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Abstract

Stressful events have been identified as a risk factor for depression. Although gene—envi-
ronment (G x E) interaction in a limited number of candidate genes has been explored, no
genome-wide search has been reported. The aim of the present study is to identify genes
that influence the association of stressful events with depression. Therefore, we performed
a genome-wide G x E interaction analysis in the Japanese population. A genome-wide
screen with 320 subjects was performed using the Affymetrix Genome-Wide Human Array
6.0. Stressful life events were assessed using the Social Readjustment Rating Scale
(SRRS) and depression symptoms were assessed with self-rating questionnaires using the
Center for Epidemiologic Studies Depression (CES-D) scale. The p values for interactions
between single nucleotide polymorphisms (SNPs) and stressful events were calculated
using the linear regression model adjusted for sex and age. After quality control of genotype
data, a total of 534,848 SNPs on autosomal chromosomes were further analyzed. Although
none surpassed the level of the genome-wide significance, a marginal significant associa-
tion of interaction between SRRS and rs10510057 with depression were found (p = 4.5 x
1078). The SNP is located on 10926 near Regulators of G-protein signaling 10 (RGS10),
which encodes a regulatory molecule involved in stress response. When we investigated

a similar G x E interaction between depression (K6 scale) and work-related stress in an
independent sample (n = 439), a significant G x E effect on depression was observed

(p =0.015). Our findings suggest that rs10510057, interacting with stressors, may be
involved in depression risk. Incorporating G x E interaction into GWAS can contribute to find
susceptibility locus that are potentially missed by conventional GWAS.
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Introduction

Depression is one of the world’s leading causes of morbidity. Because of the high prevalence of
depression around the world, varying typically from 8% to 12% [1], the World Health Organi-
zation has predicted that it would rank second to ischemic heart disease in global burden of
disease by 2020 [2]. Depression is a complex disorder that results from both genetic and envi-
ronmental influences. Family and twin studies have shown that genetic factors are important
in moderating the vulnerability to depression and heritability is estimated to range from 31%
to 42% [3]. A large number of candidate gene studies of depression have been conducted. Sug-
gestive evidence has been reported for associations between depression and candidate genes
regulating the serotonin system (e.g., 5>-HTTLPR, a functional polymorphism in the promoter
region of the serotonin transporter gene SLC6A4), the hypothalamic-pituitary-adrenal (HPA)
axis (e.g., CRHRI), or the neurotrophins axis (e.g., BDNF) [4, 5]. Recently, genome-wide asso-
ciation studies (GWAS) have suggested several single nucleotide polymorphisms (SNPs) asso-
ciated with major depression [6-9] and depressive symptoms [10]. However, these candidate
gene approach and GWAS have produced conflicting results for susceptibility genes for depres-
sion [11].

Stressful life events (SLEs) have been identified as a risk factor for depression. Several lines
of studies have shown that SLEs are associated with the onset of depressive episodes and have
shown a dose-response relationship [12]. Both recent and distal stressors (e.g., childhood
adverse events) are associated with depression and their effects are additive [13]. Although dis-
tal stressors may have strong effect on psychopathology throughout the life course [14], the
effects of stressors decrease with time and the most recent stressors have the greatest impact
[15]. Therefore, the most recent SLEs (e.g., within 12 months) may be of direct etiological rele-
vance to the onset of depression compared with distal events (>5 years before) [15-17]. For
examples, Bebbington et al. investigated the effect of SLEs on the onset of depression and sug-
gested that long-lasting effects of stressful events is less important than the effects of life events
close to onset [15]. Kendler et al. found that the association between SLEs and depressive onsets
was usually strongest in the month of occurrence but may extend for up to 6 months [16].
Rojo-Moreno et al. reported that depressive patients tended to experience more depressive pro-
voking events than controls in the 12 months prior to the onset of the symptoms [17].

