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Strong indirect coupling between graphene-based
mechanical resonators via a phonon cavity
Gang Luo1,2, Zhuo-Zhi Zhang 1,2, Guang-Wei Deng 1,2, Hai-Ou Li1,2, Gang Cao1,2, Ming Xiao1,2,

Guang-Can Guo1,2, Lin Tian 3 & Guo-Ping Guo 1,2

Mechanical resonators are promising systems for storing and manipulating information. To

transfer information between mechanical modes, either direct coupling or an interface

between these modes is needed. In previous works, strong coupling between different modes

in a single mechanical resonator and direct interaction between neighboring mechanical

resonators have been demonstrated. However, coupling between distant mechanical reso-

nators, which is a crucial request for long-distance classical and quantum information pro-

cessing using mechanical devices, remains an experimental challenge. Here, we report the

experimental observation of strong indirect coupling between separated mechanical reso-

nators in a graphene-based electromechanical system. The coupling is mediated by a far-off-

resonant phonon cavity through virtual excitations via a Raman-like process. By controlling

the resonant frequency of the phonon cavity, the indirect coupling can be tuned in a wide

range. Our results may lead to the development of gate-controlled all-mechanical devices and

open up the possibility of long-distance quantum mechanical experiments.
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The rapid development of nanofabrication technology
enables the storage and manipulation of phonon states in
micro- and nano-mechanical resonators1–5. Mechanical

resonators with quality factors6 exceeding 5 million and fre-
quencies7,8 in the sub-gigahertz range have been reported. These
advances have paved the route to controllable mechanical devices
with ultralong memory time9. To transfer information between
different mechanical modes, tunable interactions between these
modes are required10. While different modes in a single
mechanical resonator can be coupled by parametric pump3,4,11–16

and neighboring mechanical resonators can be coupled via pho-
non processes through the substrate2 or direct contact interac-
tion17, it is challenging to directly couple distant mechanical
resonators.

Here, we observe strong effective coupling between mechanical
resonators separated at a distance via a phonon cavity that is
significantly detuned from these two resonator modes. The cou-
pling is generated via a Raman-like process through virtual
excitations in the phonon cavity and is tunable by varying the
frequency of the phonon cavity. Typically, a Raman process can
be realized in an atom with three energy levels in the Λ form18,19.
The two lower energy levels are each coupled to the third energy
level via an optical field with detunings. When these two detun-
ings are tuned to be equal to each other, an effective coupling is
formed between the lower two levels. To our knowledge, tunable
indirect coupling in electro-mechanical systems has not been
demonstrated before. The physical mechanism of this coupling is
analogous to the coupling between distant qubits in circuit
quantum electrodynamics20,21, where the interaction between
qubits is induced by virtual photon exchange via a super-
conducting microwave resonator.

Results
Sample characterization. The sample structure is shown in
Fig. 1a, where a graphene ribbon22,23 with a width of ~1 μm and
~5 layers is suspended over three trenches (2 μm in width,
150 nm in depth) between four metal (Ti/Au) electrodes. This
configuration defines three distinct electromechanical resonators:
R1, R2 and R3. The metallic contacts S and D3 are each 2 μm wide
and D1 and D2 are each 1.5 μm wide, which leads to a 7-μm
separation between the centers of R1 and R3 (see Supplementary
Methods and Supplementary Fig. 1). All measurements are per-
formed in a dilution refrigerator at a base temperature of
approximately 10 mK and at pressures below 10−7 torr. The
suspended resonators are biased by a dc gate voltage (VDC

gi for the
ith resonator) and actuated by an ac voltage (VAC

gi for the ith
resonator with driving frequency fgi =ωd/2π) through electrodes
(gi for the ith resonator) underneath the respective resonators. To
characterize the spectroscopic properties of the resonators, a
driving tone is applied to one or more of the bottom gates with
frequency ωd, and another microwave tone with frequency
ωd + δω is applied to the contact S. A mixing current (Imix = Ix +
jIy) can then be obtained at D3 (D1 and D2 are floated during all
measurements) by detecting the δω signal with a lock-in amplifier
fixed at zero phase during all measurements (see Supplementary
Methods and Supplementary Fig. 2).

