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Neuroimaging assessment of motor neuron disease has turned into a

cornerstone of its clinical workup. Amyotrophic lateral sclerosis (ALS),

as a paradigmatic motor neuron disease, has been extensively studied

by advanced neuroimaging methods, including molecular imaging by

MRI and PET, furthering finer and more specific details of the cascade

of ALS neurodegeneration and symptoms, facilitated by multicentric

studies implementing novel methodologies. With an increase in multimodal

neuroimaging data on ALS and an exponential improvement in neuroimaging

technology, the need for harmonization of protocols and integration of

their respective findings into a consistent model becomes mandatory.

Integration of multimodal data into a model of a continuing cascade of

functional loss also calls for the best attempt to correlate the di�erent

molecular imaging measurements as performed at the shortest inter-modality

time intervals possible. As outlined in this perspective article, simultaneous

PET/MRI, nowadays available at many neuroimaging research sites, o�ers

the perspective of a one-stop shop for reproducible imaging biomarkers on

neuronal damage and has the potential to become the new gold standard

for characterizing motor neuron disease from the clinico-radiological and

neuroscientific perspectives.
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Introduction

Based on current guidelines, clinical workup of amyotrophic

lateral sclerosis (ALS) will include neuroimaging to rule out

structural lesions and neurologic conditions that sometimes

account for early clinical features seen in patients suspected

of having primary motor neuron disease (1). The clinical

management of this highly invalidating condition, however,

clearly necessitates, as early as possible, accurate diagnostic

and prognostic information on the associated motor neuron

degeneration to direct appropriate clinical handling of the

individual patient. Neuroimaging has proven to provide reliable

in vivo biomarkers to better define the various clinical

entities within ALS and to provide additional complementary

information to the standard clinical workup (2).

Current situation of neuroimaging
for motor neuron disease

Instrumentation and image
processing—MRI

RecentMRI applications for motor neuron disease including

ALS have focused both on quantitative and qualitative analysis

of structural changes in T1-weighted images as assessed by

automatic analysis approaches and, in a body of more recent

studies, on the analysis of microstructural alterations within

the brain and spinal cord by the application of varieties of

diffusion-weighted MRI sequences.

Additionally, substantial efforts have been made utilizing

PET to generate newer and more biologically based

classifications of ALS and its subtypes (3–5). PET, as a

non-invasive in vivo imaging technique, provides quantitative

data at the molecular level, with novel radiotracers targeting

neurons, microglia and astrocytes metabolism, receptor and

protein density, as well as oxidative stress.

Advances in computational analyses of multimodal

imaging datasets, including deep learning-based applications

of artificial intelligence (AI), are just opening the door for a

more comprehensive understanding of the pathophysiological

cascade of neurodegeneration in motor neuron disease. Here,

hypothesis-guided approaches including neuropathological

concepts and network-based analyses will be center stage and

will eventually find their way into clinical practice.

Crucial information will also be derived from neuroimaging

fingerprinting of genetically defined ALS phenotypes like the

association with C9orf72 hexanucleotide repeat expansions,

especially in longitudinal investigations of presymptomatic

mutation carriers. Neuroimaging offers the possibility to stratify

ALS patients according to their intrinsic progression rate, based

on cross-sectional and longitudinal studies, thus helping to

optimize disease management, enhancing the design of drug

trials, and guiding the use of novel individualized treatments

when these become available (6, 7).

Further advances in the clinical application of neuroimaging

in motor neuron disease will have to rely extensively on

a new stage of neuroscientific cooperation, building on

existing collaborations between researchers and infrastructures

specialized in ALS and facilitating multicenter joint projects that

enable grand-scale projects, such as those, for example, led by

the Neuroimaging Society in Amyotrophic Lateral Sclerosis (8)

or the Canadian ALS Neuroimaging Consortium (CALSNIC)

(9). While multicentric studies are most welcome to increase

the number of observations in subgroups and different disease

stages, the accordingly increasing amount of data collected is

paralleled by the need for harmonization of protocols, being the

foundation for deducting evidence out of data, and integration

of their respective findings into a consistent model of a possible

continuing cascade of functional loss.

Integration of multimodal data into a consistent model

aiming to correlate the different anatomical, functional, and

molecular imaging measurements also calls for the best attempt

to perform all measurements to correlate at the shortest

intermodality time intervals possible, which is most important

in a rapidly progressing disease. But even in the case of a

primarily slowly progressing disease, pathological processes can

be expected to be accentuated at times, as typically is the case for

inflammatory cascades. Any attempt to draw conclusions from

observations even a few days apart may thus be jeopardized by

the underlying pathological process itself.

