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Abstract: Background and Objectives: Despite the association between hyperchloremia and adverse
outcomes, mortality risks among patients with hyperchloremia have not consistently been observed
among all studies with different patient populations with hyperchloremia. The objective of this
study was to characterize hyperchloremic patients at hospital admission into clusters using an
unsupervised machine learning approach and to evaluate the mortality risk among these distinct
clusters. Materials and Methods: We performed consensus cluster analysis based on demographic
information, principal diagnoses, comorbidities, and laboratory data among 11,394 hospitalized
adult patients with admission serum chloride of >108 mEq/L. We calculated the standardized mean
difference of each variable to identify each cluster’s key features. We assessed the association of
each hyperchloremia cluster with hospital and one-year mortality. Results: There were three distinct
clusters of patients with admission hyperchloremia: 3237 (28%), 4059 (36%), and 4098 (36%) patients
in clusters 1 through 3, respectively. Cluster 1 was characterized by higher serum chloride but lower
serum sodium, bicarbonate, hemoglobin, and albumin. Cluster 2 was characterized by younger
age, lower comorbidity score, lower serum chloride, and higher estimated glomerular filtration
(eGFR), hemoglobin, and albumin. Cluster 3 was characterized by older age, higher comorbidity
score, higher serum sodium, potassium, and lower eGFR. Compared with cluster 2, odds ratios for
hospital mortality were 3.60 (95% CI 2.33–5.56) for cluster 1, and 4.83 (95% CI 3.21–7.28) for cluster
3, whereas hazard ratios for one-year mortality were 4.49 (95% CI 3.53–5.70) for cluster 1 and 6.96
(95% CI 5.56–8.72) for cluster 3. Conclusions: Our cluster analysis identified three clinically distinct
phenotypes with differing mortality risks in hospitalized patients with admission hyperchloremia.

Keywords: hyperchloremia; chloride; artificial intelligence; clustering; mortality; machine learn-
ing; hospitalization
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1. Introduction

Chloride constitutes 70% of the anions of the human body [1]. While chloride is
distributed among various fluid compartments, it is abundant in the extracellular fluid,
including plasma and interstitial fluid [2]. Chloride plays a vital role in sustaining osmo-
larity, electro-neutrality, and acid–base balance [2,3]. Hyperchloremia, defined as plasma
chloride >108 mEq/L [3,4], is a common electrolyte disturbance with a prevalence of 15%
on hospital admission [3]. This condition has increasingly been recognized as studies
have demonstrated associations of hyperchloremia with decreased renal blood flow [5,6],
increased interstitial edema [7], and poor clinical outcomes [8–10].

Patients with hyperchloremia are heterogeneous [11]. There are a different group of
clinical conditions that can cause hyperchloremia, including excessive chloride adminis-
tration (such as 0.9% NaCl solution), water depletion over chloride loss (such as osmotic
diuresis), and normal anion gap metabolic acidosis (such as diarrhea and renal tubular
acidosis (RTA)) [12]. While hyperchloremia is associated with poor clinical outcomes [8–10],
the association between hyperchloremia and mortality has not been consistently observed
among all studies with different patient populations with hyperchloremia [2,9,13–22].
Thus, identifying distinct phenotypes of hyperchloremia may help identify subgroups of
hyperchloremic patients who carry an increased risk of mortality.

Machine learning (ML) algorithms have recently been introduced to healthcare and
are promising for identifying patterns that might not be discoverable using traditional
statistical practices [23–30]. Among heterogeneous groups of patients, unsupervised ML
clustering algorithms can be utilized to identify similarities in the patients’ characteristics,
group similar data points together, and provide insight into underlying patterns of different
patient groups [31–33]. Thus, in this study, we utilized an unsupervised ML clustering
approach to identify the clusters of hospitalized patients with admission hyperchloremia
and to evaluate mortality risk among these distinct clusters.

2. Materials and Methods
2.1. Patient Population

The Mayo Clinic Institutional Review Board approved this study. Adult patients
(age ≥18 years) admitted at Mayo Clinic Hospital, Rochester, Minnesota, USA, from
January 2011 to December 2013 were reviewed. The inclusion criterion was the presence
of hyperchloremia, defined as serum chloride ≥108 mEq/L, at hospital admission. We
excluded patients with (1) lack of serum chloride measurement within 24 h of hospital
admission and (2) no authorization for research use.

