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Abstract

Gliomas constitute the most frequent tumors of brain. High-grade gliomas are characterized by a 

poor prognosis caused by a set of attributes making treatment difficult, such as heterogeneity and 

cell infiltration. Additionally, there is a subgroup of glioma cells with properties similar to stem 

cells responsible for tumor recurrence after treatment. Since proteasomal degradation regulates 

multiple cellular processes, any mutation causing disturbances in the function or expression of its 

elements can lead to various disorders such as cancer. Several studies have focused on protein 

degradation modulation as a mechanism of glioma control. The ubiquitin proteasome system is the 

main mechanism of cellular proteolysis that regulates different events, intervening in pathological 

processes with exacerbating or suppressive effects on diseases. This review analyzes the role of 

proteasomal degradation in gliomas, emphasizing the elements of this system that modulate 

different cellular mechanisms in tumors and discussing the potential of distinct compounds 

controlling brain tumorigenesis through the proteasomal pathway.
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1. Introduction.

Gliomas represent about 60% of Central Nervous System (CNS) primary tumors. 

Glioblastoma multiforme (GBM), the most aggressive form of brain tumor in adults, 

encompasses more than 54% of gliomas with an average survival hardly exceeding 15 

months [1]. One of GBM hallmarks is the diffusive invasion of tumor cells in the 

surrounding regions of the brain, with individual infiltrating cells scattered throughout the 

brain parenchyma, which complicates treatment [2]. Among other properties of the tumor 

that also hinder its treatment is cell heterogeneity and the presence of glioma stem-like cells 

(GSCs), a cell subset with significant capacity for expansion and ability to generate new 

tumors [3].

Through multiple genomic profile studies, many genes have been sequenced in numerous 

tumor samples revealing the complex genetic profile of GBM, highlighting three signaling 

pathways commonly altered: the p53, tyrosine kinase receptor (RTK)/RAS/phosphoinositide 

3-kinase (PI3K), and retinoblastoma (RB) pathways. These alterations result in uncontrolled 

proliferation, cell infiltration, and resistance to apoptosis [4]. These studies have also been 

established with the aim of facilitating the development of more effective therapies by 

allowing GBM to be classified, being cataloged in at least four subgroups called proneural 

(PN), neural (NL), classical (CL), and mesenchymal (MES); each group has particular 

properties associated to molecular alterations, prognosis, and sensitivity to therapies [5]. 

MES subtype is the most aggressive and is related to poor prognosis compared to PN 

subtype, with a PN→MES transition being reported in several patients undergoing radiation 

and chemotherapy [6].

Current standard therapy for GBM includes surgical resection, followed by radiation and co-

administration of Temozolomide (TMZ), an oral alkylating agent; this therapeutic option has 

limited effectiveness. Surgical procedures, although represent the most effective way to 

increase survival of GBM patients, depend considerably on tumor location and infiltration 

extent [7]. Besides, high doses of radiation cannot be given due to the damage it can cause to 

the brain [8]. For its part, the TMZ effect, which consists of blocking the cell cycle in the 

G2/M phase and eventually activating apoptosis through methylation of adenine and guanine 

residues, is often hampered by DNA repair systems in which the role of O6-methylguanine 

methyltransferase (MGMT) is crucial [9]. However, different investigations have pointed to 

the development of new strategies that can improve the efficiency of treatment, such as the 

use of nanoparticles [10], immunotherapy [11], oncolytic viruses [12] or compounds with 

synergistic effects to TMZ [13].

2. The ubiquitin proteasome system.

Ubiquitination consists of a three-step enzymatic cascade in which proteins are labeled for 

degradation by the proteasome. Ubiquitin (Ub), which has a central role in this process, has 
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76 highly conserved amino acids and is present in all cell types, from yeasts to humans. The 

ubiquitin proteasome system (UPS) participates in signal transduction, cell cycle, 

transcription, and apoptosis events, among others. First, in an ATP-dependent process, Ub is 

activated by binding to a ubiquitin activating enzyme (E1), which forms a thioester bond 

between a cysteine residue of its active site and the carboxyl terminus of Ub. Next, Ub is 

subsequently transferred to a second protein called ubiquitin conjugating enzyme (E2), by 

transferring the thioester bond to a cysteine residue. Finally, Ub is coupled to a target protein 

through a peptide bond by the action of a third enzyme, termed ubiquitin ligase (E3), which 

is responsible for selective recognition of appropriate substrate proteins. The catalytic and 

substrate recruitment domains of E3 ligases can be present in a single protein, as in the case 

of c-CBL, or in separate subunits assembled in a multiprotein complex, such as cullin-RING 

ligases; in these complexes, the adapter proteins are responsible for the recruitment of 

substrates [14]. Given the importance of ubiquitination in the regulation of various cellular 

processes, it is essential that it can be reversible; this is achieved by deubiquitinase enzymes 

(DUBs) [15, 16].

The proteasome is a multiprotein complex responsible for degradation of most intracellular 

proteins. The specificity of the signal is determined by the length and structure of poly-Ub 

chains. However, it should be noted that there is also an Ub-independent proteasomal 

degradation in which auxiliary molecules or specific motifs of target proteins cooperate [17]. 

This multiprotein complex consists of two structural and functional parts: the catalytic core 

(20S proteasome) and the regulatory particles that, when united, give rise to the 26S 

proteasome. It has three types of proteolytic activity: similar to trypsin, chymotrypsin, and 

caspase (cleavage after positive, aromatic, and negative amino acids, respectively) [18]. The 

19S regulatory particles, included in 26S proteasomes, are responsible for identifying, 

binding, deubiquitinating, unfolding, and translocating substrates into the core proteolytic 

chamber [19].

3. UPS and glioma.

The interest in UPS in the brain began mainly with observations emphasizing that Ub or 

UPS-related proteins were part of protein deposits in several neurodegenerative diseases, 

such as Alzheimer’s or Parkinson’s. Nevertheless, subsequent investigations positioned UPS 

in very important non-degenerative processes including growth, development, survival, 

synaptic function, and plasticity of neurons (reviewed by Yi and Ehlers [20] and Lehman 
[21]).