Figure 1b shows the measured mixing current as a function of
the dc gate voltage and the ac driving frequency on R3, where the
oblique lines represent the resonant frequencies of the resonator
modes. We denote the resonant frequency of the ith resonator as
fmi =ωmi/2π. This plot shows that dfm3=dVDC

g3 � 7:7MHz=V
when jVDC

g3 j>5V. The frequencies of the resonators can hence be
tuned in a wide range (see Supplementary Note 1 and
Supplementary Fig. 3 for results of R1 and R2), which allows us
to adjust the mechanical modes to be on or off resonance with

each other. The quality factors (Q) of the resonant modes are
determined by fitting the measured spectral widths (see
Supplementary Fig. 8) at low driving powers (typically
−50 dBm). Figure 1c shows the spectral dependence of R3, which
gives a linewidth of γ3/2π ~ 28 kHz at a resonant frequency of fm3

~ 98.05MHz. The resulting quality factor is Q ~ 3500. The quality
factors of the other two resonators are similar, at ~3000.

Strong coupling between neighboring resonators. Neighboring
resonators in this system couple strongly with each other, similar
to previous studies on gallium arsenide2 and carbon nanotube17.
Figure 1d, e shows the spectra of the coupled modes (R1, R2) and
(R2, R3), respectively, by plotting the mixed current Ix as a
function of gate voltages and driving frequencies. In Fig. 1e, the
voltage VDC

g3 is fixed at 10.5 V, with a corresponding resonant
frequency fm3 = 101.15 MHz, and VDC

g2 is scanned over a range
with fm2 being near-resonant to fm3. A distinct avoided level
crossing appears when fm2 approaches fm3, which is a central
feature of two resonators with direct coupling. From the mea-
sured data, we extract the coupling rate between these two modes
as Ω23/2π ~ 200 kHz, which is the energy splitting when fm2 = fm3.
In Supplementary Note 2 and Supplementary Fig. 4, we fit the
measured spectrum with a single two-mode model using this
coupling rate. Similarly in Fig. 1d, by fixing VDC

g1 at 10.5 V and
scanning the voltage VDC

g2 , we obtain the coupling rate between R1

and R2 as Ω12/2π ~ 240 kHz. There are several possible origins for
the coupling between two adjacent resonators in this system. One
coupling medium is the substrate and the other medium is the
graphene ribbon itself. Mechanical energy can be transferred in a
solid-state material by phonon propagation, as demonstrated in
several experiments2,17,24. Second, because adjacent resonators
share lattice bonds, the phonon energy can transfer in the gra-
phene ribbon. The dependence of the coupling strength on the
width of the drain contacts is still unknown (see Supplementary
Fig. 5 for another sample).

The measured coupling strength satisfies the strong coupling
condition with Ω23 � γ2; γ3. Defining the cooperativity for this
phonon–phonon coupling system as C ¼ Ω2

23=γ2γ3, we find that
C = 44. A similar strong coupling condition can be found between
modes R1 and R2. By adjusting the gate voltages of these three
resonators, R2 can be successively coupled to both R1 and R3 (see
Fig. 1f).

For comparison, we study the coupling strength between
modes R1 and R3. The frequency fm2 of resonator R2 is set to be
detuned from fm1 and fm3 by 700 kHz in Fig. 2a. In the dashed
circle, we observe a near-perfect level crossing when fm1

approaches fm3, which indicates a negligible coupling between
these two modes, with Ω13 � γ1; γ3 (also see Supplementary
Fig. 6).

Raman-like coupling between well-separated resonators. The
three resonator modes in our system are in the classical regime.
The Hamiltonian of these three classical resonators can be written
as:

Hc ¼
X3
i

1
2
ðp2i þ ω2

mix
2
i Þ þ Λ12x1x2 þ Λ23x2x3; ð1Þ

where Λij ¼ Ωij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωmiωmj

p
is a coupling parameter between i- and

jth resonators, ppi is the effective momentum and xi is the
effective coordinate of the oscillation for the ith resonator,

respectively. Let xi ¼
ffiffiffiffiffiffiffi
1

2ωmi

q
ðα�i þ αiÞ and pi ¼ i

ffiffiffiffiffiffi
ωmi
2

p ðα�i � αiÞ,
with αi and α�i being complex numbers. The Hamiltonian in Eq.
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(1) can be written as

Ht ¼
X

ωmiα
�
i αi þ

Ω12

2
α�1α2 þ α1α

�
2

� �þΩ23

2
α�2α3 þ α2α

�
3

� �
:

ð2Þ

Here, we have applied the rotating-wave approximation and
neglected the αiαj and α�i α

�
j terms. This approximation is valid

when ωmi � Ω12;Ω23. This Hamiltonian describes the direct
couplings between neighboring resonators (R1, R2) and (R2, R3).
Through these couplings, the mechanical modes hybridize into
three normal modes, and an effective coupling between modes R1

and R3 can be achieved. If the resonators work in the quantum

regime, αi and α�i can be quantized into the annihilation and
creation operators of a quantum harmonic oscillator, respectively.