Given that only a portion of subjects exposed to SLEs develop depression, individual differ-
ences in genetic vulnerability to stressful events play a role in the development of depression.
This genetic vulnerability is conceptually consistent with a gene x environment (G x E) inter-
action, in which specific alleles or genotypes are more or less sensitive to the effects of certain
environmental exposure. To date, most G x E association studies of depression have focused
on a limited set of biological candidate genes [18, 19]. To our knowledge, no genome-wide
search for G x E interaction in depression has been published. Incorporating G x E interactions
in GWAS is expected to increase the power to detect novel genes relevant to psychopathology
[20]. Furthermore, dichotomization (i.e., case—control) and even sampling from the extremes
of a distribution may be problematic because “healthy controls” may include depressive cases
due to the high prevalence of depression, which decreases the statistical power [21]. Using con-
tinuous measure of depression (depressive symptoms) has been shown to greatly increase the
power to detect genetic variants [22]. Thus, combining G x E interactions with GWAS data
using continuous traits may be useful for discovering novel genetic variants [23].

The aim of the present study is to identify genes that influence the association of SLEs with
depressive symptoms, performing a genome-wide G x E interaction analysis in the Japanese
population. Among SLEs in adults, there is considerable evidence that work-related stress
appears to precipitate depression in healthy workers [24]. Using a top finding from the results
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of the genome-wide G x E interaction analysis, we further investigated a similar G x E interac-
tion between the genetic variant and work-related stress in an independent sample.

Materials and Methods
Ethics Statement

The study was approved by the Ethical Committees of the Kitasato University School of Medi-
cine and the Graduate School of Medicine at the University of Tokyo. After complete descrip-
tion of the study to the subjects, written informed consent was obtained from all participants.

Participants

All participants were genetically unrelated, nonclinical, Japanese corporation white-collar
workers. For GWAS, 320 subjects (163 males and 157 females) were recruited in 2008 in
Kanagawa Prefecture, adjacent to Tokyo, Japan. For a similar G x E interaction analysis in an
independent sample, 439 subjects (276 males and 163 females) were recruited from an inde-
pendent company in 2013 in Fukuoka Prefecture, located in the northern shore of Kyushu
Island, Japan. These samples were described in detail elsewhere [25, 26]. The two areas are
found to belong to the main cluster of the Japanese population [27]. The participants under-
went a short structured diagnostic interview, the Mini-International Neuropsychiatric Inter-
view (MINI) [28], or responded to questionnaires to rule out a current or past diagnosis of
psychotic disorders.

Measures

Stressful events. For the GWAS stage of the study, SLEs were assessed using the Social
Readjustment Rating Scale (SRRS), which is a major life events inventory developed by Holmes
and Rahe [29]. SRRS has been widely used in studies of psychosocial stress and illness, and
includes 43 life events, each scored from 0 to 100 units of life change (ULC). The subjects were
asked to rate which life event (e.g., “death of a spouse,” “divorce,” “marital separation,” “per-

” “fired at work,” etc.) had occurred over the previous 12 months. The
total score summing the values of the 43 life events was used in the analyses. A score ranging
from 0 to 149 is defined as not associated with significant stress problems; a subject scoring 300
or higher is considered to be under major stress and to have an 80% chance of illness or health
change [29].

For the replication stage of the G x E interaction analysis between top genes of GWAS and
work-related stress in an independent sample set of 439 subjects, a stressful event was assessed
by a self-administered question: “How many times have you been in fear of being unemployed
in the last year?” The subjects could choose among the following answers: “1. none,” “2. once,”
“3. more than once,” and “4. always.”

Psychological assessments. For the GWAS stage, depressive symptoms were assessed
with a self-rating questionnaire using the Japanese version of the Center for Epidemiologic
Studies Depression Scale (CES-D) [30], originally published by Radloff [31]. The questionnaire
has been widely used to measure depressive symptoms in community populations and is also
used as a screening tool for major depression [32]. CES-D is a 20-item, self-reported scale that
focuses on depressive symptoms that occurred during the week prior to the questionnaire. The
maximum score is set at 60, and higher scores correspond to more severe depressive symptoms.
CES-D scores of 16 or higher indicate clinically relevant depressive symptoms, including both
minor or subthreshold depression and major depression.

sonal injury or illness,
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For the replication stage, depressive symptoms were assessed using the self-administered
version of the K6 scale, which is generally used to screen subjects with depression on a large
scale [33]. The participants were asked to answer six questions about how frequently they expe-
rienced symptoms of depression and anxiety during the past 30 days. The screening perfor-
mance and acceptability of the Japanese versions of K6 has been validated [34]. To identify
subjects at high risk of depressive symptom with K6, a cutoff of >9 was suggested according to
a validation report, in which sensitivity and specificity were estimated at 77.8 and 86.4, respec-
tively, in the Japanese population [35]. We used K6 scores as continuous variables in the pres-
ent study.