2.2. Data Collection

Pertinent demographic information, principal diagnoses, comorbidities, and labo-
ratory data were abstracted from our hospital’s electronic database using a previously
validated method [3,4]. Data for cluster analysis were restricted to within 24 h of hospital
admission because the study aimed to cluster hyperchloremic patients based on admission
information. The first laboratory value in each 24-hour time frame was used when there
were multiple available values. Variables with over 20% missing data were excluded. If a
variable had missing data less than 20%, missing data were imputed using a random forest
multiple imputation approach before entering cluster analysis.

2.3. Clustering Analysis

An unsupervised ML with a consensus clustering approach was applied to develop
clinical phenotypes of hyperchloremic patients [34]. A pre-specified subsampling parame-
ter of 80% with 100 iterations and the number of potential clusters (k) ranging from 2 to 10
were used to avoid producing an excessive number of clusters that would not be clinically
useful. The optimal number of clusters was determined by examining the consensus
matrix (CM) heat map, cumulative distribution function (CDF), cluster-consensus plots
with the within-cluster consensus scores, and the proportion of ambiguously clustered
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pairs (PAC). The within-cluster consensus score, ranging between 0 and 1, was defined as
the average consensus value for all pairs of individuals belonging to the same cluster [35].
A value closer to one indicated better cluster stability. PAC, ranging between 0 and 1, was
calculated as the proportion of all sample pairs with consensus values falling within the
predetermined boundaries [36]. A value closer to zero indicated better cluster stability [36].
The PAC was calculated using two criteria: 1) the strict criterion, consisting of a prede-
termined boundary of (0, 1), where a pair of individuals who had a consensus value >0
or <1 was considered ambiguously clustered, and 2) the relaxed criterion, consisting of a
predetermined boundary of (0.1, 0.9), where a pair of individuals who had consensus value
>0.1 or <0.9 was considered ambiguously clustered [36]. The detailed consensus cluster
algorithms used in this study for reproducibility are provided in Online Supplement.

2.4. Statistical Analysis

After hyperchloremia was clustered, subsequent analyses focused on characterizing
differences in characteristics and outcomes among the identified clusters. Clinical char-
acteristics were compared among the clusters using analysis of variance (ANOVA) for
continuous variables and the chi-squared test for categorical variables. To explore the key
features of each cluster, the standardized mean differences of clinically relevant and readily
available characteristics were calculated between each cluster and the overall population.
Variables with an absolute standardized mean difference of >0.3 were considered as key
features for each cluster. Hospital mortality and one-year mortality were compared among
the clusters. The odds ratios for hospital mortality of clusters were obtained using logistic
regression. The hazard ratio for one-year mortality in each cluster was calculated using Cox
proportional hazard regression. We used cluster 2 as the reference group, as this cluster
had the lowest mortality risk. Between-group differences in clinical characteristics were not
adjusted because these variables were used to cluster hyperchloremia patients through an
unsupervised consensus clustering approach. All analyses were performed using R, version
4.0.3 (RStudio, Inc., Boston, MA, USA; 2005. Available from: http://www.rstudio.com/, ac-
cessed on 21 July 2021), with ConsensusClusterPlus package (version 1.46.0) for consensus
clustering analysis, and the missForest package for missing data imputation.

3. Results

Of 76,696 adult patients admitted to the hospital from 2011 to 2013, 11,394 (15%)
were hyperchloremic (serum chloride > 108 mEq/L) at hospital admission. The mean age
(SD) was 61 (18) years, and 50% were male. The mean admission serum chloride was
110 (3) mEq/L.