Since the UPS intervenes in several cellular functions, any functional mutation or abnormal 

expression of its elements can lead to various disorders, such as cancer, neurodegenerative 

diseases, and immune disturbances; ubiquitination functions are not limited only to 

proteolysis but also to protein assembly, cell signaling, DNA repair, among others [22]. In 

cancer, ubiquitination causes activation or deactivation of tumorigenic pathways; in a siRNA 

screening analysis that identified relevant genes for GBM survival, 22% (12/55) were 

components of the 20S and 26S proteasome subunits [23]. This review discusses how 

different elements of the UPS regulate the suppression/progression of gliomas, highlighting 

genes and proteins involved and describing those investigations that have used UPS as a way 
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of treating this type of tumor. Figure 1 indicates the suppressive/oncological E3 ligases 

identified in gliomas. The full names corresponding to the abbreviations used are listed in 

Table 1.

3.1. Ubiquitin conjugating enzymes.

3.1.1. UBE2C/UBCH10.—In search of possible tools that can be used as diagnostic 

markers, attention has been given to the UBCH10 gene, which encodes a protein belonging 

to the E2 family known as Ubiquitin-conjugating enzyme E2C (UBE2C/UBCH10), 

regulating the cell cycle in different types of carcinomas by UPS modulation, including 

GBM [24]. UBCH10 expression has been evaluated in normal brain, gliosis, grade II 

astrocytic tumors, and GBM, revealing a direct correlation between this expression and the 

histological grade of tumors [25, 26]. The expression of this enzyme is also linked to poor 

prognosis and resistance to therapy in patients [27, 28]. In addition, the analysis of UBCH10 

expression allowed for differentiation of tumor tissue from gliotic or normal tissue [25]. 

UBCH10 would facilitate the formation of CDK1-cyclin B1 complexes that initiate mitosis 

[24]; thus, this enzyme could not only be used as a diagnostic marker but also as a 

therapeutic target. Its knockdown caused the inhibition of proliferation, activation of p53, 

and Bax-dependent apoptosis in U251 glioma cells [29].

3.1.2. UBE2S.—The ubiquitin conjugating enzyme E2S (UBE2S) is commonly 

overexpressed in grade III and IV gliomas, being phosphorylated by AKT, which prevents its 

proteasomal degradation. UBE2S increased expression in GBM is related to poor prognosis 

and low sensitivity to chemoradiotherapy [30]. In approximately 40–60% of GBM, the 

tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is 

mutated [31], where the loss of its function leads to constitutive activation of the PI3K/AKT/

mTOR signaling pathway [32]. In GBM, UBE2S binds to several components of the non-

homologous end-joining (NHEJ) complex, cooperating in the repair of DNA double 

stranded breaks (DSBs) that can be caused by internal metabolites, including reactive 

oxygen species (ROS) or external factors like ionizing radiation. In vivo experiments reveal 

that UBE2S knockdown makes GBM tumors more sensitive to etoposide, a DNA damage 

agent. In consequence, the AKT1/UBE2S/NHEJ axis assists in GBM chemo and 

radioresistance [30, 33, 34].

3.2. Oncological ubiquitin ligase enzymes.

3.2.1. SCFSKP2.—The first investigation involving UPS in glioma development was 

described by Piva et al. [35]. In their study they revealed, using the proteasome inhibitor 

LLnL, that proteasomal degradation of p27 would be one of the causes for malignant 

transformation of gliomas. Previously, they showed that p27 levels in astrocytic tumors were 

reduced, while in GBM were almost nil [36]. The G1/S transition of the cell cycle is 

regulated by p27/KIP1 through inhibition of cyclin D-CDK4 and cyclin A/E-CDK2 [37]; the 

progression through the cell cycle is promoted by cyclin-dependent kinases (CDKs) action.

SKP1, CUL1, and F-box (SCF) complexes are a class of E3 enzymes that ensure the specific 

recognition and ubiquitination of different substrates through various F-box proteins [38]. S-

phase kinase-associated protein 2 (SKP2) is required for G1/S transition by facilitating 
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ubiquitination and subsequent degradation of p27/KIP1 [39]. There is an inverse correlation 

between p27/KIP1 and SKP2 in a series of astrocytic gliomas: SKP2 expression was absent 

or greatly reduced in well-differentiated astrocytomas, but increased significantly in several 

GBM samples [40]. PTEN has been determined to increase protein stability of p27/KIP1 by 

reducing SKP2 levels [41]: there is the possibility that PTEN genetic alterations, which are 

common in GBM, are responsible for increased and reduced levels of SKP2 and p27/KIP1, 

respectively [40]. In addition, since SKP2 is overexpressed in several types of tumors and 

regulates the proteasomal stabilization/degradation of relevant proteins in glioma 

tumorigenesis, such as p21, myelocytomatosis (MYC) or cyclin D1, it could also be 

considered as a therapeutic target; several SKP2 inhibitors have been developed with 

beneficial effects in vitro and in vivo [42–45].

3.2.2. CUL3.—The Cullin-3 enzyme (CUL3) is part of the Cullin-RING E3 ligase 

complexes, which, together with the adapter protein KBTBD7, induces the ubiquitination 

and degradation of neurofibromin in response to growth factors [46]. The neurofibromin 

tumor suppressor is a known RAS GTPase activating protein (RasGAP) generally mutated in 

various types of tumors, including GBM [47]. One of the signaling mechanisms frequently 

altered in different types of human cancer is the RAS pathway, either by mutations of RAS 
or in genes encoding RasGAPs, a series of negative regulators hydrolyzing RAS-GTP, 

causing hyperactivation of the pathway [48]. Mitigation of the anticancer activity of 

neurofibromin could take place not only by genetic mutations but also by proteasomal 

degradation, as in other tumor suppressors, such as p53 and PTEN [47]. CUL3 knockdown 

stabilizes neurofibromin, inactivating the RAS pathway and inhibiting GBM cell 

proliferation [46].

3.2.3. PJA2.—Another E3 ligase exerting oncogenic function is Praja2 (PJA2), expressed 

in multiple tissues and cells, including the brain [49]. In human glioma cells, this enzyme 

binds and ubiquitin the tumor suppressor Mps one binder 1 (MOB1), a component of large 

tumor suppressor kinases 1/2 (LATS1/2) involved in the Hippo pathway. The inverse 

correlation between PJA2 and MOB1 was also demonstrated in vivo. MOB1 proteasomal 

degradation and the consequent attenuation of the Hippo signal drive GBM growth. There is 

a direct correlation between PJA2 expression and glioma aggressiveness, so it could be 

considered as a prognostic marker [50].

