 2014; Kim, 2017a). In the current
version of the software, the direction- and type-dependent
signal propagation properties over passive motoneuron dendrites
can be simulated based on the physical length by directly
varying the individual voltage attenuation factors between 0
and 1. The passive dendritic excitability (i.e., dendritic input
resistance) is also physiologically incorporated into the reduced
modeling framework by the formulation of the somatic input
resistance (i.e., RN) multiplied by the asymmetry ratio (i.e.,
VASD

DC/VADS
DC) of the dendritic signal propagation as reported

in a previous study (Kim and Jones, 2011). Furthermore, the
surface area of the dendrites could be modulated by adjusting a
model parameter (p) that indicates the ratio of the surface area
of the somatic compartment to the surface area of the dendritic
compartment (Kurian et al., 2011; Kim and Heckman, 2015).

Muscle unit
The muscle unit was modeled by assuming that the force
production of individual muscle fibers is scalable from that of
the sarcomere and that the muscle fibers comprising a muscle
unit are uniformly arranged with identical lengths within the
muscle. Under these assumptions, the present muscle unit model
represents the average force production of all muscle fibers
innervated by a single motoneuron. In this study, the force
production of a single muscle unit was, via simulation, scaled
from the maximum force that the entire muscle may produce
during an isometric contraction at the optimal muscle length
under full excitation.

Channel Selection and Distribution
Motoneuron
The types of active transmembrane channels may differ
depending on the location over the soma and dendrites. This
heterogeneous distribution of voltage-gated ion channels was
simulated by selecting a specific set of voltage-gated ion channels
for each compartment in the reduced modeling framework.
Furthermore, the variation in the physical location of the
dendritic voltage-gated ion channels was simulated by changing
the physiological values of the three voltage attenuation factors
that were calculated as a function of the path length along
the dendrites from the soma in anatomically reconstructed
motoneurons under the point-to-point condition (Kim et al.,
2009; Kim and Jones, 2012) and the point-to-all points condition
(Kim et al., 2014).

Muscle unit
In this study, the transduction of neural signals from the
motoneuron to the muscle unit at the neuromuscular junction
was assumed to be perfect. The action potentials from the reduced
motoneuron are directly transferred to the muscle unit with
a time delay reflecting the conduction velocity of the axonal
nerve. In response to the neural signals from the reduced
motoneuron, the release and uptake of calcium ions through
the membrane of the sarcomere reticulum at the muscle unit
are phenomenologically simulated and modulated by two time
constants (i.e., τ1 and τ2) for Ca release and one rate constant
(i.e., K) for Ca reuptake [see Equation (2.5) in the Appendix].

Stimulation Protocols for Motoneurons
Both intracellular stimulations and synaptic inputs are
considered in this study. Regarding the intracellular
stimulation, the following two types of stimulation protocols
are experimentally applied at the soma (Hounsgaard et al.,
1988; Lee and Heckman, 1998b): (1) a long-lasting current
step along with alternating excitatory and inhibitory current
pulses to test the cell excitability at the steady-state and (2)
a current ramp that monotonically rises and falls to simulate
the input–output relationship at a wide range of stimulation
intensities. Regarding the synaptic inputs, both excitatory
and inhibitory synaptic inputs were applied at the soma and
dendrites. Similar to the intracellular stimulation, the synaptic
conductances were modulated in the form of a long-lasting step
along with alternating pulses and an ascending and descending
triangular shape over time. Synaptic currents with noise were
also selectively incorporated into the synaptic conductance to
reflect the noisy background activity and synaptic transmission
(Destexhe and Pare, 1999). In the simulation of synaptic noise,
the noise amplitude increased in proportion to the maximum
conductance of the synaptic input (Powers et al., 2012). The
method used to generate the synaptic currents with noise has
been fully described in the previous study (see the Appendix
for equations). For the axonal stimulation, a supra threshold
current impulse sufficient to evoke a spike over the axon was
generated at both regular and irregular frequencies. The current
impulses at an irregular (or random) frequency were produced
from a normal (Gaussian) distribution given a mean frequency
and standard deviation. Furthermore, input signals that are not
provided by the current version of the software may be defined
by the user and imported directly from data files.