We study the hybridization of this three-mode system by fixing
the gate voltages (mode frequencies) of modes R1 and R2, and
sweeping the gate voltage of R3 over a wide range. The spectrum
of this system depends strongly on the detuning between modes
R1 and R2, which is defined as Δ12 = 2π(fm2−fm1). In Fig. 2a, Δ12/
2π ~ 70 kHz. Similar to Fig. 1f, modes R3 and R1 show a level
crossing. Moreover, we observe a large avoided level crossing
between modes R2 and R3 when the frequency fm3 approaches
fm2, indicating strong coupling between these two modes. Hence,
even with strong couplings between all neighboring resonators,
the effective coupling between the distant modes R1 and R3 is still
negligible when the frequency of mode R2 is significantly far off

~

S g1

R1 R2
R3

g2 g3D1 D2 D3

Imix (δ�)

�d + δ�

�
d 

/2
� 

(M
H

z)

�
d 

/2
� 

(M
H

z)

�
d 

/2
� 

(M
H

z)
�

d 
/2

� 
(M

H
z)

�3 /2�~ 28 kHz

�d /2� (MHz)

Ix (pA)

Ix (pA)

Ix (pA)

I x
 (

pA
)

Bias-T Bias-T Bias-T

Vg1
DC

ACV g1
 (�d) ACV g2

 (�d)
ACV g3

 (�d)

Vg2
DC

Vg2
DC (V)

Vg2
DC (V)

Vg2
DC (V)

Vg3
DC

Vg3
DC (V)

Resonator 3 (R3)

dlx /d�d (pA/Hz)

−5 0−10

60

80

100

10

−1

0

1

5

97.8 98.0 98.2

0

10

20 Data

FitQ~3500

100.7

101.1

101.5

9.6 9.79.5
−10

0

10

20

�12

�23

7.6 7.77.5
86.7

87.1

87.5

−20

−10

0

10Coupling between R1 and R2

86.5

86.9

7.5 7.6

−10

0

10

20
87.3

7.55

R1

R2

R2

R3

R3

R1

R2

Coupling between R2 and R3

�23

�12

a d

b e

f
c

Fig. 1 Sample structure and device characterization. a Scanning electron microscope photograph of a typical sample. An ~1-μm-wide graphene ribbon was
suspended over four contacts, labeled as S, D1, D2, and D3, respectively. These contacts divide the ribbon into three sections, each with a gate of ~150 nm
beneath the ribbon. A driving microwave with frequency ωd + δω is applied to contact S and is detected at contact D3 after mixing with another driving tone
with frequency ωd applied to one or more of the control gates. Scale bar is 1 μm. b The differentiation of the mixed current dIx/dωd as a function of driving
frequency ωd and gate voltage VDC

g3 with VDC
g1 ¼ VDC

g2 ¼ 0 V. Here, the frequencies of all resonators can be tuned from several tens of MHz to ~100MHz by
adjusting the dc gate voltages. c The mixing current as a function of the driving frequency ωd at voltage VDC

g3 ¼ 10V. Using a fitting process (see
Supplementary Fig. 8), we extract the linewidth of the mechanical mode. The data were obtained at a driving power of −5 dBm. d, e Spectra of coupled
modes R1 and R2 (d, where VDC

g1 ¼ 10:5 V and VDC
g3 ¼ 0 V) and R2 and R3 (e, where VDC

g1 ¼ 0 V and VDC
g3 ¼ 10:5 V). Strong couplings between these modes

are manifested as avoided level crossings in the plots. Coupling strengths Ω12/2π ~ 240 kHz and Ω23/2π ~ 200 kHz are extracted from the plots. f The
spectrum of R2 coupled to both R1 and R3. In this case, the gate voltages VDC

g1 ¼ 10:45 V and VDC
g3 ¼ 8:35 V are fixed
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resonance from the other two modes. On the contrary, when the
detuning Δ12/2π is lowered to ~180 kHz, a distinct avoided level
crossing between modes R1 and R3 is observed, as shown inside
the dashed circle in Fig. 2b.

