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High throughput technologies have provided many new research methods for ovarian cancer investigation. In tradition, in
order to find the underlying functional mechanisms of the survival-associated genes, gene sets enrichment analysis (GSEA) is
always regarded as the important choice. However, GSEA produces too many candidate genes and cannot discover the signaling
transduction cascades. In this work, we have used a network-based strategy to optimize the discovery of biomarkers using
multifactorial data, including patient expression, clinical survival, and protein-protein interaction (PPI) data. The biomarkers
discovered by this strategy belong to the network-based biomarker, which is apt to reveal the underlying functional mechanisms
of the biomarker. In this work, over 400 expression arrays in ovarian cancer have been analyzed: the results showed that cell death
and extracellular module are the main themes related to ovarian cancer progression.

1. Introduction

Among women in the United States, ovarian cancer is the
eighth most common cancer and the fifth leading cause of
cancer death, after lung and bronchus, breast, colorectal,
and pancreatic cancers. Ovarian cancer causes more deaths
than any other cancers of the female reproductive system. In
2012 ovarian cancer occurred in 239,000 women and resulted
in 152,000 deaths. The overall five-year survival rate in the
United States is 45%; outcomes are worse in the developing
world. To date, the treatment for ovarian cancer mainly
involves chemotherapy, surgery, and sometimes radiother-
apy. Unfortunately, these adjuvant therapies have only a
modest impact on survival time. This situation indicates that
development of sensitive diagnostic biomarker used in the
early stage of ovarian cancer will greatly lead to improved
survival of patients.

Recent researches showed that ovarian cancer may be
a heterogeneity disease and multiple signaling pathways
contribute to ovarian cancer progression [1–3]. Therefore,
functional subnetwork that these genes interconnect may
lead to a more precise set of alterations, which could
become key network-based survival-associated biomarkers
or drug targets for clinical interrogation. In this work, we

have combined multifactorial data to identify network-based
biomarkers. First, the correlation between the expression
of survival-associated gene groups and survival data was
quantified by amultivariate Cox proportional hazardsmodel;
then, the protein-protein interaction (PPI) network was used
to preselect the gene groups obtained by the first step.
Hence, we can obtain the network-based survival-associated
biomarkers by this approach and with enough biological
understanding of molecular mechanism. Over 400 ovarian
cancer expression arrays have been analyzed, and extracellu-
lar matrix and cell death module were regarded as the main
themes associated with ovarian survival data. By manual
reading the references, we found that the two subnetworks we
obtained contained several previously implicated genes with
clinical significance.

2. Materials and Methods

2.1. Gene Expression and Clinical Dataset and the Protein-
Protein Interaction. The gene expression data and the cor-
responding clinical data were downloaded from The Can-
cer Genome Atlas (TCGA) database. The gene expres-
sion profiling from 562 ovarian patients was measured by
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UNC AgilentG4502A 07 3 microarray platform.The sample
only with expression profiling but without clinical data is
also removed from our analysis. Finally, we get 438 samples
having both expression profiling and clinical data, which
involves 8972 genes. The protein-protein interactions data
from Human Protein Reference Database (HPRD) [4] was
used in this study. Currently, HPRD contains manually
curated over 42,000 interactions between 9826 human genes.

2.2. Survival-Associated Subnetwork. The survival-associated
subnetwork was identified by Survnet [5], a webserver for
identifying network-based biomarkers that most correlate
with patient survival data. The Survnet webserver consists of
three component processes: (i) a scoring function (combin-
ing the subnetwork property, molecular profile, and patient
survival data), (ii) a searching algorithm (for finding the
candidate biomarkers), and (iii) an evaluation (validating the
statistical significance of the biomarkers). Then, it can search
for subnetworks thatmost correlate with the observed patient
survival data.The survival-associated subnetworks produced
by Survnet have two kinds of score—network 𝑃 value and
multivariate Cox 𝑃 value. Multivariate 𝑃 value was used to
identify the survival-associated subnetwork (at 𝑃 < 0.05
level) and the search parameter (search distance) is 2.