Variation in Muscle Length
The muscle length was changed over the full physiological range
from the minimum of −16 mm to the maximum of 0 mm with
the optimal muscle length of −8 mm based on experimental
studies investigating cat soleus muscles (Sandercock and
Heckman, 1997). In this study, the following three types of length
variations were considered: (1) a constant length under steady-
state conditions (isometric), (2) a constant change in muscle
length over time (isokinetic) and (3) locomotor-like movement
(dynamic). Under the dynamic condition, the locomotor-like
movement was generated via random variation of muscle length
produced at a bandwidth ranging from 0 to 5 Hz, which matched
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the changes observed in the soleus length during unrestrained
locomotion (Goslow et al., 1973). The dynamic variation in
the muscle length over time was calculated using the following
two steps: random numbers were created in a white uniform
10-kHz sequence using a random number generator and then
filtered with a low-pass FIR filter using a Blackman window. All
length perturbations were centered around an operating point
−8 mm less than the physiological maximum length (0 mm).
Furthermore, length signals that are not provided by the current
version of the software may be defined by the user and imported
directly from data files.

Numerical Integration
The accuracy, stability, and performance of the computer
simulation were considered in selecting the optimal method for
the numerical integration of the model motoneuron, muscle
fibers and motor unit. Among the ordinary differential equation
(ODE) solvers available in the Python library (i.e., scipy), VODE
and LSODA were the best options for our motoneuron and
muscle unit models, respectively. Although the simulation with
LSODA was faster than that with VODE for both the motoneuron
and muscle unit models, the LSODA solver caused an unstable
simulation and inaccurate integration in the motoneuron model
during the excitatory and inhibitory current pulse injections over
a short period of time (i.e., 300 ms) at the somatic compartment.
The simulations using other methods (i.e., dopri5 and dop853)
were much slower for all three models (i.e., motoneuron, muscle
unit and motor unit). For the stochastic simulations, including
the noise in the synaptic conductance, VODE and LSODA were
also applied to numerically solve the motoneuron and muscle
unit models.

Considerations for Software Design
Structure
The design of the overall software structure enabled
electrophysiological experiments at both the single-cell and
motor unit levels (Figure 2). The three components generally
involved in electrophysiological experiments investigating the
motor unit system were identified as the input signal, target
system and output signal. The input signal for the motoneuron
includes the intracellular and synaptic stimulations at the soma
and synaptic stimulations at the dendrite, and for the muscle
unit, the input signal includes the electrical stimulations at the
axon and the variation in the muscle length. The target system
included the motoneuron, muscle unit and motor unit. In this
study, the output signal included the spikes at the soma and the
dendrites in the motoneuron and the force from the muscle unit.

Functionality
The design of the simulation software allowed the simulations
to be fully operated using a graphical user interface (GUI).
The design of the GUI allowed for a generic computational
procedure to be performed using modeling and simulation
approaches (Figure 3). The main window consists of one state
window and six buttons for model selection, parameter setting,
simulation condition setting, input setting, output display setting
and run control. Using the MODEL button, the target model

to be simulated is selected among the motoneuron, muscle unit
and motor unit models. The Model Parameters window, which
pops up via the Model Parameter Settings button, provides the
GUI interfaces for setting the model parameter values manually
or automatically by importing pre-determined data into the
software. The Simulation Conditions window is generated by
clicking on the Simulation Condition Settings button and
includes the GUI interfaces for setting the simulation time,
display quality and initial values of the model equations. The
Input Signals window is produced by clicking on the Input Signal
Settings button and allows the type and protocol for injecting the
input signals into the model to be selected. The Output Signals
window, which pops up by clicking the Output Signal Settings
button, enables the output variables to be displayed and plotting
options to be selected. To efficiently compare the multiple output
variables simultaneously, the design of the simulation software
allows for the output variables to be selected in the Output
Signals window and displays these variables either individually
on separate panels or together on the same panel. To support
offline analyses, the simulation data are also saved in a separate
file. Through the Run button, the simulation can be started or
stopped.

Extensibility
To enhance the software extensibility for future changes and
improve the management and reuse of the software, the current
version of the simulation software for the motor unit system was
designed and implemented under the object-oriented paradigm
(Bal and Grune, 1994) and reported using the UML 2.1 standard1.