3.2.4. UBE3C.—Little is known about substrates and the implications that Ubiquitin-

protein ligase E3C (UBE3C) action may have on cells. In the particular case of gliomas, 

UBE3C upregulation was found in glioma tissues compared to surrounding normal tissues; 

its overexpression promoted invasion and mobility of GBM cells. Additionally, UBE3C 

could function as a correct prognosis biomarker, since higher levels of UBE3C expression 

were detected in patients with aggressive clinicopathological characteristics, such as high 

tumor grade, metastasis, and poor differentiation. Regarding its mechanism of action, 

UBE3C induces the proteasomal degradation of Annexin A7 [51]: this protein is believed to 

act as a tumor suppressor in GBM via attenuation of the epidermal growth factor receptor 

(EGFR) signaling [52].
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3.2.5. PARC/CUL9.—One of the key events of the intrinsic apoptotic pathway is the 

permeabilization of the mitochondrial membrane, deriving in the release of proapoptotic 

factors from this organelle, including cytochrome c, which will be assembled in the caspase 

activating apoptosome [53]. Nevertheless, in glioma cells, a control mechanism for 

cytochrome c was identified. It was determined that Parkin-like cytoplasmic protein (PARC/

CUL9) is an E3 ligase implicated in the ubiquitination and subsequent proteasomal 

degradation of cytochrome c, a process that does not occur in normal dividing cells. Low 

levels of APAF-1, the main protein associated with cytochrome c after its release, would be 

responsible for its degradation [54].

3.2.6. MDM2.—The protein p53 is a tumor suppressor that acts as a sensor of cell stress 

whose activation often initiates apoptosis, cell cycle arrest, and DNA repair [55]. Under 

normal conditions, p53 protein levels are usually low and controlled by the proteasome, 

being mouse double minute 2 homolog (MDM2) one of the E3 ligases binding to this 

protein [56]. In primary GBMs, the inactivation of the p53 pathway is frequent due to 

MDM2 overexpression. On the other hand, p53 mutations are more common as the 

histological grade of gliomas increases, suggesting that this protein plays a role in the 

generation of secondary GBMs [57].

Likewise, the MDM2-p53 interaction is regulated by several mechanisms. For example, 

positive feedback between p53 and PTEN has been reported, where the latter blocks p53 

degradation and this induces PTEN expression [58]. Kim et al. [59] reported that Merlin, a 

tumor suppressor related to neurofibromatosis-2, stabilizes p53 levels by inducing MDM2 

degradation in glioma cells. Additionally, Park et al. [60] identified a complex which 

dephosphorylates p53 known as GAS41-PP2Cβ, generally amplified in human gliomas [61]; 

p53 phosphorylation blocks its interaction with MDM2. Other posttranslational 

modifications inhibiting MDM2-p53 interaction are acetylation, sumoylation and 

neddylation [55]. Targeting the MDM2-p53 axis could give us positive results in the search 

for new therapies: the construction of a mutant p53 protein with substitution of amino acid 

residues avoiding its ubiquitination inhibited glioma cell proliferation in vitro [62].

3.2.7. TRIM59.—One of the mechanisms of EGFR-driven tumorigenicity in gliomas 

involves the E3 ligase Tripartite motif family (TRIM) 59. CDK5 is activated in EGFR 

signaling, which has been linked to poor prognosis in GBM patients and to in vitro self-

renewal of GSCs [63]. CDK5 phosphorylates TRIM59, leading to its nuclear translocation 

where it will initiate the ubiquitination and degradation of macroH2A1, a tumor-suppressive 

histone; this eventually results in increased STAT3 signaling and glioma tumorigenicity [64]. 

TRIM59 also exerts an oncological effect on gliomas through a mechanism not dependent 

on its E3 ligase activity [65].

3.3. Suppressive ubiquitin ligase enzymes.

3.3.1. FBXW7.—Those responsible for the ubiquitination of proteins through SCF 

complexes are F-box proteins, which represent the variable component of these complexes. 

FBXW7 encodes one of the more than 70 F-box proteins identified in humans. Unlike other 

F-box proteins involved in the ubiquitination of positive and negative regulators of the cell 
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cycle, all known SCFFbxw7 targets are promoters of cell proliferation [66, 67]. FBXW7 is 

mutated in different cancer cell lines and human tumors, including gliomas [68]. A known 

substrate of this anti-tumor ligase is mTOR, whose signaling promotes cell survival, 

proliferation, and motility [69]. Besides, FBXW7 [70], among other ligases, modulates the 

proteasomal degradation of MYC, an oncological transcriptional factor generally 

overexpressed in gliomas [71].

FBXW7 expression is reduced in GBM and this has been correlated to lower survival in 

patients. In protein extracts from biopsies of GBM samples, it was found that FBXW7 loss 

of function resulted in the accumulation of Aurora-A and NOTCH4 [67]. Aurora-A 

overexpression, a protein required for G2/M transition, causes centrosome amplification and 

cytokinesis defects that generate abnormal cells with a high probability of undergoing a 

malignant transformation [72]. Little is known about the role of NOTCH4 in cancer, but it is 

probably linked to blood vessel formation in tumors [73]. Furthermore, FBXW7 
overexpression is involved in proliferation inhibition of glioma cells, while its deletion 

causes instability in chromosome segregation during mitosis, a process controlled by several 

SCFFbxw7 targets, including Aurora-A [67].

Also, Lin et al. [74] reported that overexpression of this ligase makes GBM cells more 

sensitive to the TMZ effect, causing an increase in apoptosis, cell cycle arrest at the G2/M 

transition, and a decrease in cell migration by downregulation of MCL-1, Aurora-B, and 

NOTCH1, respectively. Interestingly, Yang et al. [75] identified a circular RNA encoding 

circ-FBXW7, whose expression in GBM samples was lower compared to the surrounding 

normal tissue, being capable of antagonizing the stabilization of the oncoprotein c-MYC 

initiated by the deubiquitinase USP28; circ-FBXW7 expression was linked to greater 

survival in patients.

