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Abstract: A novel and effective strategy was first proposed for the codeposition of a mussel-inspired
nanohybrid coating with excellent wettability onto the surface of carbon fibers (CFs) by simultaneous
polymerization of bioinspired dopamine (DA) and hydrolysis of commercial tetraethoxysilane (TEOS)
in an eco-friendly one-pot process. Mussel-inspired nanohybrids could be adhered onto the surface of
CFs firmly. The novel modification could afford sufficient polar groups and significantly improve fiber
surface roughness and energy without decreasing fiber intrinsic strength, which were advantageous
to promote interfacial compatibility and wettability between CFs and matrix resin. As a result,
the interfacial shear strength of composites increased to 48.21 ± 1.45 MPa compared to that of
untreated composites 29.47 ± 0.88 MPa. Meanwhile, the nanohybrid coating increased significantly
composites’ hydrothermal aging resistance. The efficient strategy shows a promising and green
platform of surface functionalization of CFs for preparing advanced polymer composites arising from
broadly mechanical-demanding and energy-saving usages.
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1. Introduction

Carbon fibers (CFs) have become the ideal reinforcements for advanced polymer composites,
which are widely used as structural materials in engineering applications of the automotive and
aerospace industries, owing to their high strength-to-weight ratio, excellent heat or chemical
resistance [1–4]. It is widely accepted that fiber-matrix interface plays a key role in connecting CFs with
the hot resin and ensuring efficient stress transfer, which is critical factor for overall properties of polymer
composites [5–7]. Unfortunately, the fiber smooth and inert surface results in non-ideal interfacial
combination and wettability effect with matrix resin [8,9]. Hence, continuous endeavor on fiber
surface grafting, like oxidation treatments [10], plasma etching [11], chemical grafting [12,13], polymer
sizing [14,15] and high energy irradiation [16,17], has been devoted to improve the surface/interfacial
structure and chemistry for preparing advanced polymer composites. However, the above techniques
may have certain limitations, like multistep manipulation, high toxicity, high energy consumption,
the usage of strong acids with decreasing fiber tensile strength, and catalyst processing. Hence,
a facile, effective and green strategy which can realize the similar fiber surface activation and interfacial
reinforcing effect without damaging the fiber intrinsic tensile strength is highly desirable.

In particular, a mussel-inspired coating technique about dopamine (DA) was widely used
to graft almost all types of substrates with the strong binding strength by self-polymerizing into
polydopamine (PDA) coating owing to its stability, simplicity, and versatility [18–20]. The study on the
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modified surface of CFs with obvious changing surface/interface properties has been reported [21].
However, the introduced active groups by pure PDA coating were insufficient and unable to provide
enough wettability and reaction between CFs and matrix resin because of the inherent and limited
wettability of PDA with very few residual reaction groups after the polymerization process. Modified
carbon fiber by silica nanoparticles can be considered to be an effective method for producing
highly reinforced composites owing to its unique spherical molecular structure and the distinct price
advantage [22,23]. Interfacial properties of advanced polymer composites could be obviously enhanced
via self-polymerized polydopamine followed via the sol-gel growing of silica nanoparticles onto
carbon Fiber [24]. However, the two-step methods for subsequent modifications onto PDA-based
fibers via Michael addition and Schiff base reactions are time-consuming, complicated, low efficiency
and high energy consumption [25]. Noteworthily, silica nanoparticles with abundant hydroxyl groups
are easily obtained via the gradual hydrolysis and condensation of TEOS in an alkaline condition.
The hydrophilic silica nanoparticles and PDA are deposited onto the fiber surface via hydrogen bonding
and physical entanglement simultaneously in an alkaline aqueous solution to form mussel-inspired
nanohybrid coatings with high stability and excellent wettability (Figure 1). Fiber microstructures,
wettability, and composites interfacial strength as well as hydrothermal aging resistance were also
studied systematically.
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Figure 1. The schematic illustration for the immobilization of PDA/SiO2 nanohybrid coatings onto the
fiber surface.

2. Materials and Methods

2.1. Materials

Carbon fibers (CFs, T300-3K) with the average diameter of round 7 µm were obtained
from Toray Industries, Inc (Tokyo, Japan). Dopamine hydrochloride and Methylphenylsilicone
resin (MPSR) with the viscosity of 25 cSt and the molecular weight of 2400 were provided by
Sigma-Aldrich (Shanghai, China) and ShangHai Chemicals Co (Shanghai, China), respectively.
Tris(hydroxyl-methyl)aminomethane (Tris) were purchased by Aladdin (Shanghai, China). All other
chemical agents were used as received.