Interoperability
To promote the interoperability of the simulation software
between operating systems, the software was implemented in
the open-source Python software environment (i.e., Python 2.7)
using Anaconda (version 2.2.0) that is freely downloadable
at https://repo.continuum.io/archive/ (Oliphant, 2007; Millman
and Aivazis, 2011). Scipy libraries (version 0.15.1) were used
to solve the models (Jones et al., 2001). The Pandas (version
0.15.2) and Numpy (version 1.9.2) libraries were used for data
management (Mckinney, 2010; Van Der Walt et al., 2011).
PyQt4 (version 4.10.4) and Matplotlib (version 1.4.3) were used
for the GUI design and data plotting in the Python software
environment (Hunter, 2007; Summerfield, 2008). The source
code and binary files for the simulation software produced in
this study are publically available for download from online
repositories2.

RESULTS

Implementation of the Simulation
Software
After identifying the functional and non-functional requirements
for the motor unit simulation software, the software was

1www.omg.org/spec/UML/2.1.2
2https://github.com/NMSL-DGIST/PyMUS
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FIGURE 2 | Data flow diagram for PyMUS. Input and output signals considered for the simulation software are indicated in red and blue as represented in Figure 1.
Vsoma and Vaxon represent the membrane voltage data flowing from the motoneuron to the axon and from the axon to the muscle fibers, respectively. [CaT], Ã and A
in the muscle fibers indicate the concentration of Ca2+ bound to troponin in the sarcoplasm, muscle activation level for steady and dynamic excitation condition,
respectively (see Force Production of Muscle Fibers in “Materials and Methods” for the detailed explanation on the three sub-modules).

implemented using the standard UML language. The structural
and dynamical aspects of the simulation software developed in
this study were addressed by drawing a class diagram and state
diagram, respectively.

Class Diagram
From a structural perspective, the simulation software consists
of two groups of classes (Figure 4). One group was developed
for the graphical user interfaces through which the users can
set up and run the simulation and manage the simulation data.
This class group includes six main classes for the generation
of the main window and model selection (MainWindow class),
setup of the model parameters (ParameterSettingWindow class),
setup of the simulation conditions (IntegrationSettingWindow
class), setup of the input signals (SignalGeneratorWindow class),
setup of the output signals (OscilloscopeWindow class) and
display of software information (AboutThisWindow class). The
SignalGeneratorWindow class further includes four additional
classes for the generation of intracellularly injected current inputs
at the soma (InputSignalGenerator class), synaptic inputs at both
the soma and dendrite (SynConSignalGenerator class), current
impulse stimulation at the axon (SpikeSignalGenerator class) and
muscle length variation in the muscle unit (XmSignalGenerator
class). The other class group was developed for run control
and data storage (Oscilloscope class) and model construction
and numerical integration (MotoNeuron class for motoneuron,
MuscleFibers class for muscle unit and MotorUnit class for motor

unit). In our software, the MainWindow class has a relationship
with all other classes, allowing users to access all classes through
the main window.

State Diagram
From a dynamical perspective, the simulation software has seven
main states (Figure 5). The individual states for the model
selection, model parameter setup, simulation condition setup,
input signal setup, output signal setup, and simulation can
transition from and into the initial state according to the event
triggered by users pushing the button in the GUI windows (see
Figure 3). In addition, the four states, except for the Model
Selection, Simulation and Initial State, can mutually transition
among each other without going into the Initial State when the
“Apply” button is used instead of the “OK” button in the GUI
windows.

Validation of the Simulation Software
The simulation capability and functionality of the developed
software for physiological conditions were validated at the
level of single unit and whole system (Pham, 2000). First, the
implementation of motoneuron model in the present simulation
software was verified reproducing the non-linear firing behavior
of the motoneuron under physiological conditions that has been
shown in the XPPAUT software environment (Ermentrout,
2002). Second, the implementation of muscle unit model
was verified reproducing the non-linear force production
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FIGURE 3 | Graphical user interfaces for PyMUS. The main window (A) provides all graphical user interfaces for the model selection (A), model parameter setup (B),
simulation condition setup (C), input signal setup (D), output signal setup for display of simulation results (E).

of the muscle under physiological conditions that has been
demonstrated using the NEURON software (Hines and
Carnevale, 1997). Lastly, for integration testing the non-linear
input-output behaviors recently reported using the cat soleus
motor unit model in the NEURON simulation environment
were demonstrated using the present simulation software under
the similar input conditions.