With coupling strengths Ω12/2π = 240 kHz and Ω23/2π =
170 kHz extracted from the measured data, we plot the theoretical
spectra of the normal modes in this three-mode system given by
Eq. (2), for Δ12/2π = 700 and 180 kHz in Fig. 2c, d, respectively.
Our result shows good agreement between theoretical and
experimental results.

With direct couplings between neighboring resonators, an
effective coupling between the two distant resonators R1 and R3

can be obtained via their couplings to mode R2. The effective
coupling can be viewed as a Raman process, as illustrated in
Fig. 3a. Here mode R2 functions as a phonon cavity that connects
the mechanical resonators R1 and R3 via virtual phonon
excitations. The physical mechanism of this effective coupling
is similar to that of the coupling between distant super-
conducting qubits via a superconducting microwave cavity20.
The detuning between the phonon cavity and the other two
modes Δ12 can be used as a control parameter to adjust this
effective coupling.

To derive the effective coupling, we consider the case of Δ12 =
Δ32 =Δ, where Δ32/2π = fm2−fm3 and Δj j � Ω12; Ω23. The
avoided level crossing between modes R1 and R3 can be extracted
at this point. Using a perturbation theory approach, we obtain the

effective Hamiltonian between modes R1 and R3 as (see Methods
for details)

Heff ¼ ðΔþ Ω2
12

4Δ
Þα�1α1 þ ðΔþ Ω2

23

4Δ
Þα�3α3 þ

Ω13

2
ðα�1α3 þ α�3α1Þ:

ð3Þ
Here, an effective coupling is generated between R1 and R3 with

magnitude Ω13 =Ω12Ω23/2Δ, and the resonant frequencies of
each mode are shifted by a small term. The effective coupling Ω13

in the Hamiltonian depends strongly on the detuning Δ. Thus,
the effective coupling between R1 and R3 can be controlled over a
wide range by varying the frequency (gate voltage) of resonator
R2.

The effective coupling strength Ω13 between R1 and R3 as a
function of Δ12 is shown in Fig. 3b. Each data point is obtained by
changing the gate voltage of R2 and repeating the measurements
in Fig. 2a, b (see Supplementary Fig. 7). Over a large range of
detuning, the effective coupling is larger than the linewidths of
the resonators γ1,2,3/2π, with Ω13> 30 kHz. The red line shows the
results using perturbation theory. The experimental data indicate
good agreement with the theoretical results.

Discussion
In summary, we have demonstrated indirect coupling between
separated mechanical resonators in a three-mode electromechanical
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Fig. 2 Hybridization between all three modes. a Measured spectrum of the three-mode system when the frequency of R2 is far off-resonance from that of
mode R1 by a detuning Δ12/2π ~ 70 kHz (here, VDC

g1 ¼ 10:5 V and VDC
g2 ¼ 7:64 V). The dc voltage VDC

g3 is scanned over a wide range, crossing both fm1 and
fm2. An avoided level crossing is observed when fm3 approaches fm2. A level crossing is observed when fm3 approaches fm1. b Measured spectrum of the
three-mode system when the detuning is Δ12/2π ~ 180 kHz (here, VDC

g1 ¼ 10:5 V and VDC
g2 ¼ 7:56 V, and here the ranges of the axes are set to be the same

as the black dashed box shown in a). Here, a strongly avoided level crossing appears when fm3 approaches fm1. The strengths of the direct couplings
extracted from the measured spectrum are Ω12/2π= 240 kHz and Ω23/2π= 170 kHz. c, d Spectra calculated using the theoretical model for the three
modes (Eq. (2)) and coupling constants Ω12 and Ω23. Δ12/2π= 700 kHz in c and Δ12/2π= 180 kHz in d
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system constructed from a graphene ribbon. Our study suggests
that coupling between well-separated mechanical modes can be
created and manipulated via a phonon cavity. These observations
hold promise for a wide range of applications in phonon state
storage, transmission, and transformation. In the current experi-
ment, the sample works in an environment subjected to noise and
microwave heating with typical temperatures as high as 100mK
and phonon numbers reaching ~24. By cooling the mechanical
resonators to lower temperatures25–28, quantum states could be
manipulated via this indirect coupling29,30. Furthermore, in the
quantum limit, by coupling the mechanical modes to solid-state
qubits, such as quantum-dots and superconducting qubits17,31,32,
this system can be utilized as a quantum data bus to transfer
information between qubits33,34. Future work may lead to the
development of graphene-based mechanical resonator arrays as
phononic waveguides24 and quantum memories35 with high
tunabilities.

