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1  | INTRODUC TION

Plant phenotyping involves the comprehensive measurement of the 
physical and biochemical traits of plant genotypes under specific en-
vironmental conditions and provides essential information for the 
plant sciences. Recent advances in technical and analytical methods 
have made high-throughput field phenotyping possible (Furbank 
& Tester, 2011; Houle et al., 2010; Tardieu et al., 2017; Tripodi 
et al., 2018). Proximal sensing through the use of unmanned aerial 
vehicles (UAVs) is among the most promising and popular techniques 
for field phenotyping owing to its rapidity, nondestructiveness, 

cost-effectiveness, and information density (Chapman et al., 2014; 
Maes & Steppe, 2019; Sankaran et al., 2015; Yang et al., 2017). UAV 
sensing platforms developed for agriculture also can used in genet-
ics, ecology, forestry, and environmental science (Carrasco-Escobar 
et al., 2019; Christie et al., 2016; Zhang et al., 2016). However, fur-
ther methodological development is necessary for their use to be-
come common in other fields of plant science (Minervini et al., 2015; 
Roth et al., 2018).

One crucial technique that remains to be addressed is the de-
velopment of individual plant phenotyping (IPP). Field experiments 
with individually grown plants are ubiquitous in basic and applied 
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Abstract
1. Recent advances in Unmanned Aerial Vehicle (UAVs) and image processing have 

made high-throughput field phenotyping possible at plot/canopy level in the mass 
grown experiment. Such techniques are now expected to be used for individual 
level phenotyping in the single grown experiment.

2. We found two main challenges of phenotyping individual plants in the single 
grown experiment: plant segmentation from weedy backgrounds and the estima-
tion of complex traits that are difficult to measure manually.

3. In this study, we proposed a methodological framework for field-based individual 
plant phenotyping by UAV. Two contributions, which are weed elimination for in-
dividual plant segmentation, and complex traits (volume and outline) extraction, 
have been developed. The framework demonstrated its utility in the phenotyp-
ing of Helianthus tuberosus (Jerusalem artichoke), an herbaceous perennial plant 
species.

4. The proposed framework can be applied to either small and large scale phenotyp-
ing experiments.
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plant science, such as typical garden experiments in ecological and 
evolutionary studies, tree breeding, vegetable cultivation. To date, 
UAV sensing has focused mainly on the measurement of plant traits 
as the values of group or plot units of mass grown plants, such as 
wheat, rice, and maize. On the other hand, little efforts have been 
made toward UAV sensing for traits of individually grown plants. 
Individual data provided by IPP will broaden the application of 
UAV-based phenotyping for several reasons. First, data on indi-
vidual plants allow us to examine variations within a group or plot. 
Whereas measurement in a group or plot unit usually provides an 
average trait value, IPP provides the traits of all individuals and 
can show trait variations. Compared with genetically uniform 
crops, wild plants show large genetic variation among individuals, 
so it is essential to capture the individual variations in phenotyp-
ing studies of wild plants or genetically diverse crops. Second, IPP 
might be able to test plant-plant interactions in field conditions. 
Plants can influence each other either negatively (through compe-
tition) or positively (through facilitation). By monitoring temporal 
changes in individual growth by UAV-based IPP, we might capture 
the large-scale dynamics of plant interactions in field conditions. 
Thirdly, by combining with local environmental data collected by 
field Internet of things (IOT) devices, UAV-based IPP can be a 
novel tool to examine fine-scale genotype-environment interac-
tions of individual plants in the field. However, despite these great 
potential contributions of UAV-based IPP to plant research, few 
attempts have been made to develop IPP, except for several stud-
ies of individual tree phenotyping (mostly focusing on tree height) 
(Díaz-Varela et al., 2015; Fujimoto et al., 2019; Mu et al., 2018; 
Zarco-Tejada et al., 2014).

One of the challenges for IPP under field conditions is the seg-
mentation of individual plants from weedy backgrounds in image 
analysis. For instance, the experiment that grows single plants at a 
relatively low density in the field can promote the germination and 
growth of weeds. Even those small and low-density weeds are not to 
impede the development of the focal species, because their textural 
and reflectance properties are often similar, it becomes a significant 
technical problem when segmenting the boundaries of each plant 
of the target species from the image. To mention, it is also not re-
alistic to remove all weeds in a large-scale field experiment manu-
ally. Therefore, to develop UAV-based IPP, it is necessary to devise a 
technique to segment each plant of the target species, even among 
weeds.