The CDF plot displays consensus distributions for each k (Figure 1A). The delta
area plot shows the relative change in the area under the CDF curve (Figure 1B). The
largest changes in the area occurred between k = 3 and k = 5, at which point the relative
increase in the area became noticeably smaller. As shown in the CM heatmap (Figure 2,
Supplementary Figures S1–S9), the ML algorithm identified cluster 2 and cluster 3 with clear
boundaries, indicating good cluster stability over repeated iterations. The mean cluster
consensus score was comparable between the scenario of two and three clusters (Figure 3A).
Cluster 3 had favorably lower PACs for both relaxed and strict criteria than cluster 2
(Figure 3B), demonstrating that cluster 3 was a less ambiguous cluster compared with
cluster 2. Thus, using baseline variables at hospital admission, the consensus clustering
analysis identified three clusters that best represented the data pattern of hospitalized
patients with hyperchloremia on admission.

http://www.rstudio.com/
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Figure 1. (A) CDF plot displaying consensus distributions for each k; (B) Delta area plot reflecting the relative changes 
in the area under the CDF curve. 

Figure 1. (A) CDF plot displaying consensus distributions for each k; (B) Delta area plot reflecting the relative changes in
the area under the CDF curve.
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higher serum chloride but lower serum sodium, bicarbonate, and anion gap (AG) and 
strong ion difference (SID), hemoglobin, and albumin. Cluster 2 had younger age, lower 
comorbidity score, lower serum chloride, and higher estimated glomerular filtration 
(eGFR), hemoglobin, and albumin. Cluster 3 had older age; higher comorbidity score, par-
ticularly diabetes mellitus; higher serum sodium, potassium, AG, SID; and lower eGFR. 

Figure 3. (A)The bar plot represents the mean consensus score for different numbers of clusters (k ranges from two to ten);
(B) The PAC values assess ambiguously clustered pairs.

Cluster 1 included 3237 (28%) patients, cluster 2 consisted of 4059 (36%) patients,
and cluster 3 had 4098 (36%) patients. Table 1 demonstrates the clinical characteristics
of the three identified clusters. Although the distribution of all clinical characteristics
significantly differed among the three clusters, some characteristics were considered key
features of each cluster with a standardized mean difference of >0.3 (Figure 4). Cluster
1 had higher serum chloride but lower serum sodium, bicarbonate, and anion gap (AG)
and strong ion difference (SID), hemoglobin, and albumin. Cluster 2 had younger age,
lower comorbidity score, lower serum chloride, and higher estimated glomerular filtration
(eGFR), hemoglobin, and albumin. Cluster 3 had older age; higher comorbidity score,
particularly diabetes mellitus; higher serum sodium, potassium, AG, SID; and lower eGFR.
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Table 1. Clinical characteristics according to the distinct clusters of hyperchloremia patients.

Patient
Characteristics

Overall
(n = 11,394)

Cluster 1
(n = 3237)

Cluster 2
(n = 4059)

Cluster 3
(n = 4098) p-Value

Age (years) 60.8 (17.9) 61.3 (15.9) 48.9 (16.5) 72.3 (12.3) <0.001

Male sex 5706 (50) 1446 (45) 2047 (50) 2213 (54) <0.001

Race

<0.001
- White 10,528 (92) 2944 (91) 3668 (90) 3916 (96)
- Black 191 (2) 56 (2) 94 (2) 41 (1)
- Others 675 (6) 237 (7) 297 (7) 141 (3)

BMI (kg/m2) 29.0 (6.8) 28.4 (6.6) 28.7 (6.7) 29.7 (6.9) <0.001

Principal diagnosis

<0.001

- Cardiovascular 3750 (33) 1192 (37) 1094 (27) 1464 (36)
- En-
docrine/metabolic 195 (2) 61 (2) 40 (1) 94 (2)

- Gastrointestinal 974 (9) 367 (11) 253 (6) 354 (9)
- Genitourinary 403 (4) 93 (3) 84 (2) 226 (6)
- Hematol-
ogy/oncology 1233 (11) 348 (11) 234 (6) 651 (16)

- Infectious disease 379 (3) 198 (6) 54 (1) 127 (3)
- Respiratory 243 (2) 92 (2) 72 (2) 109 (3)
- Injury/poisoning 1933 (17) 467 (14) 970 (24) 496 (12)
- Other 2284 (20) 449 (14) 1258 (31) 577 (14)

