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What are Moonlighting Proteins?

Moonlighting proteins comprise a class of multifunctional proteins in which a single protein
performs multiple physiologically relevant biochemical or biophysical functions that are not due to
gene fusions, multiple RNA splice variants, or pleiotropic effects (Jeffery, 1999). Classic examples
include soluble enzymes that also bind to DNA or RNA to regulate translation or transcription
(Figure 1A) (reviewed in Commichau and Stulke, 2008) or have a second function as structural
proteins in the lens of the eye (crystallins) (Figure 1B) (Wistow and Piatigorsky, 1987; Piatigorsky
and Wistow, 1989). Other typical examples are cytosolic enzymes that moonlight as cytokines,
chaperones, cytoskeletal components, DNA compactors, adhesins or scaffolds, as well as a chloride
transporter that regulates the function of another transmembrane channel, ribosomal proteins
that double as translation factors, and a DNA binding protein that becomes a component of
the extracellular matrix (for reviews see Nobeli et al., 1996; Jeffery, 2003a,b, 2009, submitted;
Piatigorsky, 2007; Gancedo and Flores, 2008; Huberts and van der Klei, 2010; Henderson and
Martin, 2011, 2013; Guo and Schimmel, 2013). Moonlighting proteins are found in mammals,
yeast, worms, bacteria, plants, viruses, archea and many other organisms. The online MoonProt
Database, which includes information about those moonlighting proteins for which biochemical or
biophysical evidence supports the presence of at least two biochemical functions in one polypeptide
chain, includes over 270 proteins (Mani et al., 2015). It is likely that many other proteins also have
additional functions that have not yet been found. In this opinion piece, I argue that there are
currently many reasons for studying moonlighting proteins.

Many Moonlighting Proteins are Involved in Disease

A growing number of moonlighting proteins have been found to play key roles in disease, but there
is space to mention only a few examples here. Phosphoglucose isomerase, an enzyme in glycolysis,
is also a cytokine (autocrine motility factor) that plays a role in breast cancer metastasis (Watanabe
et al., 1991). Alcohol acetaldehyde dehydrogenase/Listeria adhesion protein (LAP) enables Listeria
monocytogenes to bind to intestinal epithelial cells and aids in infection (Jagadeesan et al., 2010).
Enolase (Knaust et al., 2007; Agarwal et al., 2008; Castaldo et al., 2009), phosphoglycerate kinase
(Boone et al., 2011; Fulde et al., 2013), and glyceraldehyde 3-phosphate dehydrogenase (Pancholi
and Fischetti, 1992; Seifert et al., 2003; Bergmann et al., 2004; Jobin et al., 2004; Barbosa et al.,
2006; Hurmalainen et al., 2007; Matta et al., 2010) are cytosolic enzymes that have a second role in
pathogenic bacteria as a cell surface receptor for collagen, fibronectin, or plasminogen (Figure 1C).
Adhesion of the pathogen to the host by binding to collagen and fibronectin, components of
the host extracellular matrix, aid in colonization of the host. Binding to plasminogen enables its
conversion to the active protease plasmin, which is used to degrade host proteins and aid in tissue
invasion. In general, these cytoplasmic/cell surface moonlighting proteins can be important in
infection, virulence, or immune responses, and some can be potential vaccination targets. Two
papers in this Research Topic discuss additional examples of moonlighting proteins involved in
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FIGURE 1 | Cartoons illustrating how a protein can moonlight. A

protein can catalyze an enzymatic reaction and also (A) bind to DNA

and serve as a transcription factor, (B) have a noncatalytic role in the

lens of the eye (crystallins), or (C) be placed on the surface of a cell

to function as a receptor. Another type of moonlighting is illustrated in

(D) where an active site undergoes significant remodeling, or

movement of loops (marked by * and #) to bring in different catalytic

amino acids to perform different two different catalytic functions.

(D) made Using Coot (Emsley et al., 2010) and PDB IDs 3T2B,

3T2C, 3T2D, and 3T2E.

disease and how they can be targets for the development of novel
therapeutics (Rasch et al., 2015; Henderson and Kaiser, in press).