The advent of simultaneous PET/MRI, which industries

had quickly turned from prototype research instruments into

reliable, integrated commercial scanners, has proven to provide

a stable, reproducible, and calibrated hybrid modality that

not only by design acquires data simultaneously, but also

adds value by its potential of dynamically mutually informing

their reconstruction algorithms with either modality data.

With PET/MRI available at many neuroimaging research sites,

the perspective of a one-stop shop for reproducible imaging

biomarkers on neuronal damage gains importance, and the call

for harmonization of protocols becomes feasible, as the stringent

design of hybrid PET/MRI eases the implementation of research

protocols and research MR sequences at the existent sites.

The two available PET/MRI scanner models built by the

industry providers GE Medical and Siemens Healthineers

make use of their respective provider’s 3T MRI platform and

state-of-the-art PET technology, enabling rapid adaption of

advances in image acquisition and reconstruction to their

clinical platforms. Improved MR sequences, e.g., providing

diffusion imaging at a resolution of 1 × 1 × 1 mm3,

necessary to characterize microstructural abnormalities (10),

can thus be easily adopted and distributed throughout the

neuroimaging research sites. Harmonization of MR protocols

across different vendors also has proven feasible for the specific

needs to characterize microstructural changes in corticospinal,
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corticorubral, corticostriatal, and hippocampal tracts at different

stages of disease progression in ALS (8). The same holds true

for protocols for resting state fMRI (11) and MR spectroscopy

(MRS) (12).

While PET measurements, in principle, allow for absolute

quantitation measures, such as regional cerebral blood

volume, regional cerebral glucose metabolism, or regional

receptor occupancy, the evaluation of multicentric data makes

procedures for harmonization of data acquisition and processing

mandatory (13–16), which is simplified for PET/MRI, where,

by design, variability of the underlying technology is limited.

Given that technical prerequisites have been met, quantitative

measures of different systems relevant to motor neuron disease

can be non-invasively acquired and PET/MRI proves useful for

individual assessment of the stage of disease (Figure 1).

Molecular imaging of
disease-inherent pathological
alterations—PET

Glucose metabolism and regional
inflammatory changes

While many of the more recent radiotracers are still

experimental, measures of regional glucose metabolism using
18F-FDG-PET have reached clinical utility in ALS, as evaluated

by a panel of experts in the field of nuclear medicine and

neurology. By an analysis of the most relevant 18F-FDG-PET

investigations by the Population, Intervention, Comparison,

Outcome (PICO) model, the provided incremental value as

compared with the information resulting from the clinical tests

routinely performed had been assessed, concluding that 18F-

FDG-PET offers good evidence to support ALS diagnosis (17).

This analysis, however, was based on stand-alone 18F-FDG-

PET investigations, which did not take into account same-time

structural or functional MRI measures. The metabolic patterns

identified in ALS consisted of significant hypometabolism

in prefrontal, frontal, precentral, and postcentral regions,

bilaterally, associated with significant hypermetabolism in

posterior occipital and middle temporal cortices, cerebellum,

midbrain, and corticospinal tracts, findings which are atypical

in functional studies investigating neurodegenerative diseases.

Clinically relevant is that the extent of metabolic brain changes

in frontal lobes is correlated with cognitive dysfunction (18),

thus distinguishing patients with cognitive impairment and

possible overlap with frontotemporal dementia from those with

pure motor disease (19). The pattern of glucose metabolism

also was found to discriminate ALS patients from patients

with Parkinson’s plus syndromes (20), and, if using machine

learning-based techniques, such as support-vector machine

discriminant analysis, FDG PET also has proven to be useful

for automatically classifying patients with amyotrophic lateral

sclerosis vs. controls (21).

More recent studies have found an inverse correlation

between precentral and postcentral metabolic activity and

clinical stages (22), as well as an inverse correlation between

prefrontal and limbic metabolism and apathy (23). When

coregistered MRI for partial volume correction was used, FDG

PET was able to identify metabolic changes in presymptomatic

carriers of the C9orf72 repeat expansion (24). Also, precentral

metabolism distinguished patients with the SOD1 mutations

(SOD-1 ALS) from sporadic ALS (sALS). Specifically, right

precentral and paracentral metabolism was relatively increased

in patients with SOD-1 ALS as compared to sALS (25).