Charlson
Comorbidity Score 1.6 (2.2) 1.6 (2.0) 0.5 (1.0) 2.7 (2.6) <0.001

Comorbidities
- Coronary artery
disease 859 (8) 193 (6) 117 (3) 549 (13) <0.001

- Congestive heart
failure 785 (7) 178 (6) 122 (3) 485 (12) <0.001

- Peripheral
vascular disease 374 (3) 92 (3) 25 (1) 257 (6) <0.001

- Dementia 169 (1) 29 (1) 13 (0) 127 (3) <0.001
- Stroke 858 (8) 203 (6) 125 (3) 530 (13) <0.001
- COPD 807 (7) 244 (8) 85 (2) 478 (12) <0.001
- Diabetes mellitus 2040 (18) 586 (18) 220 (5) 1234 (30) <0.001
- Cirrhosis 347 (3) 164 (5) 47 (1) 136 (3) <0.001
- End-stage kidney
disease 378 (3) 77 (2) 11 (0) 290 (7) <0.001

Laboratory test
- eGFR
(mL/min/1.73 m2) 74 (24) 75 (21) 91 (18) 56 (20) <0.001

- Sodium (mEq/L) 141 (3) 139 (3) 141 (3) 142 (3) <0.001
- Potassium
(mEq/L) 4.2 (0.6) 4.0 (0.6) 4.1 (0.4) 4.4 (0.7) <0.001

- Chloride
(mEq/L) 110 (3) 112 (4) 109 (2) 110 (2) <0.001

- Bicarbonate
(mEq/L) 23 (3) 22 (4) 24 (3) 23 (4) <0.001

- Anion gap 8 (4) 6 (4) 8 (3) 10 (3) <0.001
- Strong ion
difference 34.8 (3.4) 31.5 (3.0) 35.6 (2.5) 36.7 (2.6) <0.001

- Hemoglobin
(g/dL) 11.5 (2.2) 10.2 (1.9) 13.2 (1.6) 10.9 (1.9) <0.001

- Albumin (g/dL) 3.5 (0.4) 3.1 (0.3) 3.8 (0.3) 3.5 (0.3) <0.001

Acute kidney
injury 1542 (14) 434 (13) 170 (4) 938 (23) <0.001
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3.60 (95% CI 2.33–5.56) in cluster 1 and 4.83 (95% CI 3.21–7.28) in cluster 3 (Table 2). Sim-
ilarly, cluster 3 had the highest one-year mortality (18.8%), followed by cluster 1 (12.5%) 
and cluster 2 (2.8%) (Figure 5B). The HRs for one-year mortality, compared with cluster 2, 
were 4.49 (95% CI 3.53–5.70) for cluster 1 and 6.96 (95% CI 5.56–8.72) for cluster 3 (Table 
2). 

Figure 4. The standardized differences across three clusters for each of the baseline parameters. The x axis is the standardized
differences value, and the y axis shows baseline parameters. The dashed vertical lines represent the standardized differences
cutoffs of <−0.3 or >0.3. Abbreviations: AKI, acute kidney injury; DM, diabetes mellitus; COPD, chronic obstructive
pulmonary disease; CVA, cerebrovascular accident; PVD, peripheral vascular disease; CHF, congestive heart failure; MI,
myocardial infarction; BMI, body mass index; Hb, hemoglobin; SID, strong ion difference; AG, anion gap; ESKD, end stage
kidney disease; HCO3, bicarbonate; Cl, chloride; K, potassium; Na, sodium; GFR, glomerular filtration rate; RS, respiratory
system; ID, infectious disease; GI, gastrointestinal.

Cluster 3 had the highest hospital mortality (3.3%), followed by cluster 1 (2.4%) and
cluster 2 (0.7%) (Figure 5A). The ORs for hospital mortality, compared with cluster 2,
were 3.60 (95% CI 2.33–5.56) in cluster 1 and 4.83 (95% CI 3.21–7.28) in cluster 3 (Table 2).
Similarly, cluster 3 had the highest one-year mortality (18.8%), followed by cluster 1 (12.5%)
and cluster 2 (2.8%) (Figure 5B). The HRs for one-year mortality, compared with cluster 2,
were 4.49 (95% CI 3.53–5.70) for cluster 1 and 6.96 (95% CI 5.56–8.72) for cluster 3 (Table 2).
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Figure 5. (A) Hospital mortality among different clusters of admission Hyperchloremia; (B) One-year mortality among
different clusters of admission hyperchloremia.

Table 2. Mortality outcomes according to the distinct clusters of hyperchloremia patients.