2.3. Gene Ontology Functional and KEGG Annotations. Cox
proportional hazards model was used to correlate each
individual gene expression data with survival data (𝑃 <
0.05). Then, according to these survival-associated genes,
the DAVID [6] was used to correlate the survival-associated
genes generated with gene ontology (GO) and KEGG func-
tional annotations. False discovery rate at 0.05 level was used
to control multiple statistical tests.

2.4. MiRNA Analysis. ThemicroRNAs and their target genes
were downloaded in miRTarBase [7] (Release 4.5) (an exper-
imentally validated microRNA-target interactions database),
which involve 39110 miRNA-target interactions in human.
Then, we aimed to discover the miRNAs that significantly
regulate the survival-associated module.The gene set enrich-
ment analysis was used to fulfill the aim.

Gene set enrichment analysis (GSEA) is a common statis-
tical technique to reveal the significantly changed modules of
the target gene sets against the background to elucidate the
underlying functional mechanisms. Here, we use GSEA to
discover the miRNAs that significantly regulate the survival-
associated network.The score of each miRNA was calculated
using the cumulative hypergeometric function as follows:

𝑃 =
(
𝐾

𝑂
) (
𝑁−𝐾

𝑀−𝑂
)

(
𝑁

𝑀
)
, (1)

where the 𝑁 represents the sum of the number of all
miRNA-target genes and the number of themodule genes.𝑀
represents the number of the module genes.𝐾 represents the
number of the genes of certain miRNA targets. 𝑂 represents
the number of the genes both contained in the module
and contained in the miRNA-target genes. With the cutoff

of 𝑃 < 0.01, we discover the miRNAs that significantly
regulate the module. Multiple statistical tests were controlled
by false discovery rate (FDR). All of the above calculations
were implemented in R statistical package using function
phyper (http://www.r-project.org/). The adjustment of the
GSEA score was implemented by R function p.adjust with
parameter method = “fdr”.

3. Result

3.1. Network-Based Survival-Associated Subnetwork. In order
to test our network-based strategy, we combined human
PPI data from HPRD database and a set of gene expres-
sion data of 438 ovarian patients with clinical survival
data. Among the 9826 nodes (genes) in PPI network,
7486 nodes can be mapped to ovarian cancer gene expres-
sion profiling data. We totally get 134 compact survival-
associated subnetworks by using Survnet (see Supplemen-
tary File 1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2015/735689). The top 5 survival-
associated subnetworks are summarized in Table 1. These
five subnetworks can be classified into two larger functional
modules in Figure 1. As shown in Figure 1(a), two survival-
associated subnetworks have been associated with cell death
module. As shown in Figure 1(b), another two survival-
associated subnetworks have been associated with cell death
module.

Extracellular matrix module (ECM) consists of ITGAV
(integrin, alpha V), ADAM9 (ADAM metallopeptidase
domain 9), ANGPTL3 (angiopoietin-like 3), AZGP1 (alpha-
2-glycoprotein 1, zinc-binding), EDIL3 (EGF-like repeats
and discoidin I-like domains 3), ITGB8 (integrin, beta 8),
PDGFRA (platelet-derived growth factor receptor, alpha
polypeptide), SPP1 (secreted phosphoprotein 1), SH3D19
(SH3 domain containing 19), and CTNNBL1 (catenin, beta-
like 1). The ITGAV-SH3D19 (belonging to the top 1 and 5
subnetwork) forms the integrin-mediated signaling pathway
of extracellular matrix module. Integrins are transmem-
brane receptors that are the bridges for cell-cell and cell-
extracellular matrix interactions. When triggered, integrins
in turn trigger chemical pathways to the interior (signal trans-
duction), such as the chemical composition and mechanical
status of the extracellular matrix module, which results in a
response (activation of transcription) such as regulation of
the cell cycle, cell shape, and/or motility, or new receptors
being added to the cell membrane. Previous studies have
demonstrated that integrins and their receptors play a critical
role in ovarian cancer progression [8, 9]. As shown in
Figure 1(a), ITGAV is the hub of the extracellular matrix
module. This gene encodes a protein that is a member
of the integrin superfamily. ITGAV interacts with several
extracellular matrix proteins to mediate cell adhesion and
may play a role in cell migration. It is proposed that this
protein may regulate angiogenesis and cancer progression.
Previous studies have demonstrated that ITGAV may play a
role during progression in a variety of cancers. For example,
de Souza Viana et al. have found that overexpression of the
ITGAV gene and protein was correlated with an increased
risk of perineural invasion [10]. More importantly, ITGAV is
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Table 1: Top 5 survival-associated subnetworks in ovarian cancer.