Here, we present a methodological framework for UAV-based 
IPP and demonstrate its utility in the phenotyping of Helianthus 
tuberosus L. (Jerusalem artichoke), an herbaceous perennial plant 
species. First, we developed a WEIPS (weed elimination for individ-
ual plant segmentation) method to segment each plant of the focal 
species in images with weeds. To evaluate its reliability, we com-
pared areas of individual plants segmented by WEIPS with those 
delineated manually. Second, we tested the versatility of our frame-
work by comparing individual plant heights estimated from images 
taken with those measured by hand. Finally, we illustrate the broader 

application of our framework by showing that it detects significant 
phenotypic variations among source populations of Helianthus tu-
berosus in various traits that are difficult to measure manually and 
requires extensive labors, such as height, volume, and outline.

2  | MATERIAL S AND METHODS

2.1 | Growth and measurement of Helianthus 
tuberosus

Helianthus tuberosus L. (Jerusalem artichoke) is native to North 
America (Swanton et al., 1992). Because it produces large quantities 
of edible tubers, H. tuberosus was an essential crop for native North 
Americans before European contact (Kays & Nottingham, 2007). 
The species has only been weakly domesticated, so high levels of 
genetic diversity exist among individuals and populations in physi-
ological, morphological, and life-history traits (Kays & Kultur, 2005; 
Puttha et al., 2012; Swanton et al., 1992). Also, it has become natu-
ralized and invasive in many regions of the world (Tesio et al., 2012; 
Weber & Gut, 2004).

We purchased seed tubers of H. tuberosus from three private 
farms in Tochigi, Chiba, and Gunma prefectures, Japan. Because 
these farms are at least 80 km apart from each other, we treated 
the plants from each farm as a distinct population. The seed tu-
bers were divided and planted into individual nursery pots (6 cm in 
diameter; 0.3 L volume) in a commercial soil mixture (Golden; Iris 
Ohyama Co.). Total sixty germinated sprouts were transplanted in 
random order 1 m apart into three-row plots in a crop field at the 
Institute for Sustainable Agro-Ecosystem Services of the University 
of Tokyo (35°44′03″N, 139°32′22″E) on 28 April 2017. The rows 
were covered with plastic mulch film (60 cm width). Because this ex-
periment had different research purposes, some plants were paired 
or grouped, but these plants did not affect the growth of focal indi-
viduals grown singly and were omitted from the subsequent analy-
ses. For more details, see our previous study (Fukano et al., 2019). 
We measured individual height and stem diameter five times during 
plant development (13 May, 1, 13, 30 June, and 14 July) by using 
ruler and caliper, respectively.

2.2 | Imaging by UAV

A low-cost commercial UAV (DJI Inspire 1, DJI) with a built-in cam-
era (Zenmuse X5 Pro; 17.3 mm × 13.0 mm CMOS, 4,608 × 3,456 
pixels; 16 MB with JPEG format) was flown over the field along a 
predesigned waypoint mission controlled by a commercial mobile 
phone application (Litch; VC Technology Ltd.). The waypoint mis-
sion plotted a double-grid at an altitude of 15 m, a cruising speed 
of 2.5 m/s, camera looking downward, a >90% overlap of pho-
tographs to the front and sides, and an average ground sampling 
distance (GSD) of ~4 mm/pixel. Six ground control points (GCPs) 
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made by acrylic plates were placed evenly (four corners and two 
nearly central) on the field and measured by Hemisphere RTK dif-
ferential GNSS devices (Hemisphere GNSS). The point cloud was 
georeferenced by using a combination of direct georeferencing 
and the six GCPs. The mean root mean square of each computed 
GCP was 8.5 mm in the x-direction, 16.4 mm in the y-direction, and 
20.1 mm in the z-direction. UAV flight campaigns were conducted 
nine times during plant development (16, 31 May, 4, 12, 16, 29 
June, 3, 7, 10 July).

2.3 | Three-dimensional reconstruction and plot 
segmentation

From a set of multi-view two-dimensional images, canopy archi-
tectures were reconstructed as point cloud data by Structure 

from Motion (SfM) and Multi-View Stereo (MVS) algorithms in 
Pix4Dmapper software (Pix4D SA). SfM is a photogrammetric tech-
nique used to simultaneously estimate the depth of corresponding 
points and camera position and direction from a set of multi-view 
images. First, corresponding points among images are detected 
based on local features (e.g., SIFT, ORB, AKAZE; see (Tareen & 
Saleem, 2018) for details). Second, both extrinsic camera param-
eters (i.e., position and orientation) of a pair of views and the depth 
of corresponding points are estimated simultaneously by solving 
linear equations of the relation between camera coordinate frames 
calibrated with intrinsic camera parameters (e.g., focal length and 
principal point). A sparse point cloud is obtained as a set of corre-
sponding points in three-dimensional space by successively apply-
ing this estimation procedure to arbitrary pairs of multi-view images. 
Third, several camera parameters and the point cloud are refined 
through bundle adjustment, which is a iterative optimization method 