Non-linear Input–Output Behavior of a Cat Spinal
Motoneuron
To verify the implementation of motoneuron model in the
present software, our simulation results were directly compared
with simulation results obtained in a previous study using
XPPAUT under the same setup for the passive (i.e., RN = 1.29 M�
and τm = 7.2 ms at the soma and VASD

DC = 0.76, VADS
DC = 0.75

and VASD
AC = 0.27 between the soma and all points over the

dendrite at a similar path length of 0.6 mm from the soma) and
active [i.e., INa,f, IK,dr, ICa,N, IK(Ca), INa,p and calcium dynamics
dependent ECa at the soma and ICa,L with constant ECa at
the dendrite] membrane properties and input protocols (see

Figures 2H,I in Kim et al., 2014 for values of model and input
parameters).

The simulation was performed using the current version of the
software through following steps: (1) select ‘Motoneuron’ from
the drop-down MODEL menu in the Main window, (2) in the
Model Parameters window check only ‘INaf,’ ‘INap,’ ‘IKdr,’ ‘IK(Ca)’
and ‘ICan’ for the SOMA and ‘ICal’ and ‘constant calcium reversal
potential’ for the DENDRITE and push “OK” or “Apply”, (3)
in the Input Signals window select ‘Ramp,’ push “Generate,” and
click “OK” or “Apply” on the ‘Isoma’ tab for triangular current
stimulation at the soma, (4) in the Output Signals window check
‘V’ and ‘Firing rate’ at the SOMA and ‘V’ at the DENDRITE along
with ‘Overlapped’ display option and push “OK” or “Apply”
and (5) push “Run” in the Main window. For the case of
excitatory synaptic input without noise at the dendrite, ‘Iesyn’ was
additionally checked at the DENDRITE in the Model Parameters
window and ‘Simulation Time’ was set to 20000 in the Simulation
Conditions window. In the Input Signals window, ‘Peak Value’ for
the ‘Ramp’ protocol was set to 0 on the ‘Isoma’ tab for zero-current
injection at the soma and the ‘Ramp’ protocol was selected
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FIGURE 4 | Class diagram for PyMUS. The MainWindow class is mutually associated with all classes for the graphical user interfaces (AboutThisWindow,
ParameterSettingWindow, IntegrationSettingWindow, SignalGeneratorWindow and OscilloscopeWindow) and includes the classes for the model construction and
simulation (Oscilloscope, MotoNeuron, MuscleFibers, and MotorUnit). The SignalGeneratorWindow class further includes four classes for generation of input signals
(InputSignalGenerator, SynConSignalGenerator, SpikeSignalGenerator, and XmSignalGenerator). The MotoNeuron class, MuscleFibers class and MotorUnit class are
selectively included in the MainWindow class depending on the model type selected by the users in the main window.

setting ‘Gp’ and ‘Duration’ to 0.12 and 10000 on the ‘Isyn’ tab for
triangular synaptic input at the dendrite. It should be noted that
“OK” or “Apply” button must be pushed to reflect all changes that
the user makes in individual sub-windows.

Figure 6 shows the simulation results of the counterclockwise
hysteric firing output of the motoneuron in response to the
triangular variation in the intracellular current injection at the
soma (Figure 6A) and excitatory synaptic input without noise at
the dendrite (Figure 6B). The results between the previous and
current simulations were identical, indicating the capability of
the current version of the software for physiological simulation of
motoneuron behaviors experimentally observed (previous results
are not shown but model code is available at ModelDB 239039).

Non-linear Input–Output Behavior of Cat Soleus
Muscle
Similarly to the motoneuron case, the implementation of
muscle unit model in the present software was verified
directly comparing to simulation results obtained in a previous
study using the NEURON software applying the same model
parameters and input conditions (see Figures 4, 5 in Kim et al.,
2015 for values of model and input parameters).

The simulation was performed using the current version of
the software through following steps: (1) select ‘Muscle Fibers’
from the drop–down MODEL menu in the Main window, (2)
in the Simulation Conditions window set ‘Simulation Time’ to
2000 and push “OK” or “Apply”, (3) in the Input Signals window

Frontiers in Neuroinformatics | www.frontiersin.org 9 April 2018 | Volume 12 | Article 15

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-12-00015 April 9, 2018 Time: 16:41 # 10

Kim and Kim PyMUS: Python-Based Motor Unit Simulator

FIGURE 5 | State diagram for PyMUS. PyMUS can transition back and forth between the initial state and the other main states (Model Selection, Model Parameter
Setup, Simulation Condition Setup, Input Signal Setup, Output Signal Setup and Simulation) according to the event triggered by the button in the GUI window. The
black filled circle without and with an additional black circle represent the start and end of the software execution.