Genotyping

DNA was extracted from leukocytes in whole blood by the standard phenol chloroform
method, using the Wizard genomic DNA purification kit (Promega Corp., Madison, WI). For
the GWAS stage, the samples were genotyped on the Genome-Wide Human SNP Array 6.0
(Affymetrix, Santa Clara, CA). Stringent quality control (QC) procedures were applied to SNP
data [e.g., sample-wise and SNP call rate >0.95, Hardy-Weinberg equilibrium (HWE) p value
of >0.001, and minor allele frequency (MAF) of >0.05]. The final GWAS data consisted of
534,848 SNPs in 320 subjects used for further analyses.

For the replication stage, genotyping was performed using the ABI PRISM 7900HT Sequence
Detection System (Applied Biosystems, Foster City, CA), according to the manufacturer’s proto-
col. The genotype data for 430 subjects were used for the G x E interaction analysis.

Expression quantitative trait locus (eQTL) mapping

The Human Genetic Variation Browser (http://www.genome.med.kyoto-u.ac.jp/SnpDB/) is a
resource database designed for the investigations on the relationship between genetic variation
and gene expression levels in peripheral blood cells in the Japanese population [36]. Eligible
donors comprised 291 individuals of both sexes and between 32 and 66 years of age. The DNA
genotyping is performed from each donor’s blood sample. In this study, cis-eQTL analysis in
the Human Genetic Variation Browser was utilized to test our most significant variant for cor-
relation with nearby residing genes’ expression.

Statistical analyses

The t-test was used to compare age, SRRS, CES-D, fearfulness of unemployment, and K6 values
between males and females. Comparisons of SRRS or fear of unemployment mean scores
among genotype groups were analyzed using analysis of variance (ANOVA). For the GWAS
data, a conventional association analysis under an additive model was first performed using
linear regression with PLINK ver. 1.07 [37]. Age and sex were adjusted in the analysis because
the prevalence of depression is higher in females and the risk of depression increases with age
[38, 39]. To account for the genetic substructure of human populations, multidimensional scal-
ing (MDS) was calculated using PLINK and 10 MDS components were also included as covari-
ates in the analyses. Next, the statistical significance of the G x E interaction term was assessed
by linear regression model, in which we applied a standard approach to test G x E interaction
using the equation: Dge = By + BG + BE + BgGE. In the model, the depression state (Dge:
CES-D or K6 scores) was treated as the dependent variable, and the SNP genotype (G), the
SLEs (E), the G x E interaction term were treated as independent variables. In the model, sex,
age, and 10 MDS components were also included as covariates. When several significant inter-
actions were found in the same region, a conditional analysis was performed to test the inde-
pendence of each interaction, in which the most significant interaction term was added as an
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additional covariate in the model. The quantile-quantile (QQ) and Manhattan plots of p values
from the GWAS stage were generated using qqman R package (http://cran.r-project.org/web/
packages/qgman/). The level of genome-wide and suggestive significance was considered to be
p<50x10%andp <1.0x 107, respectively. For the G x E interaction, a Bonferroni correc-
tion was used to adjust for p-values (p-values were divided by the number of SNPs and an
environmental measure). Therefore, the level of genome-wide and suggestive significant inter-
action was considered to be p < 2.5 x 107 and p < 5.0 x 107, respectively. Power calculations
were performed using the program Quanto v1.2.4 (http://hydra.usc.edu/gxe). The t-test and
ANOVA were conducted using the SPSS Statistics 22 for Windows. Statistical tests were
2-tailed and the significance level was set at p < 0.05.