3.3.2. Parkin.—Parkin is an E3 ligase encoded by the PARK2 gene, which is usually 

mutated in different types of cancer, including gliomas. Parkin activity reduction causes 

accumulation of cyclin E and D1, producing mitotic disturbances. The induction of Parkin 

expression, generally low in GBM, generates a blockade of the cell cycle in the G1 phase, 

decreasing glioma cell proliferation in vitro and in vivo. The expression of this ligase is 

correlated with greater survival and a lower degree of malignancy in GBM patients [76, 77]. 

Further, its overexpression in GBM cells mitigated metastasis, cell invasion, and the 

epithelial-mesenchymal transition (EMT), albeit through a proteasome-independent 

mechanism [78].

3.3.3. CHIP.—A component of the UPS with anticancer activity is the E3 ligase called 

carboxyl terminus of Hsc70-interacting protein (CHIP), which connects substrates of 

chaperones such as the heat shock protein 90 (HSP90) with the proteasome [79]. 

Nevertheless, some evidence also indicates that it has oncogenic properties in gliomas [80, 

81]; this may depend on the type of cell and the presence of proteins that can interact with it. 

CHIP induces the ubiquitination and degradation of the oncoprotein c-MYC in glioma cells 

[82]; its knockdown magnifies the metastatic properties of these cells. In different types of 

tumors, c-MYC is commonly overexpressed, contributing to uncontrolled cell proliferation 

[83]. In fact, CHIP mRNA levels are lower in GBM compared to normal tissues [82]. Hence, 
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CHIP could be considered as a target for the treatment of tumors where c-MYC has an 

active role.

In addition, CHIP forms an E3 ligase complex with HSP70 and p42 in glioma cells [84]: the 

latter is an isoform of the EBP1 protein that has anticancer activity, unlike another isoform 

of the same protein known as p48, which is oncological [85]. This complex is capable of 

causing the proteasomal degradation of p85, a subunit of PI3K; excessive activation of the 

PI3K/AKT signaling pathway is common in several types of cancer [86]. Co-expression of 

CHIP/HSP70 and p42 decreased p48 levels and markedly inhibited glioma growth in mice 

[84].

Another known CHIP substrate is EGFR, a transmembrane protein with tyrosine kinase 

activity frequently overexpressed in GBM [87, 88]. EGFR phosphorylation activates the 

PI3K/AKT, MAPK, and SRC signaling pathways involved in cell proliferation, metastasis, 

and survival [89]. However, a negative CHIP regulator known as CSN6 has been identified 

in GBM, a constitutive photomorphogenesis 9 (COP9) signalosome (CSN) subunit with 

oncogenic properties [90], whose expression levels are significantly higher in GBM tumors 

in contrast to normal brain tissues, as well as in glioma cell lines. CSN6 promotes GBM 

proliferation, migration, invasion, and tumorigenesis through upregulation of EGFR by 

blocking its ubiquitination; this happens as a result of interactions with CHIP that cause its 

degradation, although CHIP auto-ubiquitination occurs through an unknown mechanism 

[91]. Accordingly, the EGFR/CHIP/CSN6 pathway should be explored in more depth if it is 

desired to use CHIP as a therapeutic approach in GBM.

3.3.4. CBL.—It is believed that the RING-type E3 ubiquitin ligase named c-CBL has a 

role as a tumor suppressor by inducing proteasomal degradation of proteins involved in cell 

proliferation and migration, such as paxillin, FAK, and EGFR [92]. In addition to EGFR, 

other tyrosine kinase receptors are usually overexpressed in pediatric high-grade gliomas, 

including platelet-derived growth factor receptors (PDGFRs), vascular endothelial growth 

factor receptor (VEGFR), among others, are targeted by CBL [93–95]. In particular, EGFR 
gene amplification has been detected in approximately ~ 40% of gliomas [57], as well as 

frequent mutations that generate a receptor unable to recruit this ubiquitin ligase [96]: this 

leads to less receptor internalization and degradation, with the signaling resulting from 

EGFR dimerization being an aggravating factor in gliomas [45, 97].

Among other substrates of c-CBL is αPix, a guanine nucleotide exchange factor that 

activates the Rho family and is involved in migration, angiogenesis, and cell propagation. In 

A172 (human) and C6 (rat) glioma cells, c-CBL is not expressed, causing αPix 

accumulation and consequently promoting cell migration and invasion; this in contrast to 

other cell lines that do express c-CBL [98]. Nonetheless, other GBM cell lines do not 

express αPix and remain highly invasive, so other c-CBL/αPix-independent mechanisms 

operate. These observations would explain why αPix levels are higher in tissues of GBM 

patients [99], due to the apparent silencing of c-CBL expression.

Future investigations should analyze the mechanisms of silencing or attenuation of the 

expression of suppressive E3 ligases. Indeed, Seong et al. [100] demonstrated that c-CBL 
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exon skipping occurred in A172 and C6 glioma cells, as well as in brain tissues of GBM 

patients, generating two isoforms of the protein which were rapidly degraded by the 

proteasome. Interestingly, the c-CBL exon skipping happens when cells grow in high density 

or under hypoxic conditions, suggesting that environmental factors activate trans elements 

catalyzing the exon skipping.

3.3.5. TRIM9.—Ubiquitination is generally related to proteasomal degradation, but it is 

more complex since it regulates several cellular processes: this depends on the length of the 

ubiquitin chains and the compromised lysine residues. Recently, Liu et al. [101] determined 

that a short isoform of TRIM9, known as TRIM9s, promotes K63-linked poly-ubiquitination 

of MAPKK6 (MKK6) at residue Lys82, decreasing the availability of this residue for K48-

linked poly-ubiquitination related to proteasomal degradation. MKK6 is known as one of 

several positive regulators of p38, a member of the mitogen-activated protein kinase 

(MAPK) family [102]: p38 is generally known as a tumor suppressor by blocking cell 

proliferation and activating apoptosis [103]. MKK6-p38 signaling plays a critical role in 

suppressing GBM progression in vitro and in vivo [101].

Interestingly, MKK6-p38 signaling stabilizes TRIM9s by blocking its K48-linked poly-

ubiquitination, establishing positive feedback. Unfortunately, levels of TRIM9s are lower in 

GBM tissues compared to normal tissues. Liu et al. [101] suggest that in normal brain cells 

TRIM9s stabilizes MKK6 and this, in turn, activates p38 bound to TRIM9s, which 

phosphorylates preventing its degradation. On the contrary, in GBM cells the transcriptional 

downregulation of TRIM9s decreases its protein levels, generating a consequent increase in 

MKK6 proteasomal degradation, reduction of p38 activation, degradation of the remaining 

TRIM9s molecules and ultimately tumor progression.