check ‘Impulse Current,’ set ‘Frequency’ to 20, push “Generate,”
and click “OK” or “Apply” for constant stimulation rate or
check ‘Import Data,’ load ‘random_20hz.csv’ file from the Iaxon
folder, push “Generate,” and click “OK” or “Apply” for random
stimulation rate on the ‘Iaxon’ tab, (4) in the Input Signals window
check ‘Import Data,’ load ‘locomotor-like movement Xm.csv’ file
from the Xm folder, push “Generate,” and click “OK” or “Apply”
on the ‘Xm’ tab, (5) in the Output Signals window check ‘XCE’,
‘Xm’ and ‘F’ at the MODULE 3 along with ‘Overlapped’ display
option and click “OK” or “Apply” and (6) push “Run” in the Main
window.

Figure 7 shows the movement dependent force output of the
muscle unit model in response to the physiological stimulation
rate (i.e., 20 Hz) without (Figure 7A) and with (Figure 7B)
noise while dynamically varying the muscle length within the
physiological range of locomotor-like movement. The results
between the previous and current simulations in different
software environments were identical, indicating the capability of
the current version of the software for physiological simulation
of muscle behaviors experimentally observed (previous results
are not shown but model code is available at ModelDB
235769).

Non-linear Input-Output Behavior of a Cat Slow
Motor Unit
The same motoneuron and muscle unit models verified in
the previous sections (Non-linear Input—Output Behavior
of a Cat Spinal Motoneuron and Non-linear Input–Output
Behavior of Cat Soleus Muscle) were integrated into the
motor unit model to validate that the current software met
the simulation requirements set for the motor unit system
in this study. The results obtained in a previous study using
an anatomically reconstructed motoneuron in the NEURON
software environment were reproduced in the present software
environment under the similar input protocols used in the
previous study (see Figures 3–6 in Kim, 2017b).

The simulation was performed using the current version of
the software through following steps: (1) select ‘Motor Unit’ from
the drop-down MODEL menu in the Main window, (2) in the
Model Parameters window check only ‘INaf,’ ‘INap,’ ‘IKdr,’ ‘IK(Ca)’
and ‘ICan’ for the SOMA and ‘ICal’ and ‘constant calcium reversal
potential’ for the DENDRITE on the ‘Motoneuron’ tab, set ‘P0’ to
1 for the MODULE 3 on the ‘Muscle Fibers’ tab, and push “OK”
or “Apply,” (3) in the Input Signals window select ‘Step’ or ‘Ramp’
and push “Generate” on the ‘Isoma’ tab for current stimulation at
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FIGURE 6 | Non-linear input–output behavior of a cat spinal motoneuron. (A) Instantaneous firing rate (Firing rate, upper panel) and voltage responses at the soma
(Vsoma, upper panel) and the dendrite (Vdend, upper panel) against slowly ascending and descending current injected into the soma (IS, bottom panel).
(B) Instantaneous firing rate (Firing rate, upper panel) and voltage responses at the soma (Vsoma, upper panel) and the dendrite (Vdend, upper panel) against slowly
ascending and descending variation in excitatory synaptic conductance at the dendrite (G, bottom panel).

the soma, check ‘Isometric’ and push “Generate” on the ‘Xm’ tab
for muscle length condition, and click “OK” or “Apply”, (4) in the
Output Signals window check ‘V’ and ‘Firing rate’ at the SOMA
on the ‘Motoneuron’ tab and ‘F’ at the MODULE 3 on the ‘Muscle
Fibers’ tab and push “OK” or “Apply” and (5) push “Run” in the
Main window. For the case of excitatory synaptic input without
noise over the dendrite, ‘Iesyn’ was additionally checked at the
DENDRITE in the Model Parameters window and ‘Peak Value’
for the ‘Ramp’ protocol was set to 0 on the ‘Isoma’ tab for zero-
current injection at the soma. Under the ‘Ramp’ synaptic input
condition, ‘Simulation Time’ was set to 20000 in the Simulation
Conditions window and ‘Gp’ and ‘Duration’ were set to 0.12 and
10000 for the DENDRITE on the ‘Isyn’ tab in the Input Signals
window.