Results

Since sex and age have been reported to be related with depression [1], we investigated the rela-
tionship of depression symptoms and stress events with age and sex. Table 1 represents the
demographic characteristics of the samples. For the GWAS stage sample, no significant differ-
ences were found in age, SRRS, or CES-D scores between males and females. Distributions of
the CES-D scores are presented in S1 Fig. No significant correlation was observed between
CES-D scores and age (r = -0.046, p = 0.42). Scores on the SRRS for recent events showed a
weak but no significant correlation with depressive symptoms (r = 0.084, p = 0.14). No signifi-
cant association of SRRS scores with sex was observed, whereas significant correlation with age
was found (r = -0.19, p = 0.001). For the replication stage sample, age in males was significantly
higher than that in females (t = 2.27, p = 0.024), although no significant differences were
observed in K6 values and the assessment of fear of being unemployed between males and
females. Distributions of the K6 scores are presented in S2 Fig. A weak but no significant corre-
lation was observed between K6 scores and age (r = -0.097, p = 0.054). Scores on the fear of
unemployment showed a significant association with the K6 scores (r = 0.15, p = 0.003), but no
significant associations with sex and age were found.

In the GWAS stage, all SNPs passing QC (n = 534,848) were tested for the analyses. We first
conducted a conventional GWAS. The QQ and Manhattan plots of the GWAS are illustrated
in S3 Fig. The QQ plots of the p values indicate no notable deviation from random expectation
(inflation factor A = 1.003), suggesting no substantial effect of population structure. In the
GWAS, no single variant achieved genome-wide significance; suggestive significant associa-
tions were found at two SNPs (rs16973084 and rs1514316) on 15q (p = 7.88 x 107% S1 Table
and S3 Fig). These two SNPs are located on the same LD block (D’ = 1.00, r* = 0.46) in the

Table 1. Demographic characteristics of samples.

Total Male Female P

Number (GWAS) 320 163 157

Age + SD 40.8+9.6 41.6+10.2 39.9+8.7 0.12
SRRS +SD 53.0+101.0 45.2+51.9 63.5+134.7 0.20
CES-D+SD 10.8+7.4 10.3+7.9 11.3+6.9 0.27
Number (replication) 439 276 163

Age + SD 36.8+8.2 37.5+8.5 35.7+7.6 0.024
fear of being unemployed + SD 1.04+0.25 1.04 +0.26 1.05+0.23 0.49
K6 + SD 6.2+5.5 6.2+5.7 6.4+5.1 0.75

CES-D: Center for Epidemiologic Studies Depression Scale; SRRS: Social Readjustment Rating Scale; SD: standard deviation.
T-tests were used to compare age, SRRS, CES-D, fear of being unemployed, and K6 values between males and females.

doi:10.1371/journal.pone.0160823.1001
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intergenic region. The third strongest significant SNP was rs7016807 (p = 1.03 x 10™°)
located on DENN domain-containing protein 3 (DENND3) at 8q24.3, of which function is to
promote the exchange of GDP to GTP and may play a role in protein transport. SNPs with
p-values < 1.0 x 10~* were shown in S1 Table.

Next, we performed a genome-wide G X E interaction analysis. Fig 1 presents the QQ and
Manbhattan plots of the analysis. The QQ plot shows some but no substantial inflation of associ-
ation (A = 1.06). The top SNPs from the G X E interaction analysis are summarized in Table 1
(SNPs with p < 1.0 x 10~ were shown in S2 Table). The marginally genome-wide significant
interaction was found at a SNP rs10510057 located near Regulators of G-protein signaling 10
(RGS10) and TIAI cytotoxic granule-associated RNA-binding protein-like 1 (TIALI) on 10q26
(p = 4.49 x 107% Table 2 and Fig 1). Other suggestive interactions (p < 5.0 x 10~°) were
found at two SNPs located in the intergenic regions (rs13151036 on 4q and rs204595 on 7p;
Table 2). Adjacent to the most significant SNP rs10510057, four interactions between SNPs
(rs12217200, rs3847487, rs7099126, and rs196267) and SRRS were significant at a value of
p < 0.001 (Fig 2), which suggested that the results were not likely to be chance findings. To test
the independence of these interactions, a conditional analysis was performed. When each inter-
action was analyzed controlling for the interaction between rs10510057 and SRRS, none were
significant (all p values > 0.05); this shows that the significance of the interaction between each
SNP and SRRS in this region was derived from the rs10510057 x SRRS interaction effect. We
divided the total SRRS scores into three categories: <99, 100-199, and >200. The mean CES-D
scores grouped by rs10510057 genotypes and SRRS categories are depicted in Fig 3. This signif-
icant G x E interaction indicated that at higher levels of SLEs, CC carriers presented more
depressive symptoms than CG or GG carriers (CC, F=8.2,p =0.001; CG, F = 1.7, p = 0.18;
GG, F=2.8,p = 0.070).

