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Abstract: We previously reported that various mRNAs were associated with postsynaptic density
(PSD) purified from rat forebrain. Among the thousands of PSD-associated mRNAs, we highlight
the biology of the general transcription factor II-I (Gtf2i) mRNA, focusing on the significance of its
versatile splicing for targeting its own mRNA into dendrites, regulation of translation, and the effects
of Gtf2i expression level as well as its relationship with neuropsychiatric disorders.
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1. Introduction

We previously reported that a large number of mRNAs are associated with postsynaptic density
(PSD) prepared from rat forebrain [1,2]. Later, deep sequencing of hippocampal neuropil-residing
mRNAs supported the abundance of RNAs in dendrites/axons [3]. Among the thousands of
PSD-associated mRNAs, more than 100 mRNAs encode nuclear proteins.

De novo synthesis of proteins is necessary for the induction of plastic modification in stimulated
synapses, which form the molecular basis of learning and memory [4,5]. Translation of postsynaptically
localized mRNAs at the stimulated synapses is one of the mechanisms for spatiotemporally specific
modifications in stimulated synapses [6,7]. Short-term plastic modifications in synapses are explained
by modification and mobilization into synapse active zones of synaptic proteins, such as receptors,
cytoskeletons, and various signaling molecules. However, this may not be enough for the long-term or
long-lasting maintenance of the plastic modification in synapses. Long-lasting synaptic modification
(maintenance and stabilization) requires novel protein synthesis both at postsynaptic sites and via
transcription in the nucleus [8]. For example, transcription of brain-derived neurotrophic factor
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(BDNF) [9] and Arc [10,11] is induced after neural activation. Synapse-to-nucleus signal transmission
should occur ahead of the transcription of these genes.

Dendritic mRNAs encoding nuclear proteins contained mRNAs encoding transcription factors.
These transcription factor-encoding mRNAs are supposed to be transferred into the neuronal
dendrites and locally translated there upon synaptic stimulation. Their products are translocated
back into the nucleus, where they transcribe downstream genes involved in long-term synaptic
modification (Figure 1). Maturation of mRNAs may occur in the dendrites, in addition to cell soma [12].
The mRNA encoding general transcription factor II-I (Gtf2i) is one of these PSD-associated mRNAs.
We hypothesize that postsynaptic localization of Gtf2i mRNA is related to two events—local translation
at the postsynapse and synapse-to-nucleus signal transduction. Locally translated transcription factors
at the postsynapse act as signal transduction molecules transmitting synaptic signals into the nucleus.
The localization of mRNA encoding a transcription factor at the postsynaptic sites is studied for the
first time in Gtf2i. Therefore, until now, there has been no report revealing the fate of this protein at
the postsynaptic site and its role in synaptic function. However, our hypothesis is also based on other
transcription factors and molecules, such as cAMP responsive element binding protein (CREB), signal
transducer and activator of transcription 3 (STAT3), Mothers against dpp (SMAD), huntingtin, and
importin, that translocate from postsynaptic sites to the nucleus [7,13–18].
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Figure 1. Transcription, targeting, and the fate of postsynaptically localizing mRNAs that encode
transcription factors. The mRNA encoding Gtf2i is one of the postsynaptic density (PSD)-associated
mRNAs. It is hypothesized that locally translated transcription factors at the postsynapse act as signal
transduction molecules transmitting synaptic signals into the nucleus. 1. Transcription of its own
gene; 2. Targeting mRNA into the dendrite; 3. Postsynaptic local translation; 4. Synapse-to-nucleus
transmission of protein products; 5. Modulated transcription of downstream genes in the nucleus; 6.
Feedback effects on synapse (Multiple processes/pathways are plausible; however, their details are
still unknown). TF: transcription factor.

In this review, we would discuss the regulation of the Gtf2i expression in the postsynaptic area,
its downstream cellular events, and the association of GTF2I with neuropsychiatric disorders.