Figures 8, 9 show the firing history and muscle length
dependent force production of the motor unit model in response
to alternating step and triangular variation in the intracellular
current injected into the soma (Figure 8) and excitatory synaptic
input without noise at the dendrites (Figure 9) while holding the
muscle length constant at the optimal length. Directly comparing
the current and previous simulations was difficult because of
the differences in the motoneuron model between the two cases.
However, the current simulation software could demonstrate
similar non-linear input–output behaviors of the motor unit
system as shown in the previous simulations (previous results are
not shown but model code is available at ModelDB 235769).

The motor unit model validated in Figures 8, 9 was extended
by adding additional active currents to both the soma (i.e., IH
along with constant ECa) and the dendrite [i.e., INa,f, IK,dr, ICa,N,
IK(Ca), INa,p and IH] and further validated reproducing the results
from a previous study performed in the NEURON software
environment for the triangular variation in inhibitory synaptic
inputs with noise at the soma and excitatory synaptic inputs with
noise at the dendrites for the optimal muscle length (see Figures 6,
7 in Powers et al., 2012).

The simulation was performed using the current version of
the software through following steps: (1) select ‘Motor Unit’ from
the drop-down MODEL menu in the Main window, (2) in the
Model Parameters window check only ‘INaf,’ ‘INap,’ ‘IKdr,’ ‘IK(Ca),’
‘ICan,’ ‘IH,’ ‘constant calcium reversal potential’ and ‘Iisyn’ for the
SOMA and ‘ICal,’ ‘INaf,’ ‘INap,’ ‘IKdr,’ ‘IK(Ca),’ ‘ICan,’ ‘IH,’ ‘constant
calcium reversal potential’ and ‘Iesyn’ for the DENDRITE on the
‘Motoneuron’ tab, set ‘P0’ to 1 for the MODULE 3 on the ‘Muscle
Fibers’ tab, and push “OK” or “Apply,” (3) in the Simulation
Conditions window set ‘Simulation Time’ to 20000 and push
“OK” or “Apply,” (4) in the Input Signals window set ‘I0’ and
‘scale factor’ to 0 and push “Generate” on the ‘Isoma’ tab for zero-
current injection at the soma, select ‘Ramp’ with ‘Duration’ of
10000 checking ‘Noise’ at both SOMA and DENDRITE for the
push-pull input condition and push “Generate” on the ‘Isyn’ tab,
check ‘Isometric’ and push “Generate” on the ‘Xm’ tab for muscle
length condition, and click “OK” or “Apply”, (5) in the Output
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FIGURE 7 | Non-linear input–output behavior of the cat soleus muscle. (A) Muscle force (F, upper panel) and length of the contractile element (XCE, upper panel) in
response to a train of current impulses with a constant frequency of 20 Hz over the axon (Iaxon, middle panel) during locomotor-like movement (Xm, bottom panel).
(B) Muscle force (F, upper panel) and length of the contractile element (XCE, upper panel) in response to a train of current impulses with a random frequency with an
average of 20 Hz over the axon (Iaxon, middle panel) during locomotor-like movement (Xm, bottom panel).

Signals window check ‘V’ and ‘Firing rate’ at the SOMA on the
‘Motoneuron’ tab and ‘F’ at the MODULE 3 on ‘Muscle Fibers’
tab and push “OK” or “Apply”, and (6) push “Run” in the Main
window. Under the proportional inhibition input condition, ‘G0’
and ‘Gp’ for the ‘Ramp’ protocol at the SOMA were set to 0.03
and 0.13 on the ‘Isyn’ tab in the Input Signals window.

Figure 10 shows the influence of synaptic input organization
on the firing behavior of the motoneuron and resultant force
production of the muscle unit in the motor unit model under
push-pull (Figure 10A) and proportional inhibition (Figure 10B)
conditions while holding the muscle length constant at the
optimal length. Although performing a quantitative comparison
was difficult due to the use of a different modeling approach
in the previous study, the results of the previous and current
simulations were qualitatively similar, confirming the capability
of the current version of the software for physiological simulation
of the motor unit system under noisy synaptic inputs at the soma

and the dendrite (previous results are not shown but model code
is available at ModelDB 143671).