Among SLEs, work-related stress has been reported to be associated with depression [24].
Therefore, we investigated a similar interaction between rs10510057 and a work-related stress
in depression in an independent sample of 439 subjects. As a result, a significant G x E interac-
tion effect on depression was found (B = 2.9, p = 0.015). When the assessment of fear of being
unemployed was categorized into two variables (“none” vs. “once,” “more than once,” or
“always”), the stressor significantly affected the expression of depression in CC carriers
(F=7.7,p=0.007; Fig 3).

We also investigated the possible association of rs10510057 with the nearby residing genes’
(RGS10 and TIALI) expression in the Human Genetic Variation Browser. We could not find
the results of rs10510057 in the database. Instead, a SNP rs7087527 on the same LD block with
1s10510057 (D’ = 1.00, r* = 0.76) showed a significant association with RGS10 gene expression
(p = 4.3 x 107*) but not with TIAL1 gene expressions (p = 0.57).

Discussion

To date only a limited number of candidate gene G x E studies have been conducted for
depression. Therefore, a systematic search for G x E interactions using a genome-wide
approach is needed. To our knowledge, this is the first pilot study investigating G x E interac-
tions in depression at the genome-wide level. Using a sample of 320 healthy Japanese sub-
jects, we found a marginally genome-wide significant interaction between SLEs and a SNP
rs10510057 near RGS10 and TIALI located on 10926 although the association did not reach
statistical significance. We found that stressful events significantly affected the expression of
depression in CC carriers. The conditional analysis revealed that the significance was derived
from the interaction between rs10510057 and SRRS. As work-related stress has been reported
to be associated with depression, a similar G x E interaction between rs10510057 and work-
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Fig 1. Quantile-Quantile (QQ) and Manhattan plots of genome-wide gene—environment interaction
analysis. (A) QQ plots; the observed (-logo p) are plotted against the expected (-log4o p) under no
association (diagonal line). (B) Manhattan plots; the (~log1o p) is plotted according to its physical position on
successive chromosomes. The lower and upper horizontal lines represent suggestive significance with

p < 107° and genome-wide significance with p < 5 x 1078, respectively. Although not significant, a SNP
rs10510057 on 10926 reached marginally genome-wide significance.

doi:10.1371/journal.pone.0160823.g001

related stress was investigated in an independent sample of 439 subjects, which also showed a

significant association.
Most previous G x E studies assessed depression symptoms in community samples. Assum-
ing that depression is a continuous trait permits the use of all available information; therefore,
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Table 2. Top findings from genome-wide gene environment interaction analysis.