2. Role of Splice Variation in 5′ Untranslated Regions of Gtf2i

2.1. Role of 5′ Untranslated Region Variations in Gtf2i mRNA for Regulation of Its Own Transcription

Transcriptional regulation is achieved by promoters localizing upstream of each transcription
start site (TSS). A promoter is activated by its specific intrinsic transcription factors in each of the 5′
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untranslated regions (5′UTR). Alternative promoters of Gtf2i have been identified in humans and mice.
In human GTF2I, three additional exons between exon 1 (encoding the known 5′UTR) and exon 2
(encoding the start codon of GTF2I), three TSSs, and four alternative 5′UTRs have been identified [19].
In mouse Gtf2i, two additional exons between exon 1 and exon 2, three TSSs, and five alternative
5′UTRs have been identified [19]. In rats, we identified seven novel TSSs, six novel exons between
the exon 1 and the exon 2, and eight transcripts (including seven novel transcripts) of Gtf2i with
different 5′UTRs [20]. Upstream of the TSSs of all of the Gtf2i 5′UTRs identified so far, each Gtf2i
5′UTR has its own intrinsic transcription factor-binding sites [19,20]. Multiple promoters of Gtf2i make
transcription responsive to various stimuli in different types of cells. Multiple promoters of Gtf2i also
enable production of various splice variants with different 5′UTRs, and multiple 5′UTRs make Gtf2i
mRNA translation responsive to various stimuli at different cellular and subcellular locations.

Another possible mechanism for control of transcription of the numerous Gtf2i variants themselves
is epigenetic control, since the novel 5′UTRs that we identified are embedded within CpG islands [20],
where methylated cytosines could be involved in transcriptional repression. Neural activity decreases
CpG methylation and activates transcription of target genes via release of repressor proteins [21,22].
This mechanism may enable cell type-specific and/or neural activity-dependent expression of each
5′UTR variant.

2.2. Role of 5′UTR Variation in Gtf2i mRNA for Subcellular Localization

Various mRNAs localize to dendrites in neuronal cells and the 5′UTR and/or 3′UTR of mRNA
plays important roles in the localization to as well as local translation in dendrites [6]. The 5′UTR and
the 3′UTR of mRNA play important roles in its subcellular localization, translation regulation, and
stability [6,7,23,24]. This appears to be the case for Gtf2i. Gtf2i mRNAs with different 5′UTRs showed
differential expression patterns in rat brains. Among eight isoforms, one was detected in dendritic
processes of neuronal cells, suggesting that dendritic localization of Gtf2i mRNA variants is dependent
on 5′UTR variation [20]. This variant may play a synapse-specific role, while other variants may play
non-synaptic roles.

2.3. Regulation of Translation and Localization of mRNA by RNA-Binding Proteins Interacting with 5′UTRs

The presence of two cis-acting factors, G-quadruplex [20] and stem-loop structure (our unpublished
data), is predicted in the 5′UTR of Gtf2i mRNA variant localizing to neuronal dendrites. The G-quadruplex
is a guanine (G)-rich nucleic acid sequence that forms a four-stranded structure. The G-quadruplexes
in the 5′UTRs of mRNAs play important roles in the localization of mRNAs to neuronal dendrites [25]
and translation regulation of many mRNAs localized postsynaptically [26]. Some RNA-binding
proteins (RBPs), as trans-acting factors, regulate translation, subcellular localization, and metabolism of
mRNAs via binding to UTRs (both 5′UTRs and 3′UTRs) [27]. A well-known RBP for G-quadruplexes
is fragile X mental retardation protein (FMRP), which is localized to dendrites, binds to the 5′UTR
and/or 3′UTR of target mRNAs, and negatively regulates translation of the target proteins in
dendrites [28–31]. Thus, FMRP negatively regulates translation of target mRNAs via direct binding to
the G-quadruplex structure in 5′UTR[31]. FMRP, via its activity in dendrites, is related to the formation
and maintenance of synapse structure and spine shape [32]. Abnormality in FMRP is linked to autistic
symptoms of the fragile X syndrome.