The question remains about the mechanisms responsible for TRIM9 isoforms generation or 

its low expression in gliomas. In addition, another scale of complexity is added to the UPS 

and glioma relationship: the intervention of proteins regulating the proteasome activity 

depending on the type of ubiquitination initiated.

3.3.6. TRIM45.—The E3 ligase TRIM45 is another member of the TRIM family 

functioning as a tumor suppressor. Its expression is reduced in glioma tissues [104] despite 

being elevated in the healthy adult brain [105]. This ligase inhibits cell proliferation and 

induces apoptosis in glioma cells as well as decreases tumor growth in vivo. TRIM45 

stimulates the K63-linked poly-ubiquitination of p53 in glioma, decreasing its availability 

for the K48-linked poly-ubiquitination that leads to its degradation [104].

3.3.7. FBXO16.—Recently, another UPS element acting as a tumor suppressor was 

identified. Khan et al. [106] found a member of the FBXO protein family known as 

FBXO16 interacting with β-catenin, an important element of the Wnt signaling pathway, 

guiding it toward its proteasomal degradation. This prevents the hyperactivation of the Wnt 

pathway, which drives the progression of glioma malignancy [107]. FBXO16 expression in 

gliomas is low, so it would be appropriate to evaluate how this expression is controlled in 

this type of cancer to eventually use the FBXO16 → β-catenin pathway as a therapeutic 

route.
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3.4. Deubiquitinase enzymes.

Similar to E3 ligases, oncogenic and anticancer functions have been reported for 

deubiquitinase enzymes in gliomas. Among the oncogenic effects of deubiquitinases are the 

mitigation of tumor suppressors, increased apoptotic resistance, stabilization of 

oncoproteins, and maintenance of oncogenic transduction signals. Besides the classic effects 

observed by blocking/activating various elements of UPS, such as modulation of cell 

proliferation or apoptosis, the evidence shows that deubiquitinases also collaborate in the 

radio/chemoresistance development, microenvironment modulation, and maintenance of 

GSCs stemness (capacity for self-renewal and multipotentiality) [108]. Other studies reveal 

deubiquitinase enzymes participating in cell differentiation processes, including EMT 

(reviewed by Suresh et al. [109]). Table 2 summarizes the expression, mechanisms of action, 

and effects of deubiquitinases in gliomas.

3.5. UPS and glioma stem-like cells.

Cell heterogeneity represents one of the main reasons for a poor response to treatment in 

gliomas, highlighting the presence of GSCs, a highly tumorigenic and aggressive cell subset 

with a significant capacity for expansion [3]. The accumulated evidence shows that 

proteasome inhibitors possess anticancer activity against different types of tumors, including 

gliomas [144–146]. In the particular case of GSCs, several studies show the pro-apoptotic 

activity of these inhibitors [147–150].

Low et al. [151] analyzed the effect that knockdown of several E3 ligases would cause on 

U87MG cells and GSCs phenotype, aiming to identify those compromised in apoptosis 

resistance, cell cycle progression, and stemness maintenance. Although therapies are usually 

directed at induction of GSC apoptosis, some therapeutic approaches also seek to mitigate 

stemness by stimulating cell differentiation. Five ligases associated with apoptosis resistance 

in U87MG cells (UBE3B, CNOT4, TRIM52, TRIM13, and MARCH9) were identified. On 

the other hand, NFX1, TRIM41, FBXO21, FBXL20, and FBXO44 ligases are related to cell 

cycle progression in these differentiated cells. Interestingly, knockdown of several of these 

ligases did not cause apoptosis in GSCs unlike U87MG cells: in GSCs, knockdown of 

UBE3E3, TRIM3, TRIM52, and NFX1 ligases generated apoptosis, while deletion of 

TRIM41, FBXL20, RNF25, and TRIM13 produced the loss of stem cell markers, generating 

more differentiated phenotypes. According to the authors, it would be convenient to use 

differentiation therapies together with cytotoxic agents to arrest growth or eliminate cell 

subpopulations responsible for tumor recurrence. Differences in the activity of UPS proteins 

when comparing differentiated glioma cells and GSCs suggest that UPS is subjected to 

dynamic changes during the maintenance of stemness in GSCs and their differentiation 

process.

Several proteasome inhibitors develop a significantly higher cytotoxic effect on GSCs 

compared to their differentiated counterparts through an ATF3-dependent apoptotic process 

[152]. However, some clinical trials using Bortezomib, an inhibitor of the chymotrypsin-like 

proteasome activity, do not show equally positive results and this could be explained by the 

cytotoxicity conferred to GSCs but not to the bulk tumor, which apparently would not affect 
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the total tumor mass [153, 154]. Indeed, the most differentiated cells are approximately 1000 

times more resistant to proteasome inhibitors [152].

4. UPS targeting in glioma.

It is not known exactly why cancer cells are more sensitive to proteasome inhibitors 

compared to normal cells. One possible reason derives from several investigations 

demonstrating that proteasomal function is more active in tumors, which is important for 

malignant phenotype maintenance [155]. The disruption of the proteasomal function could 

lead to an intensification of oncoprotein effects or decrease the availability of tumor 

suppressors. Different proteasome inhibitors such as Lactacystin, N-acetyl-leu-leu-

norleucinal, MG132, and Proteasome inhibitor II induce apoptosis in glioma cells (Table 3).

In addition to UPS-mediated protein degradation in eukaryotic cells, degradation of 

intracellular and extracellular proteins also takes place through autophagy [156]. Ge et al. 
[157] demonstrated that MG132 induced autophagy in glioma cells, blocking cell 

proliferation and activating apoptosis. What is interesting is that co-treatment of these cells 

with MG132 and 3-MA, an autophagy inhibitor, led to increased cell death. These 

observations open the possibility of considering autophagy inhibitors as therapeutic tools 

together with proteasome inhibitors. Nonetheless, the dual role of autophagy in cancer has 

also been manifested in gliomas, as it has been shown to disturb proliferation and 

tumorigenicity [158, 159] or to promote survival of cancer cells in stressful situations [160, 

161].