Chr SNP BP A1 A2 MAF B SE P Gene
10 rs10510057 121,301,038 C G 0.489 0.058 0.010 4.49E-08 RGS10
4 rs13151036 180,169,855 C T 0.398 -0.045 0.009 2.82E-06
7 rs204595 20,877,952 C G 0.131 0.104 0.022 4.14E-06
3 rs17193334 1,372,373 A G 0.065 0.109 0.023 5.80E-06 CNTN6
19 rs2607230 33,382,760 G A 0.106 0.069 0.016 2.29E-05
19 rs1820708 33,383,865 A G 0.107 0.068 0.016 2.46E-05
10 rs7099126 121,377,539 C T 0.434 -0.042 0.010 2.49E-05 BAG3
7 rs6944093 20,767,815 T C 0.112 0.078 0.018 2.73E-05 ABCB5
3 rs6788031 191,859,437 A T 0.054 0.092 0.022 3.15E-05 ILT1RAP
10 rs3847487 121,368,483 T C 0.434 -0.039 0.009 3.89E-05 TIAL1
7 rs6944200 20,767,745 A G 0.111 0.076 0.018 4.10E-05 ABCB5
7 rs204585 20,868,813 T C 0.131 0.085 0.021 4.46E-05
4 rs1451430 180,165,628 C T 0.443 -0.039 0.010 4.71E-05
11 rs10834377 24,521,470 T A 0.194 0.044 0.011 4.81E-05 LUZP2
7 rs12701976 42,474,899 C A 0.250 0.040 0.010 4.85E-05

Chr: chromosome; SNP: single nucleotide polymorphism; BP: base position; MAF: minor allele frequency; SE: standard error.
A1: tested allele (minor allele); A1, other allele.

Genes with SNPs located up to 50kb down- or upstream were shown.

P-values are not corrected by Bonferroni correction.

doi:10.1371/journal.pone.0160823.1002

the statistical power is increased. It has been estimated that a sample of 10,000 is required to
detect a moderately strong G x E interaction at a genome-wide level of significance [40]. Our
study investigated a relatively small sample (n = 320) and the statistical power was calculated
as 0.02% with a genome-wide significance threshold of p < 5 x 107%, and the G x E interaction
accounting for 1% of the variance. We need at least 3,500 subjects to attain 80% of power to
detect a genome-wide significant signal on this condition. However, collecting of large samples
is demanding and is possible at the expense of phenotype homogeneity and precise measure of
environmental exposure. In this sense, we consider that each of our study samples was geneti-
cally and culturally homogenous as the participants were all Japanese white-collar workers in a
company. Furthermore, a GWAS study in smaller samples may reveal important associations,
particularly, when the phenotype and environmental variables are assessed systematically and
intensively [41]. Therefore, the suggestive findings in this study may be of value for future stud-
ies with larger sample sizes.

In the GWAS stage, we assessed self-reported SLEs that occurred in the past 12 months and
encompassed environmental exposures as diverse as relationship, financial, and unemploy-
ment stressors. Depression has been reported to be particularly associated with major life
events that are characterized by loss, threat, and humiliation [42, 43]. On the other hand, other
fields of SLEs (e.g., relationship problems with a close friend, housing problems, and unem-
ployment) are considered to be “minor” rather than “major.” [44] In addition, both acute (e.g.,
sudden death of a family member) and chronic stressors (e.g., ongoing financial difficulties)
are associated with depression. While acute stressors have an impact on illness within a brief
period (i.e., approximately a month), chronic stressors lasting 6 months or more cause longer
stress symptom episodes and contribute to a greater recurrence rate [45]. These different kinds
of SLEs and stressors may have different effects on depressive symptoms. In the replication
stage of G x E interaction analysis, we assessed only a single stressor (i.e., “fear of being unem-
ployed”), which may be characterized as a “chronic” and “minor” stressor. Thus, although this
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from the JPT and CHB HapMap data is plotted in light blue. Large red diamond: SNP with strongest evidence for association
(rs10510057). Strengths of linkage disequilibrium (LD) (r2) with SNP rs10510057 in the plots are shown (dark red indicates stronger LD).

doi:10.1371/journal.pone.0160823.9002

30 16
(A) (B)
14 ,
25 /
12
D 20
S
S gl <
3 S .
o cc 2 =i o— CC
9 4 & " -G
i} = CG ~ 6 Ll -
O 10 — GG — — GG
4
> 2
0
0 <99 100-199 >200 none once, more than once, or
always
SRRS Fear of being unemployed

Fig 3. The mean scores of depression symptoms measures grouped by rs10510057 genotypes and exposure to stressful
events. (A) CES-D mean scores grouped by genotypes and SRRS scores. (B) K6 mean scores grouped by genotypes and assessments
of fear of being unemployed.

doi:10.1371/journal.pone.0160823.9003

PLOS ONE | DOI:10.1371/journal.pone.0160823 August 16,2016 9/14



@’PLOS ‘ ONE

First Pilot Genome-Wide Gene-Environment Study of Depression

was not a strict replication study for “acute” and “major” life events assessed by the SRRS, it
supported the G x E effect on depression. However, a strict replication study in future G x E
interactions studies should use systematic and intensive assessment of the same key environ-
mental exposures evaluated in the GWAS stage.