Network
rank

Component
genes

Univariate Cox
𝑃 value

Adjusted
multivariate Cox 𝑃

value

1

ADAM9 6.82𝐸 − 03

8.69𝐸 − 09

ANGPTL3 1.38𝐸 − 04

CTNNBL1 4.55𝐸 − 03

EDIL3 2.21𝐸 − 01

ITGAV 5.08𝐸 − 02

ITGB8 2.27𝐸 − 05

PDGFRA 5.84𝐸 − 04

SH3D19 5.65𝐸 − 03

SPP1 7.15𝐸 − 03

2

APBB2 3.43𝐸 − 03

1.61𝐸 − 08

CDK4 2.31𝐸 − 03

ENOX1 5.48𝐸 − 03

FCHO1 2.18𝐸 − 01

GFI1 1.00𝐸 − 02

KCTD15 9.04𝐸 − 04

RHPN2 5.73𝐸 − 03

RUNX1T1 2.30𝐸 − 02

SMURF1 2.58𝐸 − 02

TGFBR1 6.50𝐸 − 03

TGFBR2 7.10𝐸 − 04

TRIM27 3.56𝐸 − 03

ZBTB16 2.13𝐸 − 02

3

ALB 1.09𝐸 − 02

3.79𝐸 − 08

C6orf62 4.13𝐸 − 01

CCDC53 1.02𝐸 − 02

LUC7L2 4.27𝐸 − 02

NDUFA4L2 6.46𝐸 − 02

NSF 1.36𝐸 − 02

PARK2 2.72𝐸 − 02

RAD1 2.00𝐸 − 03

SVIL 2.11𝐸 − 02

UBR1 3.41𝐸 − 03

4

ARHGAP17 1.25𝐸 − 02

4.31𝐸 − 08

CD44 3.98𝐸 − 02

CDK4 2.31𝐸 − 03

DAB2 3.22𝐸 − 03

DOCK1 1.04𝐸 − 01

ELMO1 9.51𝐸 − 02

ELMO2 3.75𝐸 − 02

LCK 3.02𝐸 − 02

PACSIN1 9.11𝐸 − 02

RHPN2 5.73𝐸 − 03

RNF5 5.23𝐸 − 03

SH3BP2 3.27𝐸 − 02

TGFBR1 6.50𝐸 − 03

TGFBR2 7.10𝐸 − 04

WASF2 9.98𝐸 − 02

5

ADAM9 6.82𝐸 − 03

9.28𝐸 − 08

ANGPTL3 1.38𝐸 − 04

AZGP1 9.12𝐸 − 01

CTNNBL1 4.55𝐸 − 03

ITGAV 5.08𝐸 − 02

ITGB8 2.27𝐸 − 05

PDGFRA 5.84𝐸 − 04

SH3D19 5.65𝐸 − 03

SPP1 7.15𝐸 − 03

connected with ADAM9, ANGPTL3, AZGP1, EDIL3, ITGB8,
PDGFRA, and SPP1, which have close relation with cell
adhesion, cell communication. It is noted that CTNNBL1 is
connectedwith ITGAVby SPP1; previous studies have proved
that CTNNBL1 has a close relation with regulation of apop-
tosis, regulation of programmed cell death, and membrane-
enclosed lumen [11], which implies that the extracellular
matrix module may regulate the ovarian cancer progression
by regulating apoptosis, main cell death patterns in ovarian
cancer cells.