It was hypothesized that a relative increase of 18F-FDG-

related signal in ALS patients in pyramidal cells in the

motor cortex and in their projections to the spinal cord

is secondary to a widespread microglial activation and

astrocytosis reactive to the reduced neuronal density, with

the proliferation of astrocytes being the main determinant of

glucose uptake from the intraparenchymal capillaries (26). To

better delineate the spatial pattern of metabolic changes in

the brain stem and cervical spinal cord, an innovative study

capitalized on the potential of integrated PET/MRI to improve

result accuracy in small anatomic structures by separately

analyzing glucose metabolic patterns in the midbrain/pons,

medulla oblongata and cervical spinal cord of ALS and

frontotemporal dementia (FTD) patients as compared to normal

controls (27). They found a significant and intercorrelating

increment in glucose metabolism in the midbrain/pons and

medulla oblongata in ALS/FTD patients (spinal-ALS and FTD-

motor neuron disease subgroups), interpreted to relate to

neuroinflammation, namely activated microglia. While they did

not report relevant associations between clinical and metabolic

features, medulla oblongata hypermetabolism was associated

with shortened survival of ALS patients. In the context of

their study, the simultaneously available MRI was instrumental

for the identification of corticospinal tract hyperintensities to

differentiate ALS from clinically overlapping FTD patients of

the motor neuron subgroup, and for the detection of the

brain stem and cervical spinal cord hypermetabolism in favor

of regional neuro-inflammation linked to activated microglia.

Confirmatory studies, directly measuring microglial activation

using radioligands targeting TSPO (18 kDa translocator

protein), have been performed either using the first-generation

TSPO ligand 11C-PK-11195 (28, 29) or one of the second-

generation ligands 18F-FEPPA (30), 18F-DPA714 (31), or 11C-

PBR28, the latter of which has proven to allow for microglia

imaging of fiber tracts (32). Technical issues that have not been

addressed by a “PET-only” approach for those investigations

include the need for partial volume correction, as the measured

signal would depend on the regional volume of the anatomical

structure of interest. Partial volume correction, however, is

extensively dependent on coincident, morphological imaging,
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FIGURE 1

Examples of integration of multimodal PET and MR approaches for individual assessment of motor neuron disease/ALS.

where the quality of coregistration of sequentially acquired

datasets is a major determinant of bias. It can therefore be

expected that using combined information out of a single

coordinate system of acquisition, TSPO-PET/MRI will represent

an even more useful biomarker in cross-sectionally and

longitudinally evaluating the spread of inflammatory lesions.

Novel markers for neuroinflammation

Purinergic P2X7 ionotropic receptor

More recently, novel markers for neuroinflammation

targeting the purinergic P2X7 ionotropic receptor (P2X7R)

have been successfully introduced into human PET-imaging

[(33) brain kinetic modeling and quantification of brain P2X7

receptors in patients with Parkinson’s disease and healthy

volunteers] (34). As P2X7R is expressed in astrocytes, microglia,

and oligodendrocytes, where they mediate inflammasome

signaling (35). A couple of preclinical and clinical studies suggest

the implication of P2X7Rs in ALS pathogenesis (36–38). As a

whole group of P2X7-Receptor antagonists is currently under

development, posing a possible new therapeutic approach for

ALS (39). A quantitative assessment of P2X7R as an initial

and longitudinal biomarker, along with morphological and

functional MR measures will be a basic necessity in according

clinical studies, naturally favoring PET/MRI as an imaging

modality of choice.

C-X-C motif chemokine receptor antagonists

Another promising candidate target suitable as a biomarker

for neuroinflammation is the cyclooxygenase-enzyme-2 (COX-

2), the possible involvement of which in ALS is indicated

by preclinical data (36) and clearly needs systematic in vivo

studies that will be enabled by the very recent development of

appropriate radiopharmaceutical targets (40–42). If a significant

involvement of COX-2 could be documented at any stage

of disease, this could open the rationale for stage-dependent

antioxidative treatment (43, 44), and would again need to be

reflected in MRI-based functional measures.

More experimental measures for neuroinflammation are

based on findings indicating the implication of C-X-C motif

chemokine receptor (CXCR)-4 and CXCR-3, which critically
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contribute to the disease process in systemic inflammation

(45–47), opening another door to possible future therapeutic

principles targeting the respective C-X-C motif chemokine

receptor (48, 49). As a couple of specific radiopharmaceutical

targets have been developed for preclinical and clinical use (40–

42, 50), the selection of an appropriate tracer as a biomarker in

motor neuron disease would depend on binding characteristics,

kinetic analysis, and correlation with functional measures

derived from MRI. Again, interpretation of novel preclinical

and clinical neuropharmacological imaging data will crucially

depend on its supportive correlation with coincident imaging

findings using a different modality.

Neurotrophins

Tyrosine kinase receptor antagonists

There is growing evidence for neurotrophins being involved

in neurodegenerative diseases including ALS (40–42, 50,

51). While neurotrophins have not yet proven a significant

therapeutic potential in clinical trials, partly because of the

difficulties of protein delivery and pharmacokinetics in the

nervous system, the binding target of neurotrophins includes

a family of tyrosine kinase (TrK) receptors. Within this

class of receptors, synthetic antibodies have recently been

linked to PET-radioligands targeting the TrK-B receptor, which

have passed the preclinical and clinical assessments (52–54).