2.2. Fiber Surface Modification

PDA/SiO2 codeposited CFs (denoted as CF-PDA/SiO2) has been prepared by using the following
typical process. First of all, ethanol (25 mL) containing the amounts of TEOS (0.30 g) were added to
dopamine mixed aqueous solution (Tris-HCl, 100 mL, 2g/L, pH 8.5). Subsequently, the untreated CFs
were quickly added into the above solution, and added to react by stirring for 9 h at room temperature.
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After that, the obtained fibers were washed many times by deionized water and ethanol separately.
Figure 1 shows an illustration of the copolymerization of hybrid coatings onto the fiber surface.

2.3. Preparation of CF/MPSR Composites

Untreated and modified fibers reinforced MPSR composites were prepared by using unidirectional
fiber prepreg based on the compression molding method, which is described in detail in the previous
paper [13].

2.4. Characterization Techniques

Surface elements and morphologies of different CFs were tested by X-ray photoelectron
spectroscopy (XPS, ESCALAB 220i-XL, VG, UK) and scanning electron microscopy (SEM,
Quanta 200FEG, Hitachi Instrument, Inc., Tokyo, Japan), respectively. The dynamic contact angle
meter (DCAT21, Data Physics Instruments, Stuttgart, Germany) was carried out to study dynamic
contact angles and corresponding surface energies for examining fiber surface wettability. A single
filaments tensile strength (TS) testing was carried out on an electronic universal testing machine (5569,
Instron, Boston, MA, USA) according to ASTM D3379 with the cross-head speed of 10 mm/min and
the gauge length of 20 mm [26]. A single fiber was separated from the carbon fiber bundles and
attached to paper tabs at a distance of 20mm using an instant adhesive, and the paper strips were then
cut off before the testing. Weilbull statistical method was carried out to analyze the testing results
for 100 samples measurements for each fiber type. The interlaminar shear strength (ILSS) values of
CF/MPSR composites were evaluated using a universal testing machine (WD-1, Changchun, China) in
a three-point short-beam bending testing mode. Hydrothermal aging resistance of composites was
characterized by tracing the changes in ILSS values with and without hydrothermal aging treatment in
the boiling water for 48 h. The recorded value of ILSS and the hydrothermal aging resistance for each
fiber type was averaged from 30 successful measurements data.

3. Results

3.1. Fiber Surface Composition and Microstructures

The chemical compositions of untreated and modified CFs were examined by XPS, as shown in
Table 1. Untreated CF surface is mainly composed of carbon (C), oxygen (O) and a small amount of
nitrogen (N). For CF-PDA, the intensities of N and O elements show the increasing trend after PDA
coating compared with those of Untreated CF. After being grafted by PDA/SiO2, the increasing contents
of O element (24.12%) and the new peak of Si element (6.83%) confirmed the successful deposition of
PDA/SiO2 coating onto the fiber surface. In addition, the surface atomic O/C ratios of CF-PDA/SiO2

enhance to 0.10. The results indicate that codeposition of a mussel-inspired nanohybrid coating arising
from the co-deposition of PDA and the hydrolysis product of TEOS simultaneously was realized.

Table 1. Surface element analysis of carbon fibers (CFs).

Samples
Element Content (%)

C N O Si O/C Si/C

Untreated
CF 81.61 0.92 17.47 – 0.21 –

CF-PDA 76.21 3.46 20.33 – 0.27 –
CF-PDA/SiO2 66.18 2.87 24.12 6.83 0.36 0.10

Surface topographies of different fibers are shown in Figure 2. It is widely accepted that the surface
of Untreated CF (Figure 2a) is typically smooth and neat. After PDA deposition (Figure 2b), based on the
nano-size thickness of PDA layer modified onto the surface of CFs, there are no significant differences
of surface topographies between Untreated CF and CF-PDA according to SEM observation. However,
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the surface of resultant CF-PDA emerge some scattered nanoparticles due to the self-polymerized
PDA. As for CF-PDA/SiO2, a very uniform layer of nanoparticles formed onto the fiber surface is
obviously observed, and much more surface-bound nanoparticles are visible because the obtained
SiO2 nanoparticles can immobilize into the PDA-based nanohybrid coating with the help of the
favorable adhesion. The introduced PDA/SiO2 layer with high surface roughness and excellent
interfacial wettability helps to improve the potential curing reactive area and the capacity of mechanical
interlocking at the fiber-matrix interface.
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3.2. Fiber Surface Energy and Wettability

The wettability of untreated and modified CFs was evaluated by the advancing contact angle
and the surface energy, as shown in Table 2. The surface energy of the untreated fibers is 35.86
mN·m−1, with the dispersion component of 29.20 mN·m−1 and the polar component of 6.66 mN·m−1.
For CF-PDA, the obvious decrease in contact angle and the great increase in surface energy may be
due to the introduced many polar groups compared to those of Untreated CF. However, the contact
angles decrease from 51.17◦ ± 1.54◦ to 41.89◦ ± 1.26◦ for water as well as from 49.89◦ ± 1.50◦ to 40.26◦