F I G U R E  1   The whole process for 
field-based individual plant phenotyping 
by UAV. Step 1: Imaging by UAV, three-
dimensional reconstruction, and plot 
segmentation. Step 2: Weed elimination 
for individual plant segmentation (WEIPS). 
Step 3: Individual plant phenotyping

Phenotyping from 3D Phenotyping from 2D
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to solve nonlinear equation, here, subject to minimization of repro-
jection error, see (Hartley & Zisserman, 2004) for details. Finally, 
MVS generates a dense point cloud based on the set of multi-view 
images and camera parameters estimated in SfM. In our analysis, we 
used default intrinsic parameters provided by Pix4Dmapper as initial 
values. An orthomosaic image of the whole field was then gener-
ated from the Digital Surface Model (DSM) based on the dense point 
cloud (Figure 1, step 1).

We then extract the plot images manually. First, by using the 
“fishnet” function of ArcGIS 10.5 software (ESRI), a net of adjacent 
rectangular cells are generated according to user-input numbers of 
rows and columns inside the predefined field boundary. Then, the 
plot ID is semiautomatically recorded in an attribute table by the 
Field Calculator tool of ArcGIS. Finally, a shapefile that contains all 
plots information is exported to a self-developed Matlab (MATLAB v. 
R2017b, MathWorks Inc.) script to extract corresponded plot images 
from both the DSM and the orthomosaic.

2.4 | WEIPS

The image segmentation process is needed to extract individual 
plants from plot images. In most cases, images are segmented by 
color on account of a large contrast between plants and bare soil 
(Fan et al., 2018; Guo et al., 2013, 2017). However, if the background 
includes objects with similar colors, such as weeds, further process-
ing is needed. Therefore, researchers proposed several methods to 
distinguish weeds from the plant. For example, the use of a specific 
camera that can provide more spectral information; the use of com-
plex algorithms such as machine learning with the manual selec-
tion of features and models, deep learning with the manual labeled 
training data (Chandra et al., 2020; Guo et al., 2018; Pérez-Ortiz 
et al., 2015; Sa et al., 2017, 2018; Yu et al., 2019). Here, relying on 
the height of H. tuberosus, we propose the simple WEIPS method 
to segment plants from weeds. The core conception of WEIPS is 
segmentation by both color and height (Figure 1, step 2). In paral-
lel, the segmented plot images from orthomosaic are processed by 
a machine-learning-based color pixel segmentation method, and the 
segmented plot images from DSM are processed by adaptive thresh-
olding of height. Both methods extract a fixed polygon mask that 
indicates the candidate region. The masks are combined to render 
an individual plant without weeds.

2.5 | Individual plant phenotyping

Several phenotypic traits are extracted from the segmented in-
dividual plants. The cover area, major and minor axis lengths, ec-
centricity, orientation, convex area, filled area, equivalent diameter, 
solidity, extent, perimeter, and roundness can be easily calculated by 
MATLAB function “regionprops” (Figure 1, step 3). The height, vol-
ume, and outline are computed from the corresponded segmented 
DSM as following algorithms.

2.5.1 | Height

Plant height is calculated as the difference between the plant bound-
ary and the ground level subtracted from the DSM (Hu et al., 2018; 
Watanabe et al., 2017). We used ground elevations generated from 
the first flight as the reference (Er). For each flight, the 99th per-
centile of DSM value of the plant region is extracted according to 
the result of WEIPS (Epi). The plant height for the ith flight (Hpi) is 
defined as:

2.5.2 | Volume

Plant volume is approximated as the sum of height × area of all pixels 
at the plant base:

where f
(

�i, �i
)

 is the height of approximated cylinder cube, Δσi is the 
area of pixel i, and n = the number of plant pixels acquired by WEIPS.