Quantitative characterization of TrK-B alterations in ALS is

currently underway by the same research group, accounting

for the volumetric changes inherent in the disease by applying

PET/MRI in the first place, complemented by magnetic

resonance spectroscopy data. The recent development of TrkB

agonistic antibodies and BDNF-targeted gene therapies (55,

56) could prove useful, and changes in TrK-B alterations as

measured by PET/MRI during targeted therapy could potentially

qualify as an imaging endpoint in clinical trials in motor neuron

disease (52–54, 57).

Markers of neuronal integrity

GABA-A—Benzodiazepine receptor complex

The selective PET ligands 11C-Flumazenil and 2′-18F-

Fluoroflumazenil, binding to the GABA-A—receptor, widely

expressed on pyramidal neurons, have been suggested to be used

as a surrogate in vivomarker of neuronal density (58–62). First,

applications in neurodegenerative disease have shown a regional

neuronal loss in the motor and premotor cortex as well as in

extramotor areas in ALS (63, 64), which were also associated

with specific cognitive deficits (65, 66). The specificity of GABA-

A receptor antagonists to characterize neuronal loss without

a possible confound by GABAergic dysfunction has however

been questioned, and quantitation methods applied have been

scrutinized (67). It has been demonstrated that PET imaging

and quantitation using Flumazenil-based radioligands highly

depend on the availability of concurrent high-resolution MRI

(68), which would ideally be conceptualized by PET/MRI.

Antagonists to synaptic vesicle protein 2A

The synaptic vesicle protein 2A (SV2A), a 12-

transmembrane domain glycoprotein, is ubiquitously expressed

in normal synaptic vesicles throughout the brain, with a

particularly high regional expression in the thalamus and

basal ganglia (69), only sparing the trigeminal and facial nerve

nuclei (70, 71). SV2A has thus been claimed as a potential

biomarker for synaptic vesicle density. While it is critical

to Ca2+-dependent exocytosis (72), its exact physiological

role still is subject to further research, and deficiencies in the

expression of SV2A have been described in a growing number

of neurodegenerative disorders, including frontotemporal

dementia (FTD), Parkinson’s Disease (PD), Alzheimer’s disease

(AD), corticobasal degeneration (73–77), as well as further

neurological conditions, such as epilepsy (78–80), where it has

been identified as the binding site for the antiepileptic drug

levetiracetam (81).

In analyses of rat brain homogenates, the number of

expressed SV2a proteins per vesicle was found to be highly

reproducible at 2–5 copies per vesicle (82, 83). It has been

suggested that SV2A plays a central role in exocytosis mediated

by Ca2+ (71). The deficiency of SV2A in SV2A knockout

mice resulted in presynaptic Ca2+ accumulation, destabilizing

synaptic circuits, and inducing seizures (84). It has also been

suggested that SV2A is modulating endocytosis to the SV of

the SV protein synaptotagmin-1 (SYT1), and by this mechanism

is involved in the homeostasis of the readily releasable pool of

SVs (85).

SV2A has thus attracted attention as a target binding site

for PET-tracers, and subsequently, with the SV2A antagonist

levetiracetam serving as a blueprint, a number of suitable ligands

have been developed and translated into human studies (86,

87). The binding of the PET ligand 11C-UCB-J to SV2A has

been demonstrated to quantitatively correlate and co-localize

with synaptophysin (SYN), a key protein located in the pre-

or postsynaptic neurons, using a combined in vivo–in vitro

validation, furthering evidence for SV2A targeting PET tracers

to serve as synaptic density marker, which allows for the

quantification of synaptic density in vivo (88).

Recently, a second-generation SV2A antagonist 18F-

SynVesT-1 (SDM-8) (89) has been introduced with superior

SV2A binding affinity, improved imaging properties, enhanced

metabolic stability, and an easier path for radiochemical

synthesis (90, 91). For SV2A-markers to prove useful for

longitudinal studies of neuronal density in progressive

neurodegenerative diseases, such as ALS, confounding effects

due to atrophy have to be accounted for, and simultaneous

PET/MRI delivers the most accurate, concurrent quantitative

anatomic information to perform partial volume correction
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reflecting the state of morphologic changes at the exact same

time point of PET data acquisition.

Further understanding of ALS pathophysiology will be

achieved by the study of multimodal MRI and PET data through

network-based analyses with hypothesis-guided approaches,

including neuropathological concepts, although advanced

neuroimaging still awaits translation into clinical settings.