We found a suggestively significant interaction between SRRS and rs10510057 located 8kb
upstream of RGS10 on 10q26. The eQTL analysis suggested a strong association between
rs10510057 and the RGS10 gene expression level, which was consistent with the evidence that
cis-eQTLs were more likely to be located in gene structure and the adjacent regions; the
majority (70%) of cis-eQTL were located within 17kb-flanking or within a target protein cod-
ing gene [36]. RGS10 belongs to a subfamily of regulator of G-protein signaling (RGS) pro-
teins, attenuating G-protein-coupled receptor signal transduction of dopamine, serotonin,
and glutamate receptors [46, 47]. RGS10 is abundantly expressed in a broad range of brain
regions including the dorsal raphe, cortex, and striatum [48]. However, the role of RGS10 pro-
tein in the human brain remains unknown. RGS10 localizes in the plasma membrane and its
phosphorylation by cAMP-dependent protein kinase A (PKA) has been proposed as a mecha-
nism for translocation of RGS10 from the plasma membrane into the nucleus; this has been
suggested as a potential mechanism of regulation of intracellular signaling [49]. Recent studies
have shown that RGS10 is regulated by psychotropic drug and stress [50, 51]. Using cadaveric
human brains, Rivero et al. found that the immunoreactivity level of RGS10 protein was
decreased in the prefrontal cortex of short-term opiate abusers [50]. Polymorphisms in RGS10
were reported in a cohort of Japanese schizophrenia patients but with negative association
data [52]. Pinheiro et al. conducted an association study of 182 candidate genes for anorexia
nervosa and found that rs10510057 in RGS10 suggestively associated with the disorder [53].
These reports highlight RGS10 as a promising candidate for stress-related disorders that is
worthy of additional follow-up.

Several limitations of this study should be addressed. First, depressive symptoms were mea-
sured by self-administered assessment questionnaires. There may be a response bias, resulting
in over- or underestimation of the true association. Second, our subjects were employees in
two individual companies who would presumably be healthy; therefore, depressive symptoms
are not normally distributed. Many of the subjects fell under a peak at the lower end of the
score [i.e., low depressive symptoms score (CES-D < 16 or K6 < 9); S1 and S2 Figs]. Thus,
because of this particular distribution, p values for some markers in GWAS may have been
biased. Third, because our main aim was to identify SNPs conferring risk of depression, we did
not assess the impact of epigenetic changes. Recent research indicates that epigenetic (e.g.,
DNA methylation) changes caused by environmental stress may be associated with risk for
depression [54]. Therefore, investigating epigenetic modifications on the genomic regions
identified in the present study may reveal causal variants associated with depression.

In conclusion, our findings suggested that a SNP rs10510057, interacting with stressful
events, may be a risk factor for depression. In addition, incorporating G x E interaction into
GWAS confers a greater detection power for identifying susceptibility variants that would be
missed in conventional analyses. Further studies are necessary to confirm our findings and
clarify the underlying mechanisms of depression.

Supporting Information

S1 Fig. Distributions of the CES-D scores.
(TTF)

S2 Fig. Distributions of the K6 scores.
(TTF)
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S3 Fig. Quantile-quantile (QQ) and Manhattan plots of genome-wide association study. (a)
QQ plots (b) Manhattan plots.
(TIF)

S1 Table. Top findings from genome-wide association study (P < 1.00 x 10™*).
(XLSX)

S2 Table. Top findings from genome-wide gene environment interaction analysis
(P < 1.00 x 107%).
(XLSX)
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