± 1.21◦ for diiodomethane after being grafted by PDA/SiO2 coating. Hence, the surface energy of
CF-PDA/SiO2 increases to 62.36 mN·m−1, increasing by 14.95% compared to CF-PDA. The improved
polar component may be interpreted from the residual amino groups and the introduced hydroxyl
groups, and the enhanced dispersion component can be related to the different chemical composition
and the increased fiber surface roughness. Hence, the elevated surface energy leads to good interfacial
wettability, which can facilitate resin impregnation and the following interfacial reactivity [27].

Table 2. Contact angles, surface energy, and tensile strength of different CFs.

Samples
Contact Angles (◦) Surface Energy (mN m−1)

TS (GPa)
θwater θdiiodomethane γd γp γ

Untreated
CF 78.50 ± 2.36 58.91 ± 1.77 29.20 6.66 35.86 3.354 ± 0.101

CF-PDA 51.17 ± 1.54 49.89 ± 1.50 34.34 19.91 54.25 3.413 ± 0.102
CF-PDA/SiO2 41.89 ± 1.26 40.26 ± 1.21 39.48 22.88 62.36 3.519 ± 0.105

3.3. Composites Interfacial Strength and Hydrothermal Aging Resistance

ILSS and hydrothermal aging resistance testing results of untreated and modified composites
are shown in Figure 3. By comparison with Untreated CF composites, the ILSS value of CF-PDA
composites is raised by 39.33% from 29.47 ± 0.88 to 41.06 ± 1.23 MPa because of the effectively activated
fiber surfaces and the enhanced resin infiltration after PDA coating. As for CF-PDA/SiO2, composites
ILSS value is 48.21 ± 1.45 MPa, with the amplification of 63.59% to that of Untreated CF composites.
This may be due to that the nanohybrid coating can increase fiber surface energy and the polarity and
exhibit a synergistic effect, and thus make the surface easier to be wetted by the hot resin, which are
favorable to enhance interfacial interaction and augment mechanical engagement at the interface.
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The effectiveness of surface functionalization is also characterized by hydrothermal aging resistance
testing. ILSS values of Untreated CF composites have the ILSS retention ratios of 69.63%, indicating a
poor hydrothermal aging resistance. By comparison, the increases of the ILSS retention ratios are up to
76.08% for CF-PDA composites and 93.26% for CF-PDA/SiO2 composites. The formed nanohybrid
coating at the interface region serving as the buffer layer can reduce the number of microcracks for
moisture permeation and protect the interface effectively. The significant enhancements of interfacial
properties and hydrothermal aging resistance for CF-PDA/SiO2 composites confirm that PDA-based
modification can produce satisfactory effect in composites properties, which also confirm the successful
deposition of PDA and SiO2 onto the fiber surface.

3.4. Single Fiber Tensile Strength

Single fiber tensile strength (TS) represents its inherent mechanical property and further affects
composites in-plane properties. The fiber tensile testing results are presented in Table 2. TS values of
CF-PDA and CF-PDA/SiO2 are 3.413 ± 0.102 and 3.519 ± 0.105 GPa, respectively, as compared to that
of pristine CFs (3.35 GPa). PDA/SiO2 nanohybrid coating introduces no deterioration to fiber intrinsic
strength due to the mild incubation conditions without bringing fiber surface defects. The novel
strategy is to change the fiber surfaces from inert and smooth to polar and rough with avoiding the
deterioration of in-plane properties of composites, which can be considered as a powerful alternative
approach to carry forward the advanced polymer composites.

4. Conclusions

In summary, a uniform mussel-inspired PDA/SiO2 layer was successfully deposited onto the
fiber surface by a simple and economy strategy of simultaneous polymerization of DA and hydrolysis
of TEOS. The attachment of PDA/SiO2 nanohybrid coating onto the fiber surface leaded to the
improved surface roughness for creating sufficient mechanical interlocking and massive surface polar
groups for the increased interfacial wettability compared with those of untreated composites. As a
consequence, CF-PDA/SiO2 composite simultaneously achieved great advancement in interfacial
strength and hydrothermal aging resistance without decreasing fiber intrinsic strength. The ILSS
values of composites was improved by 63.59%, and ILSS value of CF-PDA/SiO2 reinforced MPSR
composites after aging shows a slightly decrease of 6.74%. The promising and green strategy developed
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in the paper to architecturally build nanohybrid coatings modified fibers with high compatibility and
wettability can promote the rapid development and application of advanced polymer composites.
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