On the other hand, cell death module (CDM) con-
sists of DAB2 (Dab, mitogen-responsive phosphoprotein,
homolog 2), TGFBR1 (transforming growth factor, beta
receptor 1), TGFBR2 (transforming growth factor, beta
receptor II), CDK4 (cyclin-dependent kinase 4), and CD44
(CD44 molecule (Indian blood group)). DAB2 is the hub
of this module, which means that DAB2 plays an important
role in this module. DAB2 is expressed in normal ovarian
epithelial cells but is downregulated or absent from ovarian
carcinoma cell lines, suggesting its role as a tumor suppressor
[12]. TGFBR1 and TGFBR2 directly interact with DAB2; they
encode amember of the Ser/Thrprotein kinase family and the
TGFB receptor subfamily.TheTGFBR1 andTGFBR2proteins
are transmembrane protein that has a protein kinase domain,
forms a heterodimeric complex with another receptor pro-
tein, and binds TGF-beta. This receptor/ligand complex
phosphorylates proteins, which then enter the nucleus and
regulate the transcription of a subset of genes related to cell
proliferation. Mutations in this gene have been associated
with the development of various types of tumors. As for
CDK4, it is also known as cell division protein kinase 4. The
protein encoded by this gene is a member of the Ser/Thr
protein kinase family. This protein is a catalytic subunit of
the protein kinase complex that is important for cell cycle
G1 phase progression, which is proved to be associated with
a variety of cancers [13–15]. Besides, the protein encoded
by CD44 is a cell-surface glycoprotein involved in cell-
cell interactions and cell adhesion and migration. It is a
receptor for hyaluronic acid (HA) and can also interact with
other ligands, such as osteopontin, collagens, and matrix
metalloproteinases (MMPs). This protein participates in a
wide variety of cellular functions including lymphocyte acti-
vation, recirculation and homing, hematopoiesis, and tumor
metastasis [16]. In sum, all the genes in this module are
associated with various cancers and cell death, so DAB2 may
regulate ovarian cancer progression by mediating cell death
signaling pathway, whichmay be a novel biomarker in clinical
practice.

3.2. Survival-Associated Module Enriched by Gene Ontology
and KEGG. We also conducted the enrichment analysis of
survival-associated genes to GO and KEGG terms. First,
using a univariateCox proportional hazardsmodel, 828 genes
were found significantly correlated with survival data (𝑃 <
0.05). These survival-associated correlated genes were listed
in Supplementary Table 2. With a cutoff of FDR < 0.05,
we identified 29 cellular component terms, 199 biological
process terms, and 22 molecular function terms as well as 3
KEGG pathways that are enriched with survival-associated
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Table 2: Top 5 significant GO terms enriched with survival genes in ovarian cancer.

Rank Cellular component FDR Biological process FDR Molecular function FDR

1 GO:0044421∼extracellular
region part 1.50𝐸 − 08

GO:0010941∼regulation of cell
death 5.32𝐸 − 32

GO:0005539∼glycosaminoglycan
binding 4.62𝐸 − 06

2 GO:0044459∼plasma
membrane part 3.75𝐸 − 06

GO:0042981∼regulation of
apoptosis 2.88𝐸 − 31

GO:0030247∼polysaccharide
binding 3.92𝐸 − 05

3 GO:0005576∼extracellular
region 3.28𝐸 − 05

GO:0043067∼regulation of
programmed cell death 4.99𝐸 − 31 GO:0001871∼pattern binding 3.92𝐸 − 05