Hospital
Mortality OR (95% CI) 1-Year Mortality HR (95% CI)

Cluster 1 2.4% 3.60 (2.33–5.56) 12.5% 4.49 (3.53–5.70)

Cluster 2 0.7% 1 (ref) 2.8% 1 (ref)

Cluster 3 3.3% 4.83 (3.21–7.28) 18.8% 6.96 (5.56–8.72)

4. Discussion

Using an unsupervised ML consensus clustering approach, we successfully identified
three distinct clusters of hospitalized patients with admission hyperchloremia with high
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stability and low ambiguity. These three clusters had different baseline characteristics and
were associated with different hospital mortality and one-year mortality risks.

Despite the association between hyperchloremia and adverse outcomes [8–10], mor-
tality risks among patients with hyperchloremia have not consistently been demonstrated
[2,9,13–21]. The findings from our study also suggest that patients with hyperchloremia on
hospital admission have different characteristics and outcomes. The mortality risk, both
in-hospital and one-year mortality, was highest among patients in cluster 3. These patients
also had lower baseline eGFR and higher prevalence of AKI on hospital admission. Among
all clusters, hyperchloremic patients in cluster 3 had the highest serum sodium and potas-
sium levels. Given that these hyperchloremic patients had more AKI on hospital admission
and higher serum sodium with relatively normal bicarbonate (22.5 +/−3.5 mEq/L), it is
possible that in cluster 3, hyperchloremia was in the setting of net water losses, including
fever, perspiration, inadequate water intake, or (less commonly) diabetes insipidus.

Patients in cluster 1 had the highest serum chloride level among the three clusters.
These patients had the lowest serum bicarbonate level with a normal anion gap. In addition,
these patients also had the lowest hemoglobin and serum albumin on hospital admission
among the three groups. Thirteen percent of these patients had AKI on hospital admission,
higher than the prevalence of AKI in cluster 2 but lower than cluster 3. Compared with
patients in cluster 2, patients in cluster 1 also carried an increased risk of in-hospital
and one-year mortality. Based on patients’ characteristics, they could have received more
intravenous 0.9% NaCl for fluid resuscitation before admission, resulting in hyperchloremic
metabolic acidosis. While RTA can also cause hyperchloremic (normal anion gap) metabolic
acidosis, it is usually a chronic medical condition rather than acute presentation to the
hospital [1,10]. In addition, AKI, as occurred in cluster 1, is not a typical presentation of
patients with RTA [1,10].

Previous studies presented conflicting findings on mortality risk among patients
with hyperchloremia [2,9,13–21]. The results of our study also suggest different mortality
risks among patients with hyperchloremia. Patients with hyperchloremia in cluster 2
had the lowest in-hospital (0.7%) and one-year mortality (2.8%). These patients were
the youngest and had fewer comorbidities and the mildest degree of hyperchloremia.
Given that mortality risks are increased among hyperchloremic patients in clusters 1 and 3,
future studies are needed on interventional targets to improve outcomes of hyperchloremia
among patients with phenotypes in these clusters.

There are several limitations related to this study. First, this was a single-center study,
and our patient populations were predominantly white. In addition, given that the data
of the hospitalized patients were collected between 2011 and 2013, future studies with
more up-to-date datasets are required to confirm our findings. Second, ML clustering was
performed at hospital admission, and data before hospitalization (including administration
of 0.9% NaCl solution) were limited. Nonetheless, identifying distinct phenotypes in pa-
tients with hyperchloremia may provide potential implications for managing and following
patients with hyperchloremia, so that such hyperchloremic patients with a high-risk of
mortality can be followed up with greater attention, although future studies are required
to evaluate the application of this approach in clinical practice.

5. Conclusions

ML consensus clustering analysis identified three clusters of hospitalized patients
with admission hyperchloremia. These three distinct phenotypic and clinicopathological
clusters of patients with admission hyperchloremia are associated with different in-hospital
and one-year mortality risks.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/medicina57090903/s1, Figures S1–S9: Consensus matrix heat map depicting consensus values
on a white to blue color scale of each cluster.

https://www.mdpi.com/article/10.3390/medicina57090903/s1
https://www.mdpi.com/article/10.3390/medicina57090903/s1
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