Methods
Theory of three-mode coupling. We describe this three-mode system with the
Hamiltonian (ħ = 1)

Ht ¼
X

ωmiα
�
i αi þ

Ω12

2
ðα�1α2 þ α1α

�
2Þ þ

Ω23

2
ðα�2α3 þ α2α

�
3Þ; ð4Þ

where Ωij is the coupling between mechanical resonators i and j. The couplings
between the resonators induce hybridization of the three modes. The hybridized
normal modes under this Hamiltonian can be obtained by solving the eigenvalues
of the matrix

M ¼
Δ12

Ω12
2 0

Ω12
2 0 Ω23

2

0 Ω23
2 Δ23

0
B@

1
CA; ð5Þ

where Δij/2π = fmi−fmj is the frequency difference between Ri and Rj. The eigen-
values of this matrix correspond to the frequencies of the normal modes, i.e., the
peaks in the spectroscopic measurement.

We consider the special case of Δ12 =Δ23 =Δ, with Δj j � Ω12; Ω23, in the
three-mode system. Here, the eigenvalues of the normal modes can be derived
analytically. One eigenvalue is ωΔ =Δ, which corresponds to the eigenmode

αΔ ¼ � Ω23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

12 þ Ω2
23

q α1 þ Ω12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

12 þ Ω2
23

q α3: ð6Þ

This mode is a superposition of the end modes α1 and α3, and does not include
the middle mode. The two other eigenvalues are

ωΔ± ¼ 1
2
ðΔ±ωΔ0Þ ð7Þ

with ωΔ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ Ω2

12 þ Ω2
23

q
. The corresponding normal modes are

aΔ± ¼ ðΩ12a1 ± ωΔ0 � Δð Þa2 þ Ω23a3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωΔ0ðωΔ0 � ΔÞp : ð8Þ

With Δj j � Ω12; Ω23, for Δ> 0, ωΔþ � Δþ ðΩ2
12 þ Ω2

23Þ=4Δ. The mode αΔ+
is nearly degenerate with αΔ, and

αΔþ � Ω12α1 þ Ω23α3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

12 þ Ω2
23

q : ð9Þ

The mode αΔ− has frequency ωΔ� � �ðΩ2
12 þ Ω2

23Þ=4Δ, with αΔ− ≈ α2. The
normal modes now become separated into two nearly degenerate modes {αΔ,αΔ+},
which are superpositions of modes α1 and α3, and a third mode αΔ− that is
significantly off resonance from the other two modes. The nearly degenerate modes
can be viewed as a hybridization of α1 and α3 with an effective splitting
ðΩ2

12 þ Ω2
23Þ=2Δ. A similar result can be derived for Δ< 0, where

ωΔ� � Δþ ðΩ2
12 þ Ω2

23Þ=4Δ, with αΔ− given by the expression in Eq. (8), and
ωΔþ � �ðΩ2

12 þ Ω2
23Þ=4Δ with αΔ+ ≈ α2.

The effective coupling rate can be derived with a perturbative approach on the
matrix M. When |Δ|�Ω12, Ω23, the dynamics of α1 and α3 is governed by matrix

Meff ¼
Δþ Ω2

12
4Δ

Ω12Ω23
4Δ

Ω12Ω23
4Δ Δþ Ω2

23
4Δ

0
@

1
A: ð10Þ

This matrix tells us that because of their interaction with the middle mode α2,

the frequency of mode α1 (α3) is shifted by Ω2
12

4Δ (Ω
2
23

4Δ ), which is much smaller than |Δ|.
Meanwhile, an effective coupling is generated between these two modes with
magnitude Ω13 ¼ Ω12Ω23

2Δ . The effective Hamiltonian for α1 and α3 can be written as

Heff ¼ ðΔþ Ω2
12

4Δ
Þα�1α1 þ ðΔþ Ω2

23

4Δ
Þα�3α3 þ

Ω13

2
ðα�1α3 þ α�3α1Þ: ð11Þ

The effective coupling can be controlled over a wide range by varying the
frequency of the second mode α2.

Data availability. The remaining data contained within the paper and Supple-
mentary files are available from the author upon request.
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