4 GO:0005615∼extracellular
space 6.77𝐸 − 05 GO:0007049∼cell cycle 5.39𝐸 − 30

GO:0019838∼growth factor
binding 1.37𝐸 − 04

5 GO:0031012∼extracellular
matrix 5.87𝐸 − 04 GO:0022402∼cell cycle process 5.07𝐸 − 18 GO:0008201∼heparin binding 4.62𝐸 − 04

CTNNBL1

SPP1

EDIL3
AZGP1

ITGAV PDGFRA

ANGPTL3
ITGB8

ADAM9

SH3D19

(a) Extracellular matrix

CDK4

TGFBR1

TGFBR2 DAB2

CD44

(b) Cell death

Figure 1: Survival-associated subnetwork in ovarian cancer. (a) Extracellular matrix module and (b) cell death modules. These survival-
associated subnetworks are labeled with top 1 in blue, top 2 in red, top 4 in green, and top 5 in cyan. Nodes with more than one color mean
that these proteins are involved in more than one survival-associated subnetwork.

gene (Supplementary Table 3).The top 5 significant GO terms
in each functional category are summarized in Table 2. From
the viewpoint of molecular function, the top ranked GO
terms include “glycosaminoglycan binding,” “polysaccharide
binding,” “pattern binding,” “growth factor binding,” “hep-
arin binding,” and “extracellular matrix binding.” From the
viewpoint of cellular component, the top ranked GO terms
include “extracellular region part,” “plasma membrane part,”
“extracellular region,” “extracellular space,” and “extracellular
matrix.” The top ranked KEGG pathways include “Focal
adhesion,” “Tight junction,” and “ECM-receptor interaction.”
All the above results clearly reflect the molecular changes
at extracellular matrix region. On the other hand, the pro-
grammed cell death function is dominated in the selectedGO
biological process categories (Table 2), such as “regulation
of cell death,” “regulation of apoptosis.” Therefore, both
extracellular matrix and cell death module, the two master
themes identified in our network analysis, were reproduced
from GO analysis.

Furthermore, our network-based strategy outperforms
traditional gene set enrichment analysis. First, each gene set
usually includes too many genes with limiting their clinical

application. For example, in the above GO enrichment
data, there are over 148 and 41 survival genes that are
enriched within GO term cell death and extracellular matrix
module (Supplementary Table 3). However, in our results
based on network-based strategy, there are only 5 and 10
potential biomarker genes in cell death and extracellular
matrix module (Figure 1). Besides, interaction relationships
between these candidate proteins were also provided by our
strategy. Hence, our result will provide direct mechanism
understanding of ovarian cancer progression and greatly
facilitate further experimental verification.

3.3. The miRNAs Regulate the Survival-Associated Module.
The GSEA analysis was used to discover miRNAs that sig-
nificantly regulate the twomodules—the extracellular matrix
module (ECM) and the cell death module (CDM).The result
was listed in Table 3. Li et al. have found that deregulation
of miR-128 in ovarian cancer promotes cisplatin resistance,
whichmeans thatmiR-128may act as a promising therapeutic
target for improvement of tumor sensitivity to cisplatin [17].
Besides, Torres et al. have found the miR-26b expressed
differentially betweenmalignant and normal tissues [18]. Cao
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Table 3: The miRNAs significantly regulate the survival-associated
module.

MiRNA symbol 𝑃 value Survival
module Target gene

hsa-miR-128-3p 1.86𝐸 − 14 ECM AZGP1, SH3D19
hsa-miR-26b-5p 1.29𝐸 − 07 ECM ADAM9, PDGFRA
hsa-miR-335-5p 6.45𝐸 − 06 ECM ITGB8, SPP1
hsa-miR-1 1.07𝐸 − 04 CDM CD44, CDK4
hsa-miR-15b-5p 1.90𝐸 − 07 CDM CD44, CDK4
hsa-miR-204-5p 5.73𝐸 − 09 CDM TGFBR1, TGFBR2
hsa-miR-320a 1.18𝐸 − 05 CDM CD44, CDK4
hsa-miR-335-5p 8.13𝐸 − 03 CDM DAB2, TGFBR2
hsa-miR-34a-5p 1.34𝐸 − 05 CDM CD44, CDK4