Bortezomib is a drug approved by the Food and Drug Administration and European 

Medicine Agency for multiple myeloma treatment, validating the UPS as a therapeutic 

anticancer target [162]. Various mechanisms of action causing cell cycle arrest and apoptosis 

in GBM have been described for Bortezomib [148, 163–165]. This inhibitor is also capable 

of exerting a synergistic anti-glioma effect in combination with autophagy suppressants 

[166, 167]. Likewise, the inhibition of anti-apoptotic proteins, usually overexpressed in brain 

tumors and causing resistance to treatments [168], makes glioma cells more sensitive to the 

pro-apoptotic effect of Bortezomib [169]. Furthermore, Bortezomib downregulates MGMT 

levels by inhibiting NFκB activation [170, 171]; this protein has a central role in TMZ 

resistance [172]. Besides, NFκB is constitutively activated in GBM, boosting migration, 

invasion, and resistance to chemotherapy [173]; the IκBα gene is often deleted in tumor 

samples from GBM patients [174].

In addition to the classic proteasome inhibitors, different studies over the years have revealed 

the presence of several synthetic and natural compounds exhibiting anticancer effects in 

gliomas through UPS targeting. Among the synthetic compounds are different drugs used in 

the treatment of other diseases, such as Saquinavir (HIV), Troglitazone (diabetes), and 

Disulfiram (alcoholism), isopeptidase inhibitors (G5) and γ-secretase suppressors (LLNle). 

The natural compounds cover a wide range of products derived from bacteria 

(Geldanamycin), animals (Bufalin), and plants (Thymoquinone, Hypericin, Paeoniflorin, 

Sophoridine, Curcumin, and Obtusaquinone) with anti-glioma activity. Unfortunately, only 

four of the compounds listed in Table 3 (Bortezomib, Disulfiram, Hypericin, and Curcumin) 
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have been tested in clinical trials, and none have yet entered clinical phase III; their efficacy 

is relatively limited, which is why the development of analogs with greater ease of 

penetration into the BBB and less toxicity is urgently needed.

5. Remarks.

Although clinical trials show that proteasome inhibitors are not significantly efficient in 

treating gliomas, second-generation proteasome inhibitors have been produced with better 

pharmacokinetic properties [203, 204]. It is hoped that in the future these new inhibitors will 

generate better results in the treatment of gliomas and other diseases, such is the case of the 

proteasome inhibitor Marizomib [205]. However, the inhibition of the proteasome would 

cause a non-selective blockage of the degradation of all proteins subjected to this process. 

Therefore, future therapeutic strategies in the context of UPS-glioma should focus on going 

as downstream as possible, such as targeting E3 enzymes.

Based on this suggestion, the aforementioned study carried out by Low et al. [151] shows 

different E3 ligases that could be considered as potential therapeutic targets in gliomas. Note 

that these ligases were not described in any of the previously mentioned E3 ligases 

(oncological or suppressive), which demonstrates that the participation of UPS elements in 

gliomas is much more complex than disclosed. The information available on the relationship 

between UPS and glioma, although abundant, remains incomplete. More studies are needed 

aiming to identify cellular elements that regulate or are being regulated by UPS, involved in 

some way in the development or suppression of gliomas: several elements of the UPS 

exhibiting oncogenic or suppressive activities have not yet been evaluated in brain tumors. In 

this regard, Vlachostergios et al. [206] compile a set of proteins participating in motility and 

invasion of tumors, including gliomas, whose regulation would be determined through UPS, 

presenting a group of potential targets many of which are overexpressed.

Additionally, it is pertinent to suggest for future studies that these should not only focus on 

cell and biochemical variations occurring in cancer cells but also in the tumor 

microenvironment. The glioma microenvironment is composed of different types of non-

cancerous cells, an extracellular matrix, and unique cell subtypes (astrocytes, microglia, and 

neurons), which give properties that distinguish the brain from the rest of the body. For 

example, the evidence indicates that through different mechanisms macrophages, regulatory 

T lymphocytes, and neurons contribute to glioma progression, while dendritic cells and 

effector T lymphocytes initiate anticancer activities (reviewed by Quail and Joyce [207]). An 

intriguing topic for further study might be how the UPS could influence the tumor 

microenvironment modulation and what its putative effect would be in gliomas.

6. Future perspectives: PROTAC.

The use of drugs in therapies has certain limitations, such as the development of resistance, 

unwanted side effects, and/or their inefficiency in targeting proteins that lack enzymatic 

activity, for instance, proteins that function through protein interactions or scaffolding 

proteins. Proteolysis Targeting Chimeras (PROTACs) are a new and useful tool for drug 

designing in which target protein levels are regulated by proteasomal degradation. PROTACs 
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have two ligands, connected through a linker, bound to a protein of interest and an E3 ligase: 

this way a ternary complex (PROTAC, the protein of interest, and E3 ligase) is assembled, 

inducing ubiquitination and proteasomal degradation of target proteins [208]. There is even a 

variant formed by two ligands for ligases known as Homo-PROTAC, which allows the self-

degradation of E3 ligases after dimerization. This variant is very useful considering these 

types of enzymes have multiple domains and lack an active site, so their activities are not 

usually easy to suppress using conventional inhibitors [209].

The selectivity of PROTAC-linked drugs is superior [210], enabling the targeting of mutated 

proteins that often cannot be targeted by drugs alone [211], being useful in the context of 

drug resistance evasion in diseases. However, it is necessary to continue improving 

properties related to bioavailability, tissue distribution, toxicity, pharmacokinetics, and 

molecular weight of PROTACs [212], as well as the development of more stable ternary 

complexes [210].

In diseases like cancer, the PROTAC tool has been used for selective degradation of proteins, 

including kinases, transcription factors, or nuclear receptors, obtaining promising results in 

breast, lung, colon, lymphoma, prostate, myeloma, leukemia, among other types of cancer 

[213–218]. Besides, PROTAC is effective in tumor growth inhibition in vivo [216, 218–221], 

being able to reduce the proliferation or initiate apoptosis in cancer cells with a lower IC50 

when contrasted to unconjugated drugs [216, 222]. PROTAC has not yet been used in GBM, 

but the results obtained in other types of cancer suggest that it could be useful in this type of 

tumor. The big question remains how effective would be the passage of PROTACs through 

the BBB. This review could work as a starting point in choosing target proteins and ligases 

for PROTACs design in gliomas; moreover, it presents a set of oncogenic ligases that could 

be used in studies employing Homo-PROTACs. This suggestion would represent a radical 

change in the way the UPS and glioma relationship is treated because instead of inhibiting 

the UPS to treat this type of tumor we would be taking advantage of it for selective 

degradation.