Identifying Novel Biochemical Pathways

The growing number of intracellular enzymes or chaperones that
are being found to moonlight on the cell surface raises several
questions. How do intracellular/cell surface proteins get secreted?
How do they become attached to the cell surface? In addition
to the well-known Sec pathway, there are several non-canonical
secretion pathways, but a secretion method in which a large
portion of each protein remains inside the cell while some of it
is partitioned to the cell surface has not been identified. This may
involve a novel variation of a known secretion pathway or an as
yet unknown secretion pathway. In addition, these moonlighting
proteins do not contain known signals for attaching to the cell
surface. Again, this could involve a new version of a known
mechanism or an as yet unknown mechanism for cell surface
attachment. With the increasing problem of antibiotic resistance,
finding a method to inhibit the targeting of these proteins to
the pathogen surface might lead to an alternative method to
decrease the ability of bacteria to bind to and degrade host tissues.
Understanding more about these cellular processes, whether a
new variation of a known process or a completely new process,
could provide new target(s) for developing therapeutics to treat
infections. Similarly, the study of other moonlighting proteins
could lead to the identification of additional previously unknown
cellular processes.

Importance for Systems Biology

Some moonlighting proteins serve as a connection between
multiple biochemical pathways or a switch between pathways,
and help the cell to respond to changes in its environment. Many

biosynthetic enzymes moonlight as regulators of transcription
or translation and serve as a feedback mechanism to regulate
the amount of enzyme synthesized in a biochemical pathway
in response to changes in the cellular concentration of a
product of the pathway. For example, thymidylate synthase is
also an RNA binding protein (Chu et al., 1991), and E. coli
putA is also a DNA binding transcriptional repressor (Wood,
1981; Ostrovsky de Spicer et al., 1991; Ostrovsky de Spicer
and Maloy, 1993). Other moonlighting proteins provide a
mechanism to switch between biochemical pathways in response
to changing cellular conditions. Aconitase/IRE binding protein
helps the cell respond to changes in cellular iron concentration
(Kennedy et al., 1992; Philpott et al., 1994; Chen et al., 2005;
Banerjee et al., 2007). Studies of the structures and functions
of moonlighting proteins like these can help elucidate how
proteins switch activities in response to changes within or
surrounding the cell, whether it’s due to changes in pH, substrate
availability, cellular concentrations of metal ions, or other
factors.

Novel Mechanisms of Protein Function

Studies of the structures and functions of some moonlighting
proteins have already added to our knowledge of the diverse
mechanisms by which a protein can perform multiple functions
and how protein structure can change in response to changes in
its environment (examples in Jeffery, 2004a,b). The results of two
recent studies illustrate the sometimes drastic conformational
changes that proteins can undergo and add to our understanding
of protein structure and function in general.

Two thermophilic fructose-1,6-bisphosphate aldolase/
phosphatase enzymes use a single active site pocket to catalyze
two reactions in gluconeogenesis, an aldol condensation of
dihydroxyacetone phosphate and glyceraldehyde 3-phosphate
and dephosphorylation of fructose 1,6-bisphosphate (Du et al.,
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2011; Fushinobu et al., 2011). Three loops move into and out of
the active site bringing in a different set of catalytic amino acids,
and altering the binding of several active site metal ions, in order
to bind the second substrate and perform the second catalysis
(Figure 1D).

RfaH is a transcription factor that interacts with RNA
polymerase (RNAP) to reduce pausing and increase processivity,
and it is also a translation factor. In order to perform the second
task, its C-terminal domain (CTD) undergoes complete refolding
(Schweimer et al., 2012). In an all-alpha conformation, the CTD
masks the RNAP binding surface on the N-terminal domain
(NTD) until the NTD binds specific operons in DNA. Then the
CTD is released from the NTD and surface of the NTD can bind
to RNAP. The CTD then refolds into an all-beta conformation
and recruits ribosomes by binding to the ribosomal S10 protein,
to potentiate translation of RfaH-controlled operons, which
contain weak ribosome binding sites.