Proteinopathy—PET surrogate markers

ALS and the ALS-FTLD spectrum disease are characterized

as TDP-43 proteinopathy, where TAR DNA-Binding Protein

43 kDa (TDP-43) links both familial and sporadic forms of

ALS. Cytoplasmatic aggregates of TDP-43 are a hallmark of the

disease on a cellular level, and protein mislocalization is often

regarded as a key mechanism underlying ALS. Up to now, there

is no direct PET imaging ligand successfully targeting TDP-43,

and out of the notion that multiple pathological proteins may

be present in neurodegenerative disease, several groups have

investigated the utility of established tau-directed PET tracers

to characterize ALS (76, 77, 92–94). As diffusion tensor MR

imaging (DTI) has been previously established to identify TDP-

43 associated alterations (95), combined PET/MRI will be the

modality of choice to further elucidate the role of tau PET

imaging in ALS.

Imaging of disease-inherent pathological
alterations—MRI

Neuroimaging with MRI has an essential role in the

clinical diagnostic processes for ALS in the exclusion of other

etiologies of the clinical presentation (96). In addition, MRI

approaches with advanced postprocessing have been established

as biological markers of the disease with reliable measures for

monitoring disease progression and have greatly improved our

understanding of its in vivo pathoanatomy (6). Here, diffusion-

weighted imaging techniques including diffusion tensor imaging

(DTI) had been a focus of research in many studies to investigate

microstructural white matter tract alterations in MND (97, 98).

Di�usion tensor imaging

By using the DTI, diffusivity in human brain white matter

can be non-invasively mapped to first quantify its regional

directional dependence, and second, to obtain a reconstruction

of fiber tracts by fiber tracking techniques (99). DTI has

been established as a robust non-invasive technical tool to

investigate the WM neuronal tracts in vivo to define anatomical

signatures of the different phenotypes of MND and to track in

vivo the progressive spread of pathological protein aggregates

(100). As the neuropathological basis of the ALS-associated

propagation patterns in the brain, four neuropathological stages

have been defined for ALS, based upon the distribution patterns

of phosphorylated 43 kDa TARDNA-binding protein (101, 102):

the sequential protein pathology is spreading initially from

the motor neocortex toward the spinal cord and brainstem,

followed by spreading to frontal, parietal, and, ultimately,

anteromedial temporal lobes. This corticoefferent spreading

model has been transferred to DTI-based concepts by a tract

of interest (TOI)-based mapping, and DTI seems to be a valid

surrogate marker to assess the spreading of TDP-43 pathology in

vivo within the corresponding neuronal WM tracts (103–105).

TOI-based mapping as a hypothesis-driven approach images

the neuropathologically proposed sequential progression of ALS

in the respective cerebral tract systems, i.e., the CST (as a

correlate of ALS-stage 1), the corticorubral and corticopontine

tracts (corresponding to ALS stage 2), the corticostriatal pathway

(as a correlate of ALS stage 3), and the proximal portion of

the perforant path (corresponding to ALS stage 4) (106). This

tract-based in vivo-staging concept was applied to further ALS

variants like primary lateral sclerosis (PLS) (104), lower motor

neuron disease/progressive muscular atrophy (107), progressive

bulbar palsy (108), and flail limb syndrome (109). In all of

these restricted phenotypical ALS variants, an ALS-like in vivo

alteration pattern of corticoefferent fibers according to the

ALS disease propagation model could be shown. DTI-based

methods, thus, seem to be a valuable tool for guiding the

pathoanatomy definition of MND subtypes, in accordance with

current proposals for clinical diagnosis, i.e., the Gold Coast

Criteria (110). These results encourage future neuroimaging

studies across the phenotypical ALS spectrum to contribute

to our understanding of potential modifiers of the clinical

presentations in ALS (109).

To this end, it is important to acquire longitudinal imaging

data given that longitudinal MRI studies have the potential

to provide crucial insights into the natural trajectory of ALS-

associated neurodegenerative processes, although it has to be

considered that standardized design is required to enable

meaningful data interpretation (111). Longitudinal MRI studies

in ALS have already been applied to subject groups of

heterogeneous sample size (112–116), and reported fractional

anisotropy (FA) reduction in the CST as the common core

finding. Other DTI measures beyond FA add information on

the ALS-associated pathoanatomy, such as a segmental radial

diffusivity profile developed by Schuster and colleagues (111).

Neurite orientation dispersion and density imaging (NODDI),

a multicompartment model of diffusion MRI, demonstrated

axonal loss within the CST together with dendritic alterations

within the precentral gyrus, suggesting microstructural cortical

dendritic changes occur together with CST axonal damage (117).