2.5.3 | Outline

We defined the canopy outline as the upper boundary of the pro-
jected DSM along a planting line (Figure 2b,c). Here, the upper 
boundary is represented as a vector in which elements are the 99th 
percentile of height values of projected points derived from the 
DSM. The bin width of each element was 0.375 cm and the num-
ber of elements (i.e., size of vector) was 433. The dissimilarity be-
tween arbitrary two outlines is calculated as the minimum distance 
between two vectors in which both sliding and horizontal flipping 
are allowed. In other words, we compared among canopy outlines in 
terms of form, which is the geometric invariant of both translation 
and rotation. Here, n-sliding was defined as an operation to append 
n elements of 0 to the head of the vector and delete tail n elements 
when n is less than 0 and to append n elements of 0 to the tail and 
delete n head elements when n is greater than 0. Horizontal mirror-
flip is defined as an operation to reverse the order of elements. In 
this study, we calculated the dissimilarity among all pairs of outlines 
with allowing up to 108-sliding and horizontal flipping.

2.6 | Statistical analyses

To validate the WEIPS method, we examined the correlation be-
tween the canopy coverage rate and the height of individual plants 
segmented by WEIPS and those manually segmented by author YF, 
using Pearson's correlation analysis, for each of five measurement 
dates.

To illustrate the utility of our framework in-field phenotyping, we 
examined the phenotypic variations among the three H. tuberosus 

Hpi=Epi−Er

Vol≈
∑n

i=1
f
(

�i, �i
)

Δ�i
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populations in various traits estimated from UAV imaging (Figure 1) 
and measured manually (height and stem diameter). The trait values 
were treated as response variables, and the source populations and 
planting row were treated as explanatory variables. All trait values 
were fitted to generalized linear models with a Gaussian distribu-
tion. Likelihood ratio tests were used to evaluate the significance 
of the explanatory variables, excluding the outline. For outline, 
permutational multivariate analysis of variance (PERMANOVA; 
Anderson, 2001; Mcardle et al., 2001) was conducted to evaluate 
the effect among a population by using the pairwise Adonis package 
(Martinez, 2020) in the R language (R Core Team, 2020) because only 
dissimilarities could be calculated.

3  | RESULTS

3.1 | Development of framework for UAV-based IPP

We developed an easy-to-use framework for UAV-based IPP 
(Figure 1) that requires only a commercial-level UAV as hardware, 
and all processes are easy to implement.

3.2 | Comparison between WEIPS method and 
manual segmentation

We developed a novel technique, WEIPS, to eliminate weeds from 
UAV images by combining color-based segmentation and adap-
tive thresholding-based segmentation. The performance of WEIPS 
has been evaluated by Qseg, which is a well-known measurements 
of vegetation segmentation method (Guo et al., 2013; Meyer & 
Neto, 2008). Qseg is defined as below:

where A is the set of the vegetation pixels (v = 255) or background 
pixels (v = 0) identified by a classification model, B is a reference set 
of manually segmented vegetation pixels (v = 255) or background 
pixels (v = 0), m and n are the image row and column sizes, and i, j 
are the pixel coordinate indices of the images. The more consistent 
pixels between A and B, the values become the larger ranging from 
0 to 1. Namely, the higher the value, the more accurate the segmen-
tation is.

Qseg=

∑i=m

i=0

∑j=n

j=0

�

A(v)i,j∩B(v)i,j
�

∑i=m

i=0

∑j=n

j=0

�

A(v)i,j∪B(v)i,j
�

F I G U R E  2   Modeling of outlines and 
variation among source populations. (a) 
The top view of DSM for an individual 
plant. (b) Green surface, blue dots, and red 
dots represent original DSM, projected 
DSM along a ridge, and the canopy outline 
as the upper boundary of the projected 
DSM. (c) The projected DSM on the 2D 
plane which perpendicular to the ridge. 
(d–f) Representative outline forms of 
three cultivars (C, G, T)

(a) (b) (c)

(f)(d) (e)

Pop. 1 Pop. 2 Pop. 3
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The WEIPS method correctly (Qseg = 0.90) separated the 
weeds from the images and segmented the individual plants 
of the focal species, except for five individuals (surrounded by 
a dotted line; Figure 3a). We found a significant but relatively 
weak correlation between the canopy cover area of individual 
plants segmented by WEIPS and those manually segmented 
(R = 0.7843, Figure 3b). The correlation was weakened by the five 
exceptions (Figure 3b, blue points). A careful check of the pho-
tographs, DSM data, and WEIPS results revealed that the failure 
to segment those five exceptions were due to the stakes used 
to support the plants. In three-dimensional reconstruction, the 
point cloud data of the five plants included the structure of the 
stakes, which caused the overestimation of plant height and re-
sulted in an inadequate threshold for the segmentation. When 
we excluded the five individuals from the analysis, the correla-
tion between WEIPS and manual segmentation became stronger 
(R = 0.9472, Figure 3c).