In addition, an increasing number of intrinsically disordered
proteins (IDPs) and proteins with intrinsically disordered
domains have been found to be moonlighting proteins. The
functions of intrinsically disordered proteins often involve
interacting with another protein, and the disordered binding
region undergoes induced folding upon binding to the protein
partner. Some intrinsically ordered domains have different
functions by using alternate conformations to interact with
multiple protein partners (Tompa et al., 2005). In some cases,
these different binding modes and partners result in opposite
effects on a pathway, for example by activating one binding
partner but inhibiting another.

Predicting Protein Functions

Hundreds of thousands of protein sequences are available due
largely to the efforts of the genome projects. During annotation
of sequence databases, the functions of most new proteins are
predicted through amino acid sequence homology to proteins of
known function. The ability of proteins tomoonlight complicates
this procedure.

First, if a protein is homologous to a moonlighting protein,
the protein might have both, one, or none of the functions
of the moonlighting protein. For example, two versions of
aconitase are found in mammalian cells, in the cytoplasm and
the mitochondria. Both aconitases catalyze the transformation
of citrate to isocitrate in the citric acid cycle, but only
the cytoplasmic protein is also an mRNA binding protein.
The mitochondrial protein has a different second function
in mitochondrial DNA maintenance (Kennedy et al., 1992;
Philpott et al., 1994; Chen et al., 2005; Banerjee et al., 2007).
Another moonlighting protein, delta 2 crystallin in the duck eye
lens is the same protein as the ubiquitous urea cycle enzyme
arginosuccinate lyase. The duck delta 1 crystallin, which has 89%
amino acid sequence identity to the delta 2 crystallin, does not
have catalytic activity (Piatigorsky et al., 1988; Barbosa et al.,
1991; Chiou et al., 1991; Graham et al., 1996; Piatigorsky and
Horwitz, 1996). Therefore, sequence homologs of moonlighting
proteins might not be moonlighting proteins, so sequence
homology alone might not be sufficient for correct prediction of
protein function.

The second complication is that it is currently unclear how
to identify all the functions of a moonlighting protein from
its sequence or structure. Many function prediction algorithms
aim to identify a single function for a protein. Three papers in
this Research Topic and another recent report have used lists
of known moonlighting proteins to test current programs and
develop novel ways of predicting multiple functions (Khan et al.,
2014; Khan and Kihara, 2014; Chapple et al., 2015; Hernández
et al., 2015; Irving et al., in press). Our MoonProt Database can
provide a test set for the further development of protein function
prediction programs (Mani et al., 2015).

Additional knowledge about which proteins have multiple
functions and roles in multiple biochemical pathways,
multiprotein complexes or signaling pathways could also
help in the prediction of protein function from comparative
expression studies, protein-protein interaction analysis, gene
knockout experiments, and other proteomics projects (Jeffery,
2014).

Evolution of Protein Function and Design
of Proteins with Novel Functions

How a second functional site evolved on a protein structure,
as well as how regulation of protein expression, activity, and
switching between functions evolved are interesting questions.
In some cases, proteins were adopted for a second use without
much change in physical features, but in other cases the
evolution of new binding sites, new conformational changes,
or other features were required. The paper by the DeLuna
group in this Research Topic describes gene duplication in
the evolution of moonlighting proteins (Espinosa-Cantu et al.,
in press).

Information about how moonlighting proteins evolved and
information about their structures and functions can also be
used to aid the design of proteins with new biochemical
functions because they serve as examples of how to start with
a stable protein fold as a scaffold and add a new functional
site. They also provide examples of combining two functional
sites in one polypeptide chain, which might be useful in the
design of multifunctional protein therapeutics (or proteins used
in manufacturing), to deliver one polypeptide drug that can
perform multiple functions with those functional sites present at
a selected stoichiometry.

Summary

The examples above illustrate just some of the ways in
which the continuing study of moonlighting proteins is
important: developing novel therapeutics, identifying previously
unknown cellular processes, elucidating the connections
among biochemical pathways, understanding novel protein
mechanisms, improving the prediction of protein functions, and
providing information about the evolution of protein structure
and function as well as examples for the design of new proteins.
The references listed above and especially the collection of papers
in this Research Topic are recommended for providing more
in-depth examples and analysis of these topics.
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