The stem-loop structure of mRNA in the 5′UTR is important for translational regulation. One RBP
known to interact with this structure is RNA helicase A, which recognizes this structure in the 5′UTR of
various mRNAs, unwinds secondary structures, and facilitates ribosome association to enable efficient
cap-dependent translation [33,34].

Thus, a mechanism involving specific RBPs is likely to regulate localization and translation of
Gtf2i mRNA variants. Identification and functional analysis of RBPs that specifically recognize RNA
structures in the dendritic 5′UTR of Gtf2i mRNA is an important next step. Our recent study identified
RNA helicase A as one of RBPs that specifically bind to the dendritic 5′UTR of Gtf2i mRNA [35]



Int. J. Mol. Sci. 2017, 18, 411 4 of 11

although the site of interaction has not yet been identified. This study failed to detect FMRP until
now. For its detection, standardization of the binding conditions for preservation of the optimum
G-quadruplex structure may be required.

2.4. 5′UTR Works as a “Spatial Code” and a “Quantitative Code”

BDNF is an extensively studied example of a gene, similar to Gtf2i, with multiple splice variants
with different 5′UTRs. Analogy with BDNF may give us a hint about the functional significance of
multiple variations in Gtf2i 5′UTR. Human BDNF has 34 alternative mRNAs, which are combinations
of a single coding region, 17 different 5′UTRs, and 2 different 3′UTRs with different polyadenylation
sites [36]. Rodent Bdnf has 22 alternatively spliced mRNAs, which are combinations of a single
coding region, 11 different 5′UTRs (I, IIA, IIB, IIC, III, IV, V, VI, VII, VIII, and IXa), and 2 different
3′UTRs with different polyadenylation sites [37]. Systematic analysis of subcellular localization of
each 5′UTR in cultured rat hippocampal neurons suggests that alternatively spliced 5′UTRs selectively
determine the intracellular localization of Bdnf mRNA variants to the soma, proximal dendrites (I, IV),
or distal dendrites (IIC, VI) [38]. Furthermore, targeting of Bdnf mRNA variants into distal dendrites
is controlled by neural activity [9]. In untreated rat hippocampal tissues, dendritic enrichment of
5′UTR variants (VI, VII in CA1; I, VI, IXa in CA3; V, VI, VII, VIII in DG) was observed. Upon neural
stimulation, levels of Bdnf transcripts in dendrites were upregulated or downregulated, depending on
variant types and brain region (e.g., in the CA1 region, variant mRNAs II, IV, and VI were upregulated,
while variant mRNA III was downregulated) [39].

Based on these results, the “spatial code hypothesis” suggesting that different 5′UTRs regulate
intracellular localization of the corresponding mRNA variants was proposed [38]. This “spatial code
hypothesis” may also be applicable to Gtf2i mRNAs and could be generalized, since we found selective
localization of certain type of Gtf2i mRNA variants to dendrite [20], although there are no distinctive
motifs or sequences conserved between BDNF mRNA and Gtf2i mRNA.

Another functional feature of alternative 5′UTR of Bdnf is translation regulation. Translatability
of each 5′UTR was assessed by an in vitro luciferase assay in a neuroblastoma cell culture model. Bdnf
mRNAs with different 5′UTRs are translated differently in the basal state, and their translations were
modulated differently with synaptic stimulations, such as KCl, BDNF, AMPA, NMDA, dopamine, or
5-HT [40]. Based on this, the “quantitative code hypothesis” was proposed, where translatability of
Bdnf mRNA variants, and hence the expression level of BDNF protein, is determined by each 5′UTR in
response to specific stimuli [40]. In this hypothesis, the factor that determines the expression level is
intrinsic to the 5′UTR. Translatability of the variant mRNAs is an important factor critically affecting
the expression level of protein. Therefore, 5′UTR bears a “quantitative code.” This “quantitative code
hypothesis” may also be applicable to Gtf2i mRNA and could be generalized, since Gtf2i mRNA also
has multiple 5′UTR variants with structures that affect translation efficiency.