7. Conclusions.

Genetic or protein alterations in elements of the UPS or molecules regulating them cause 

accumulation of oncoproteins or degradation of tumor suppressors. This review covers those 

studies describing the complex relationship between UPS and glioma. This type of research 

is necessary as it allows to establish the basis for the creation of new treatments that are 

increasingly selective, efficient, and less toxic. Although in myeloma the use of Bortezomib 

has been very beneficial, in gliomas the administration of classic proteasome inhibitors has 

certain limitations; nevertheless, these compounds could be useful for adjuvant or combined 

therapy. However, the different reports in which classic proteasome inhibitors, synthetic, and 

natural compounds were used for UPS targeting have undoubtedly shown the great potential 

of the proteasomal degradation route in glioma regulation. This is why other approaches 

such as targeting more specific proteins (E3 ligases) or using PROTACs could be 

implemented.
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Fig. 1. 
Oncological/suppressive E3 ligases identified in gliomas. Oncological and suppressor E3 

ligases are designated by the colors purple and green, respectively.
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Table 1:

Abbreviations.

Abbreviation: Full name

BBB: Blood-brain barrier.

CDKs: Cyclin-dependent kinases.

CHIP: Carboxyl terminus of Hsc70-interacting protein.

CL: Classical.

CNS: Central Nervous System.

COP9: Constitutive photomorphogenesis 9.

CSN: Signalosome.

CUL: Cullin.

DSBs: DNA double stranded breaks.

DUB: Deubiquitinase.

E1: Ubiquitin activating enzyme.

E2: Ubiquitin conjugating enzyme.

E3: Ubiquitin ligase.

EGFR: Epidermal growth factor receptor.

EMT: Epithelial-mesenchymal transition.

GBM: Glioblastoma multiforme.

GSC: Glioma stem-like cells.

HSP90: Heat shock protein 90.

LATS: Large tumor suppressor kinase.

MAPK: Mitogen-activated protein kinase.

MDM2: Mouse double minute 2 homolog.

MES: Mesenchymal.

MGMT: O6-methylguanine methyltransferase.

MKK6: MAPKK6.

MOB1: Mps one binder 1.

MYC: Myelocytomatosis.

NHEJ: Non-homologous end-joining.

NL: Neural.

PARC/Cul9: Parkin-like cytoplasmic protein.

PDGFRs: Platelet-derived growth factor receptors.

PJA2: Praja2.

PI3K: Phosphoinositide 3-kinase.

PN: Proneural.

PROTAC: Proteolysis Targeting Chimeras.

PSI: Synthetic Proteasome Inhibitor.

PTEN: Phosphatase and tensin homologue deleted on chromosome 10.

RasGAP: RAS GTPase activating protein.
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Abbreviation: Full name

RB: Retinoblastoma.

ROS: Reactive oxygen species.

RTK: Receptor tyrosine kinase.

SCF: Skp1, Cul-1 and F-box.

SKP2: S-phase kinase-associated protein 2.

TMZ: Temozolomide.

TRIM: Tripartite motif family.

Ub: Ubiquitin.

UBE2C/UBCH10: Ubiquitin-conjugating enzyme E2C.

UBE2S: Ubiquitin-conjugating enzyme E2S.

UBE3C: Ubiquitin-protein ligase E3C.

UPS: Ubiquitin Proteasome System.

VEGFR: Vascular endothelial growth factor receptor.
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Table 2:

Deubiquitinases involved in glioma suppression/exacerbation.

Deubiquitinase Expression and Mechanism of action Effects References

Tumor-promoter deubiquitinases

HAUSP

• Higher expression in glioma.

• Stabilization of MDM2, LSD1, and NANOG.

↓Survival of patients.
↑Proliferation and invasion.
↓p53 signaling pathway.

↑Stemness of glioma cells.

[110–113]

OTUB1

• Overexpression in GBM.

• Expression correlated with histological grade.

• Stabilization of Snail and Vimentin.

↓Survival of patients.
↑Migration and EMT. [114]

USP1

• Up-regulated in GBM.

• Stabilization of ID1, ID2, and CHEK1, regulators of 
the DNA damage response and stem cell 
maintenance.

• Stabilization of EZH2, a transcriptional repressor of 
several anticancer proteins.

↑Survival and growth of GSCs.
↑Radioresistance of GBM.

↑Survival of proneural glioma cells.
↑Proliferation of glioma cells.

[108, 115, 116]

USP3

• Upregulation in GBM.

• Stabilization of Snail, a transcription factor 
promoting EMT.

↓Survival of patients.
↑Invasion, migration, and tumor 

growth.
↑EMT.

[117]

USP4

• Upregulation in GBM.

• Stabilization of PCNA, Bcl-2, p-ERK1/2, and 
regulation of TGF-β.

↑Proliferation, TMZ resistance, and 
ERK pathway.

↓p53-dependent apoptosis.
↓Survival of patients.

[118, 119]

USP5
• In GBM, an aberrant splicing event occurs 

generating an oncogenic isoform of USP5. ↑Tumorigenicity. [120]

USP8 • Stabilization of the antiapoptotic protein FLIP. ↑GBM resistance to TRAIL-
induced apoptosis. [121]

USP9X

• Prevents β-catenin degradation, which promotes the 
expression of c-MYC and cyclin D1.

• Stabilization of ALDH1A3.

↑Wnt/β-catenin signaling pathway.
↑Proliferation and survival.

↑Tumorigenicity and self-renewal 
of GSCs.

[122, 123]

USP10

• Overexpression in GBM.

• Mechanism of action unknown in glioma. ↓Survival of patients. [124]

USP13
• Prevents c-MYC ubiquitination induced by the 

ligase FBXL14. ↑GSC self-renewal and tumorigenic 
potential. [125]

USP22

• Increased expression in glioma samples.