DISCUSSION

In this study, we constructed a computationally efficient
physiologically plausible model of a motor unit and developed
Python-based simulation software that enables virtual
experiments investigating motor unit behavior. The design
and implementation of the simulation software allow for a
single motoneuron, muscle unit and motor unit to be simulated
and analyzed individually over the full physiological range of
inputs, including intracellular current injections at the soma
and synaptic inputs to both the soma and dendrite in the
motoneuron, current impulse stimulation over the axonal nerve
and length variation under isometric, isokinetic and dynamic
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FIGURE 8 | Non-linear input-output behavior of a slow motor unit with Isoma. (A1–A3) Voltage responses at the soma (Vsoma, upper panel in A1), instantaneous firing
rate (Firing_rate, middle panel in A1) and muscle force (F, bottom panel in A1) in response to the step current with alternating excitatory and inhibitory pulses injected
at the soma (Is, A2) at the optimal muscle length (Xm, A3). (B1–B3) Voltage responses at the soma (Vsoma, upper panel in B1), instantaneous firing rate (Firing_rate,
middle panel in B1) and muscle force (F, bottom panel in B1) against slowly ascending and descending current injections at the soma (IS, B2) while maintaining the
optimal muscle length (Xm, B3).

conditions in the muscle unit. The pure GUI-based simulation
software developed in this study may provide an efficient tool
not only for systematic investigations of non-linear motor unit
behavior but also for educators and students of neuromuscular
physiology underlying force generation and control at a cellular
level.

Most previous simulation software for neuromuscular systems
have been developed separately for nervous and muscular
systems. Simulation software mostly used for investigations
of single neurons, such as NEURON and GENESIS, were
developed to enable the anatomical construction of neuron
dendrites. However, in anatomically reconstructed motoneurons,
simultaneously modulating multiple cell-type-specific properties,

including input resistance and membrane time constant at the
soma and signal propagation properties over the dendrites, which
are the essential properties underlying the dendritic excitability
and firing output, is challenging (Kim, 2017a). The new reduced
modeling approach used in this study can overcome this
limitation of anatomical modeling approaches by providing an
efficient way to capture the cell-type-specific electrical properties
in an analytical manner (Powers and Heckman, 2017).

Most simulation software for skeletal muscles have employed
Hill-type muscle models likely due to their computational
efficiency and simplicity (Delp et al., 2007; Sartori and Farina,
2016). However, Hill-type muscle models are well known to be
suited for isometric contractions under full-excitation conditions
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FIGURE 9 | Non-linear input-output behavior of a slow motor unit with Gesyn,dend. (A1–A3) Voltage responses at the soma (Vsoma, upper panel in A1), instantaneous
firing rate (Firing_rate, middle panel in A1) and muscle force (F, bottom panel in A1) in response to the step variation with alternating excitatory and inhibitory pulses in
excitatory synaptic conductance at the dendrite (Gesy,dend, A2) at the optimal muscle length (Xm, A3). (B1–B3) Voltage responses at the soma (Vsoma, upper panel in
B1), instantaneous firing rate (Firing_rate, middle panel in B1) and muscle force (F, bottom panel in B1) against slowly ascending and descending variation in
excitatory synaptic conductance at the dendrite (Gesy,dend, B2) while maintaining the optimal muscle length (Xm, B3).

(Sandercock and Heckman, 1997; Millard et al., 2013). In this
study, this range limitation of two physiological inputs (i.e.,
length variation and stimulation rate) to the muscle unit was
extended by applying the recently developed muscle modeling
approach. In the current version of the simulation software,
the muscle unit behavior can be simulated over the full
physiological range of length variations and stimulation rates
under various conditions that can be experimentally established
(see Stimulation Protocols for Motoneurons and Variation in
Muscle Length in the Materials and Methods).

The simulation software developed in this study may provide
a user-friendly environment for the feedforward input–output
analysis of a single motoneuron, muscle unit and motor unit.
Through this simulation and analysis, several fundamental issues
in the field of motor neuroscience may be efficiently investigated

under length variation including synaptic input organization
over the motoneuron for proper force production in the muscle
unit, input–output transfer characteristics of motor unit system
and control strategy of motor unit functions. These studies
would contribute to advancing our understanding of neural
coding mechanism for desired motor outputs and facilitating
the development of direct neural-machine interface over a wide
range of behaviors.