Protocol standardization and multisite MRI data

Advanced imaging protocols with more sophisticated

techniques to analyze ever-increasing datasets to guide in

the understanding of the anatomical and temporal factors of
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the biological processes of ALS benefit from collaborations

across the entire ALS research community (118). Multicenter

approaches like the Neuroimaging Society in Amyotrophic

Lateral Sclerosis (NiSALS) with up-to-date, ultimately

harmonized neuroimaging protocols aim to obtain high subject

numbers and therefore to increase the reliability of results

(8, 119, 120). Given that multicenter imaging studies have

the limitation of scanner and protocol variability, there were

successful approaches to merge data recorded at different sites

and/or with different DTI protocols (8, 121, 122).

The Canadian ALS Neuroimaging Consortium (CALSNIC)

was established in part to address the challenges associated

with protocol variability when pooling multisite data. CALSNIC

is a multicenter imaging biomarker validation platform that

established from its inception harmonized clinical and imaging

protocols across multiple MR platforms. Operating at research

sites in Canada and the USA, the platform has conducted two

prospective longitudinal studies (CALSNIC1 and CALSNIC2),

each including multimodal MRI, neurocognitive assessments,

and speech recordings (9). To date, there have been 250

patients with ALS/MND and 200 healthy controls enrolled,

with CALSNIC2 ongoing. A recent study of longitudinal

DTI-based microstructural alterations in ALS from CALSNIC

determined a time interval of about 110 days is the minimum

follow-up time to detect longitudinal microstructural alterations

(123). Other longitudinal observations within this time frame

reported by this consortium include gray and white matter

atrophy with deformation-based morphometry (124), altered

motor and prefrontal cortex neurochemistry using magnetic

resonance spectroscopy (125), and regional texture changes

in T1-weighted images (126). Collaborative and multicenter

projects like this will be useful in ascertaining the reliability of

imaging biomarkers under development (127).

MR findings with respect to genetic phenotype

The field of genetic ALS continues to develop rapidly

with multiple disease gene discoveries per year (128), with the

autosomal dominant inheritance of a hexanucleotide expansion

in the first intron of the C9orf72 gene being the most common

cause of familial ALS in people of Northern European ancestry,

also as a major contributor to frontotemporal pathology in

ALS. DTI studies in patients with C9orf72 expansion in cross-

sectional and longitudinal design demonstrated alterations in

motor tracts (129–131); in addition, further white matter areas

were found to be affected, e.g., in the frontal white matter

(132) and segmentally in the corpus callosum (133). In addition,

the in vivo histopathological staging approach was also applied

to C9orf72-associated ALS and demonstrated a corticoefferent

involvement pattern according to the staging scheme—a pattern

that was not observed in Super Oxide Dismutase 1-associated

ALS (134). In the last decade, the pre-symptomatic phase of the

disease has gained increasing interest, addressing people with

family history and genetic risk for ALS without manifestations of

the disease (135). Neuroimaging studies in presymptomatic ALS

offer opportunities to characterize early genotype-associated

signatures and propagation patterns and factors (7). Current

initiatives have, thus, integrated natural history and biomarker

data on presymptomatic ALS for the design and implementation

of pre-symptomatic ALS trials (136). Specifically, in C9orf72

mutation carriers, DTI studies reported regional reductions of

white matter integrity (131, 137), as an indicator of general

developmental tardiness. At the spinal level, C9orf72-positive

subjects older than 40 years were shown to exhibit considerable

WM atrophy at C2–C7 vertebral levels in conjunction with

progressive pyramidal tract FA reductions (138).

Resting-state functional MRI

Brain regions that are co-activated under resting conditions

delineate the so-called “resting-state” (RS) functional networks.

The assessment of connectivity alterations between RS

networks has provided important insights into brain

functional reorganization in several neurodegenerative

diseases, including ALS, in which motor and—when present—

cognitive impairment may undermine the use of task-based

fMRI (139–141).

Several studies showed decreased functional connectivity

of the sensorimotor network in ALS patients (142), whereas

others found increased connectivity (143), or complex regional

patterns of decreased and increased functional connectivity

(144, 145). Altered functional connectivity has also been

shown in brain networks related to cognition and behavior

(especially the default mode and frontoparietal networks) (146,

147), consistent with the multisystem involvement of ALS

pathology. It has been suggested that an increase in brain

functional connectivity might prevail in earlier stages of the

disease as a compensatory mechanism, with a subsequent

decrease as pathological burden accumulates. Consistent with

this hypothesis, increased functional connectivity was found

to be higher in patients with less severe microstructural

damage to the CST (148), and associated with a lower rate

of disease progression, shorter disease duration (145), and

preserved motor function (148). Decreased RS functional

connectivity in the sensorimotor and thalamic networks,

paralleling progression of structural alterations and clinical

decline, was observed over a 2-year period in ALS patients (149).

The co-occurrent progressive increase of functional connectivity

in extra-motor networks, such as the left fronto-parietal and

the temporal RS networks (147, 149), is also consistent with

a “disconnection” hypothesis due to the loss of compensation.