• Stabilization of CDK1, CDK2, cyclin B1, BMI1, 
and KDM1.

↑Proliferation, survival, migration, 
and invasion of glioma cells.

↑Tumorigenesis.
↑Stem cell self-renewal.
↓Survival of patients.

[126–130]

USP28

• Overexpression in glioma.

• Stabilization of the oncoprotein c-MYC.
↓Survival of patients.

↑Proliferation and tumorigenicity. [131]

USP39 • Overexpression in glioma. ↑Proliferation, migration, and 
invasion. [132]
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Deubiquitinase Expression and Mechanism of action Effects References

Tumor-promoter deubiquitinases

• Stabilization of the oncoprotein TAZ.

USP44

• Upregulation in GBM.

• Stabilization of the oncoprotein Securin.

↓Apoptosis and survival of patients.
↑Proliferation, tumorigenesis, 

migration, and invasion.
[133]

USP48

• Expression correlated with glioma malignancy.

• Stabilization of Gli1 with subsequent activation of 
the Hedgehog signaling pathway.

↑Proliferation and tumorigenicity. [134]

Tumor-suppressor deubiquitinases

USP2a

• Conflicting results.

It is overexpressed in glioma tissues and its levels correlate with an 
increase of the tumor histological grade.
However, it stabilizes the levels of the pro-apoptotic protein 
Mdm4.

↑p53-dependent intrinsic apoptosis 
in GBM. [135–137]

USP11

• Inhibits the ubiquitination and proteasomal 
degradation of the protein PML, an essential 
component of nuclear structures.

↓Proliferation, invasiveness, and 
tumor growth.

↓Self-renewal, tumor-forming 
capacity, and therapeutic resistance 

of GSCs

[138]

USP17

• Downregulation in glioma.

• Expression inversely correlated with glioma 
histological grade.

• Reduction of RAS and MYC protein levels.

↓Tumorigenesis and proliferation. [139]

USP26 • Stabilization of SMAD7. ↓TGF-β signaling.
↑Survival of patients. [140]

Dual role deubiquitinase

USP15

• Conflicting evidence.

USP15 is amplified or deleted in GBM subgroups.

• It has an oncogenic role by deubiquitinating TGF-
βR1 through the suppression of the activity of the 
ligase complex SMURF2.

• It exhibits an anticancer role by stabilizing the 
ligase HECTD1.

↑TGF-β signaling and 
tumorigenicity (oncogenic).
↑Proliferation and invasion 

(oncogenic).
↓Wnt signaling (anticancer).

[141–143]
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Table 3:

Compounds with anti-glioma activity through UPS targeting.

Compound Mechanism of action/Effect References

Classic proteasome inhibitors

Lactacystin N-
acetyl-leu-leu-

norleucinal
MG132 Proteasome 

inhibitor II

• Activation of the extrinsic and intrinsic apoptotic pathway in glioma cells by 
suppressing proteasomal degradation of c-MYC, caspase 3, and 8.  [144–146]

Bortezomib

• Promotes/reduces the expression of proteins related to cell cycle arrest/progression 
and pro-apoptotic/anti-apoptotic activity.

• Exerts a synergistic pro-apoptotic effect with TRAIL.

• JNK signaling activation.

• Downregulation of MGMT.

[148, 163–165, 
170]

Synthetic compounds

Saquinavir • Inhibits 20S and 26S proteasomes. [175, 176]

Troglitazone
• Sensitizes different GBM cell lines to TRAIL-induced apoptosis via FLIP 

proteasomal degradation. [177]

Disulfiram

• Inhibition of GSCs proliferation and reduction of glioma development in vivo.

• Disulfiram-Cu complexes suppress proteasome activity and initiate apoptosis in 
GSCs.

• Blocks P-glycoprotein extrusion pump activity involved in drug resistance.

• Promotes changes in the MGMT Cys45 residue, causing its degradation through 
UPS.

• The combination of DSF/Cu and TMZ is well tolerated but has limited activity in 
some patients.

[178–183]

G5

• Inhibits isopeptidases.

• Stimulates necrosis processes in glioma cells resistant to apoptosis. [184]

LLNle

• Proteasome inhibition.

• Reduction/elevation of genes required for cell cycle progression/suppression.

• Blocks cell cycle and activates apoptosis in GSCs.

• Targeting of the NOTCH oncogenic pathway.

[185]

Natural compounds

Geldanamycin

• Disruption of HSP90 activity, initiating the ubiquitination and subsequent 
degradation of proteins interacting with it, including CHK1, CDC2, and cyclin B1. 
This results in cell cycle arrest, apoptosis onset, and alterations in DNA damage 
control processes.

[186, 187]

Bufalin

• Blocks cell proliferation and initiates apoptosis in GBM cells through proteasomal 
degradation of ATP1A1.

• Mitigates tumor growth in vivo.
[188, 189]

Thymoquinone • Proteasome inhibition and accumulation of the pro-apoptotic proteins p53 and BAX. [190]
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Compound Mechanism of action/Effect References

Hypericin

• Stimulates HSP90 proteasomal degradation, causing subsequent lysosomal 
degradation of HIF-1α (stress-response protein).

• Causes a reduction in tumor volume and increases survival in GBM patients.
[191, 192]

Paeoniflorin
• Inhibits proliferation, activates apoptosis, and suppresses tumor growth in vitro and 

in vivo through the promotion of STAT3 and TLR4 proteasomal degradation. [193, 194]

Sophoridine

• Proteasome inhibition, causing significant elevation of ROS levels.

• Facilitates cell cycle arrest and apoptosis.

• Inactivates NF-κB.
[195]

Verbascoside
• Disrupts cell growth via ubiquitination and proteasomal degradation of c-MET, a 

protein linked to EMT. [196, 197]

Curcumin

• Synergistic anti-glioma activity in combination with TMZ.

• Sensitizes GBM cells to TMZ by inducing proteasomal degradation of Connexin 43.

• The administration of micellar curcuminoids allowed the concentration of significant 
amounts of Curcumin in GBM patients.

[198, 199]

Obtusaquinone

• Activates apoptosis in GBM cell lines and GSCs in vitro and in vivo.

• Binds to KEAP1 and reacts with its cysteine residues, inducing its proteasomal 
degradation.

[200–202]
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