Since the motor unit system is well known to be a quantal
element underlying movements in all animals, the new modeling
approach and simulation software developed in this study could
also be applied for physiological modeling of the motor unit
in worms (Szigeti et al., 2014). The capability of our spike-
driven muscle unit model for capturing force production over
a wide range of length variation (i.e., isometric, isokinetic and
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FIGURE 10 | Non-linear input-output behavior of a slow motor unit with Gisyn,soma and Gesyn,dend including intensity-dependent synaptic noise. (A1–A3) Voltage
responses at the soma (Vsoma, upper panel in A1), instantaneous firing rate (Firing_rate, middle panel in A1) and muscle force (F, bottom panel in A1) against
triangular variation in inhibitory synaptic input at the soma (Gisyn,soma, blue lines in A2) and excitatory synaptic input at the dendrite (Gesyn,dend, red lines in A2) in a
push-pull manner at the optimal muscle length (Xm, A3). (B1–B3) Voltage responses at the soma (Vsoma, upper panel in B1), instantaneous firing rate (Firing_rate,
middle panel in B1) and muscle force (F, bottom panel in B1) against triangular variation in inhibitory synaptic input at the soma (Gisyn,soma, blue lines in B2) and
excitatory synaptic input at the dendrite (Gesyn,dend, red lines in B2) in a proportional manner while maintaining the optimal muscle length (Xm, B3).

dynamic) and stimulation rate (i.e., twitch, sub-tetanic and
tetanic) may provide a useful basis for physiological modeling
of locomotion in worms (Boyle and Cohen, 2008). In addition,
the modular modeling framework may allow model parameters
to be determined for individual sub-modules based directly on
experimental data. Likewise, our reduced modeling approach for
the motoneuron may also be useful in uniquely determining
model parameter values to retain the fundamental system
properties including somatic input resistance, membrane time
constant and electrotonical signal propagation of the dendrites
that are experimentally measurable from real cells (Vella et al.,
2013). Furthermore, the simulation software developed in
this study may provide an efficient tool for investigation of

fundamental issues related to neural control of muscle force in
worms.

Furthermore, several features of the developed simulation
software may also allow it to be an educational tool that efficiently
demonstrates and explains physiological principles of the
neuromuscular mechanisms underlying biological movements.
First, the fundamental building blocks of neuromuscular
systems, i.e., single motoneurons, muscle fibers and their
connected form, which is referred to as a motor unit, can
be modeled and simulated in a hierarchical manner. Second,
the electrical activities of motoneurons and the mechanical
behaviors of muscle fibers can be modeled and simulated based
on biophysically plausible, physiologically realistic mechanisms
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to achieve biological realism. Third, the input conditions for
the simulations of the selected model can be customized to
demonstrate a variety of experimental observations reported in
the literature. Finally, an intuitive graphical user interface could
make it easier to adjust the parameter values of the models and
input signals to reflect a wide range of physiological conditions,
display the simulation results of the selected model variables
during the simulation, and save the files for offline data analysis.

However, the current version of the simulation software must
be further improved to achieve biological realism and better
performance. First, the two-compartment modeling approach
used to model the motoneuron must be extended to reflect the
influence of the complex dendritic structure on the activation
of persistent inward currents over the dendrites. Second, the
non-linear muscle properties, such as force potentiation, force
decline (or sag) during unfused tetanic contractions and velocity-
dependent force development, should be included to allow for
simulations of different types of motor units. Third, feedback
signals from the muscle spindle should be added to allow for
simulations of a muscle unit while the muscle length varies
over time. Fourth, the biophysically plausible axon model should
be incorporated to realistically simulate the transduction of
neural signals from the motoneuron to the muscle unit. Fifth,
software modules should be added to process the simulation
data according to the purposes of the analysis. Sixth, the present
software code was optimized by employing the numpy data
type for the interpolation function and the blitting technique
to make animations efficient in Matplotlib by only redrawing
the plot elements that are changing at each frame. However,
the performance of the simulation software is expected to be
further improved by implementing the numerical integration
of models with Cython (Behnel et al., 2011). Lastly, in this
study the software was designed for simulations of a specific
model rather than a fully flexible tool. The flexibility of the
current version of the simulation software operating only
though GUI could be greatly improved by adding the script-
mode where the model class can be edited by the user (see
Figure 4).

CONCLUSION

The simulation software developed in this study may provide
an efficient tool for investigations of the neural mechanisms
underlying force control. In addition, we hope that the simulation
software, which enables the simulation of motor unit systems at
the cellular level, could be useful not only to the instructors for
effective teaching but also to students for practice and research
outside the formal curriculum.
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