However, some studies also showed increased functional

connectivity within the regions of structural disruption in

ALS correlating with faster disease progression (142), and
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greater clinical and executive cognitive impairment (143, 146).

Therefore, a more direct pathogenic involvement of increased

functional connectivity related to the loss of local inhibitory

circuitry within the primary motor and frontal cortex is

also possible.

Graph analysis and connectomics

The human brain is a highly integrated neural network

consisting of several cortical and subcortical regions that

are structurally and functionally interconnected, forming

co-operating sub-networks. Graph theoretical models have

conceptualized such complex organization as the brain

“connectome”, consisting of anatomic regions defined

as “nodes”, which are linked by “edges” (i.e., structural

or functional connections). In ALS, graph analysis and

connectomics might represent a powerful approach to detect

upper motor neuron degeneration, extramotor brain changes,

and network reorganization associated with the disease.

Two independent studies applied network-based statistics

to DT MRI of patients with ALS, both demonstrating the

presence of an impaired sub-network including bilateral

primary motor regions, supplementary motor areas, basal

ganglia, and associative parietal areas (150, 151). Patients

with a C9orf72 mutation showed a more widespread white

matter involvement (152). In a longitudinal study, the sub-

network of impaired connectivity expanded over time, involving

frontal, temporal, and parietal regions (150), consistent with

the proposed model of TDP-43 pathological spreading. In

line with such hypothesis, a study evaluated brain structural

connectivity in a consistent set of healthy controls, showing

that regions involved in subsequent stages of ALS pathology

are highly interconnected by WM tracts, which may serve as

anatomical “infrastructures” facilitating TDP-43 spread (153).

More recently, a computational model was applied to the MRI

scan of ALS patients to simulate this progressive network

degeneration (154). Computer-simulated aggregation levels

mimic true disease patterns in ALS patients. Simulated patterns

of involvement across cortical areas show significant overlap

with the patterns of empirically impaired brain regions on

later scans, in accordance with established pathological staging

systems (152).

Few studies applied network-based analyses to the

assessment of functional alterations in ALS patients using

resting-state functional MRI (rs-fMRI), demonstrating complex

connectivity alterations encompassing frontal, temporal,

and occipital regions (155, 156). A recent study assessed the

functional and structural connectivity patterns across the

ALS-FTD spectrum, investigating whether and where MRI

connectivity alterations of ALS patients with any degree of

cognitive impairment (i.e., ALS-ci/bi and ALS-FTD) resembled

more the pattern of connectome damage of ALS or bvFTD (157).

As compared with controls, ALS-ci/bi patients demonstrated an

“ALS-like” pattern of structural damage, diverging from ALS

without cognitive impairment with similar motor impairment

for the presence of enhanced functional connectivity within

sensorimotor areas and decreased functional connectivity

within the “bvFTD-like” pattern. On the other hand, ALS-

FTD patients resembled both structurally and functionally the

bvFTD-like pattern of connectome damage with, in addition, the

structural ALS-like damage in the motor areas. A maladaptive

role of functional rearrangements in ALS-ci/bi concomitantly

with similar structural alterations compared to ALS without

cognitive impairment supports the hypothesis that ALS-ci/bi

might be considered as a phenotypic variant of ALS, rather than

a consequence of disease worsening.

In a multicenter study (158), compared with healthy

controls, patients with ALS and patients with PLS showed

altered structural global network properties, as well as local

topologic alterations and decreased structural connectivity

in sensorimotor, basal ganglia, frontal, and parietal areas.

Patients with PMA showed, instead, preserved global structure.

Increased local functional connectivity was observed in patients

with ALS in the precentral, middle, and superior frontal areas,

and in patients with PLS in the sensorimotor, basal ganglia,

and temporal networks. In patients with ALS and patients

with PLS, structural connectivity alterations correlated with

motor impairment, whereas functional connectivity disruption

was closely related to executive dysfunction and behavioral

disturbances (158).

Magnetic resonance spectroscopy

In addition to evaluating structural, microstructural,

and functional changes, magnetic resonance spectroscopy

(MRS) permits the probing of neurochemical correlates

of neurodegeneration in ALS (12). Numerous studies using

varying techniques (single voxel or multivoxel) have consistently

revealed reduced N-acetylaspartate (NAA, a chemical marker

of neuronal integrity) in motor and extra-motor regions

in ALS. Other metabolites of interest include myo-inositol

(mIns, a glial marker), and the excitatory and inhibitory

neurotransmitter system involving glutamate, glutamine, and

GABA (159). Technological advances in MR hardware and

spectral acquisition and editing methods have increased the

ability to more readily resolve such metabolites. For example,

this includes ultra-high field studies at 7 tesla for glutamate,

glutamine, and GABA (160, 161) and MEGA-PRESS for

GABA (162, 163) detection. Combined PET-MR imaging with

MRS provides the opportunity to explore complementary

pathological or pathophysiological mechanisms simultaneously

from the molecular and neurochemical perspectives. In a

PET-MR study in ALS that included MRS motor cortex

inflammation, measured using the TSPO tracer [11C]-PBR28,

and gliosis, measured using the myo-inositol signal, were found

to be directly correlated in the motor cortex (164).
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Machine learning classifiers