et al. have declared that miR-335 represents an independent
prognostic marker in epithelial ovarian cancer [19]. Wang et
al. have verified that miR-15b and the other nine miRNAs
were identified to be able to distinguish human ovarian
cancer tissues from normal tissues with 97% sensitivity and
92% specificity [20]. Imam et al. have declared genomic
loss of tumor suppressor miRNA-204 promotes cancer cell
migration and invasion by activating AKT/mTOR/Rac1 sig-
naling and actin reorganization [21]. Li et al. have found that
the expression of miR-320a is upregulated in the paclitaxel-
resistant ST30 cells, which reveals that miR-320a plays an
important role in the ovarian cancer progression [22]. In
addition, Reimer et al. have revealed that regulation of
transcription factor E2F3a by methylating the promoter of
miR-34a has amarked relevancewith ovarian cancer [23]. It is
noted that almost all themiRNAswe found have been verified
having a significant relevance with the ovarian cancer, which,
on the other hand, reveals that the modules obtained by our
method are reliable and has-miR-1may be a novel therapeutic
target.

4. Discussion

In recent years, a variety of molecular biomarkers in ovarian
cancer have been identified, such as HE4 [24], NPPB [25],
and goosecoid homeobox [26]. However, the underlying
mechanism of the biomarkers is still unclear that greatly
limits the clinical application of the biomarkers. As for the
result of the traditional enrichment analysis, the signaling
transduction cascades between candidate genes are elusive.
Hence, we developed a network-based strategy to identify the
survival-associated subnetworks and combine multifactorial
data including gene expression data, clinical data, and PPI
network. Finally, extracellular matrix and cell death related
subnetworks were regarded as survival-associated subnet-
works in ovarian cancer, which can reveal the underlying
mechanism of the survival-associated genes. Therefore, the
biomarkers identified by our strategy are much easier to be
applied in clinical therapy.

Our network-based strategy identified two survival-
associated modules associated with ovarian cancer progres-
sion.The extracellularmatrixmodule plays an important role

in cell-cell communication. In ovarian cancer, the module
may have an influence on the communication between the
malignant cells and the normal cells.Therefore, we speculated
that the extracellular matrix module can mediate the ovarian
cancer progression by regulating the cancer metastasis. On
the other hand, the cell death signaling module is involved
in a variety of biological events that include morphogenesis,
maintenance of tissue homeostasis, and elimination of harm-
ful cells. Dysfunction of cell death leads to various diseases
in humans, especially various cancers [27–29]. In the early
stage of the ovarian cancer, the cell death signaling module
can restrict cell proliferation by regulating apoptosis and
autophagy.While in the advanced stage of the ovarian cancer,
the dysfunctional cell death signaling module will facilitate
the ovarian cancer progression. Therefore, the cell death
signaling module can be a novel network-based biomarker
of ovarian cancer.
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[5] J. Li, P. Roebuck, S. Grünewald, and H. Liang, “SurvNet: a
web server for identifying network-based biomarkers that most
correlate with patient survival data,”Nucleic Acids Research, vol.
40, no. 1, pp. W123–W126, 2012.

[6] G. Dennis Jr., B. T. Sherman, D. A. Hosack et al., “DAVID:
database for annotation, visualization, and integrated discov-
ery,” Genome Biology, vol. 4, no. 5, article P3, 2003.

[7] S.-D. Hsu, F.-M. Lin, W.-Y. Wu et al., “MiRTarBase: a database
curates experimentally validated microRNA-target interac-
tions,”Nucleic Acids Research, vol. 39, no. 1, pp. D163–D169, 2011.

[8] J. Mikuła-Pietrasik, P. Sosińska, and K. Książek, “Resveratrol
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