3.3 | Comparison between estimated and 
measured heights

There were significant correlations between plant height estimated 
from the UAV images and that measured by hand on all measure-
ment dates (p < .001 for all dates, Figure 4). The correlations were 
relatively high (R2 ≈ 0.85) except on 12 June (R2 = 0.47).

3.4 | Phenotypic variation among source 
populations

The results of all statistical tests are shown in Tables S1 and S2. 
We detected significant variations among the source populations 
in several traits estimated by UAV-based IPP. For example, for the 
data obtained from 16 May, minor axis length, height, and volume 
differed significantly among populations (p = .0053, <.001, <.001, 

F I G U R E  3   Performance of WEIPS. (a) 
The final segmentation of all individuals 
by WEIPS. Each individual is shown 
as a pair of images, the images on the 
left (with background) are the original 
images cropped from orthomosaic, the 
images on the right are the extracted 
individual plants. Only five plants (boxed 
with dashed red lines) were poorly 
segmented. (b) Correlation between the 
canopy coverage rate of individual plants 
segmented by WEIPS and that of plants 
segmented by hand. Blue dots mark the 
five exceptions. (c) Correlation between 
the canopy coverage rate of individual 
plants segmented by WEIPS and that of 
plants segmented by hand after removal 
of the five exceptions
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respectively). Other traits did not differ among populations. The 
outline differed between population 1 and 2 and population 1 and 3 
(p = .014 and <.001, respectively) but not differed between popula-
tion 1 and 2 (p = .084).

4  | DISCUSSION

We propose a new methodological framework for UAV-based IPP. 
Overall, it successfully captured a range of individual traits, includ-
ing height, volume, cover area, and outline, of field-grown H. tu-
berosus in the presence of weeds. The WEIPS method achieved 
high-accuracy segmentation of the focal plants from images with 
weeds (Figure 3c). The estimated individual plant heights showed 
consistently high correlation with the measured heights except on 
one of five measurement days (Figure 4). The framework detected 
temporal changes in phenotypic variations among populations of 
H. tuberosus in various traits that are difficult to measure manually 
and require extensive labors, such as height, volume, and outline 
(Figure 2). We believe that this noninvasive, cost-effective, labor-
saving framework can become a standard method for individual 
phenotyping of field-grown plants.

The framework will shed new light on and improve research ef-
ficiency in both basic and applied plant biology. Its most remarkable 
feature is that it can estimate several shape-related traits that are 
difficult to measure manually (e.g., outline of aboveground parts and 
roundness). The ecological and evolutionary relevance of individual 
plant shape has received relatively little attention, probably owing 
to difficulties in noninvasive measurement. By using this framework, 
we might be able to examine which ecological and evolutionary fac-
tors influence the aboveground plant shape in field conditions. The 
framework can be easily applied to phenotyping in typical garden 
experiments, which is a classical approach to quantifying geneti-
cally based phenotypic differentiation among populations (Colautti 
et al., 2009). Because the UAV-based IPP saves labor, the use of the 
framework will improve research efficiency significantly. Recent 
studies have developed methods for automatically detecting crop 
head/flowering in time-series RGB images (Desai et al., 2019; Ghosal 
et al., 2019; Guo et al., 2018). By combining these methods and UAV-
based IPP, we can quantify the dynamics and interactions between 
aboveground morphological traits and phenological traits under 
field conditions.

In the applied plant sciences, our framework is handy for large-
scale and long-term phenotyping of vegetable species and tree 
seedlings, which are grown individually. Large-scale individual phe-
notyping will accelerate the breeding process, especially in geneti-
cally diverse crops such as H. tuberosus. Furthermore, by combining 
environmental data sensed by the field IOT platform, we can exam-
ine fine-scale genotype–environment interactions and learn how 
micro-environmental variations affect the growth and yield of indi-
vidual crop plants.

While our results demonstrate the utility of our framework for 
UAV-based IPP, they also demonstrate the limitations in fieldwork. 
First, plant stakes caused the overestimation of plant height, com-
promising the threshold level for segmentation. Thus, for UAV-
based phenotyping, we suggest removing other artifacts as well 
as GCPs from the imagery. Second, on one of five days on which 
plant height was measured, the correlation between the height 
estimated by the proposed framework and the height measured 
manually was low. Although we could not determine the reason, 
microclimate conditions such as wind disturbance might reduce 
the resolution of the point cloud (Table S3). Third, the proposed 
WEIPS relays on the height difference between plants and weeds. 
If the weeds (or another plant) are of the same height to the plant 
and overlapped, it will not work correctly. To further extend this 
framework to phenotyping of other types of plants, we need to 
handle these limitations.
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