One of the overarching aims in advanced neuroimaging

biomarker development in neurodegenerative disorders like

ALS is the observer-independent classification of imaging data

for individual patient’s stratification for later use in multicenter

therapeutic trials; to this end, there is a rapidly growing interest

in Machine Learning (ML) models, classifiers, and predictive

modeling in ALS (165). The choice of the ML model in ALS

neuroimaging needs to be carefully tailored to a proposed

application based on the characteristics of the available data and

the profile of the candidate model, as proposed by Grollemund

et al. (166). A recent systematic review on MRI feature selection

for ML-based neuroimaging classifiers in ALS suggested the

integration of DTI, volumetric, and texture data (167), but

potential future applications might include a multiparametric

MRI combination of more approaches such as intrinsic

functional connectivity MRI. Connectome-based analyses of

multiparametric MRI have already demonstrated their potential

as a tool for patient stratification and as a prognostic biomarker

in ALS to predict disease progression (154). PET/MRI is able

to provide a multiparametric protocol, where a multimodal

composite score may combine the aforementioned PET and

MR techniques to address specific questions [e.g., (168)]—for a

review see (169).

Summary

Neuroimaging fingerprinting of genetically defined

ALS phenotypes will be important, especially longitudinal

investigations of presymptomatic mutation carriers.

Neuroimaging offers the possibility to undertake cross-

sectional and longitudinal studies to stratify ALS patients

according to their intrinsic progression rate, thus helping to

optimize disease management, enhancing the design of drug

trials, and guiding the use of individualized treatments when

these become available. Recent research has contributed to the

change in perception of neuroimaging in motor neuron disease,

which traditionally had been primarily an academic tool with

limited direct relevance to individualized patient care, but, with

the advances in computational imaging, has emerged as a viable

clinical tool with true biomarker potential (170).

MRI and PET provide methodologically different and

partially complementary information on disease pathology.

There are multiple aspects where applied neuroimaging and

biomarker imaging strategies in neurodegenerative disease are

influenced by and directly benefit from simultaneous PET/MRI:

• Concurrent acquisition and analysis augment the precision

of partial volume correction for PET data by minimizing

the main confounds introduced by small misregistration

and data resampling inaccuracies of post-hoc coregistration

of PET and segmented MRI acquired at different time

points and in different scanner coordinate systems (171,

172).

• Novel regularized PET image reconstruction techniques

based on anatomical priors derived from concurrent MRI

significantly improve PET image quality (173–175).

• Novel readout and quantitation techniques including

radiomics and machine learning/artificial intelligence

informed algorithms benefit directly from inherently

coregistered data and the high degree of standardization

possible in PET/MRI, likely to result in improved

performance of AI applications (176–180).

• Data consistency of simultaneous PET/MRI improves data

pooling of different varieties of radioligands of the same

functional target, assisting in moving toward multicenter

therapeutic trials.

• Simultaneous PET/MRI and the inherent temporal

synchronicity of findings will be instrumental in the

development of tailored imaging probes or assessing the

effects of drug challenges in treatments (181–184).

• PET/MRI enables to the design of more complex

prospective trials using multiple tracers to characterize a

disease, capitalizing on an intelligent spread of complex

MR protocols over consecutive PET/MRI sessions using

different tracers to max out the gain of information by each

session and still ensure patient compliance (185).

Future developments may include a possible combination

of rapid multi-tracer PET in a single PET/MRI session, making

use of the high spatial information provided by MRI to

improve signal separation in multi-tracer and multi-isotope

studies, where typically staggered injection of ultra-short lived

radionuclides combined with longer half-lived ones is practiced,

and where spatial registration between different stages is

crucial (186). Other future applications might include the

combination of simultaneous PET/MRI with hyperpolarized

MR imaging (187), to add even more layers of complementary

metabolic information.

To summarize, the roles of MRI and PET as straight-forward

diagnostic tools in ALS and further neurodegenerative disorders

are emerging; the concepts to use them as a biological marker

or as a read-out in clinical trials are existing and have to be

probed for their clinical relevance. Combined PET/MRI has the

potential as a future gold standard for characterizing motor-

neuron disease and offers an important contribution to the

standardization of imaging across multiple centers.
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