3. Downstream of Gtf2i Local Translation

3.1. Synapse-to-Nucleus Signal Transduction via Gtf2i

Gtf2i is a signal-induced transcription factor, responding to signals, such as growth factor stimulation,
TGFβ signaling, ER stress signaling, calcium signaling, immune signaling, and c-Src-dependent
transcription activation [41–44]. Thus, this transcription factor is a versatile regulator of numerous
cellular processes.

Transcription is induced by neural activity [8]. Several transcription factors, such as CREB, STAT3,
and SMAD, are localized away from the soma at distal axons, locally synthesized upon stimulation,
and translocated to the nucleus [7,13–15]. To our knowledge, there are no reports on locally translated
transcription factors at the postsynaptic site. Gtf2i mRNA, at least one type of mRNA splice variant
(rDEC4ED sequence-containing mRNA, see [20]), is localized at postsynaptic sites and is likely to
be translated in a synaptic stimulation-dependent manner at the synapses. Gtf2i synthesized at
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postsynaptic sites may translocate into the nucleus, via nuclear localization signals (NLSs), and regulate
expression of their downstream target genes. Gtf2i variants play differential roles in signal-induced
transcription regulation. For example, the β isoform represses transcription of c-Fos, while the ∆
isoform acts as an activator in murine fibroblasts [42].

3.2. Downstream Target Genes and Cellular Functions of Gtf2i

Various downstream genes and cellular functions of Gtf2i have been unveiled. In a promoter
binding study, downstream target genes for Gtf2i transcription factor included those involved in
axon guidance, neurodevelopmental disorders, calcium signaling, and the cell cycle [45]. Though the
knockout in the mouse is embryonically lethal, Gtf2i−/− mouse embryos showed alterations in gene
expression related to TgfbrII/Alk1/Smad5 and Vegfr-2 signaling cascades [46], suggesting that Gtf2i is
upstream of these signaling pathways during embryogenesis.

Involvement of Gtf2i in the transcription of the Dlx5/Dlx6 homeobox genes has been suggested [47].
Gtf2i binds to the I56i enhancer region of the Dlx5/Dlx6 and possibly modulates affinity of Dlx1 and
Dlx2 towards the I56i enhancer region [48] to regulate transcription of Dlx5/Dlx6 [47]. This suggests
that Gtf2i is involved in the maturation of inhibitory interneurons since Dlx5 and Dlx6 are involved in
the differentiation and migration of GABA-expressing interneurons in the forebrain [47,49]. Thus, Gtf2i
is proposed to be a regulator of Dlx5/Dlx6 expression via activation of the I56i enhancer region and
may regulate maturation of GABAergic interneurons and finally alter excitatory/inhibitory balance of
neural circuits.

Additionally, GTF2I has been found to regulate transcription of DYX1C1 via binding to
the promoter (or 5′UTR) region of DYX1C1 [50]. DYX1C1 is implicated in dyslexia [51], neural
migration [52], cortical development, and spatial learning [53,54]. Thus, abnormality of GTF2I is
related to the pathogenesis of dyslexia possibly via impaired DYX1C1 transcription [50]. These reports
suggest that Gtf2i is an upstream regulator of various brain functions, including neuronal development,
inhibitory synapse maturation, and neural circuit formation.

3.3. Coding Variants May Differentially Regulate Downstream Transcription and Cellular Processes

Combination of four in-frame cassettes of exons 9–12 produces Gtf2i variants in the coding region,
and nine such coding variants have been discovered—Gtf2iα (exons 9–10–11), Gtf2iβ (exons 9–11–12),
Gtf2iγ (exons 9–10–11–12), Gtf2i∆ (exons 9–11), Gtf2iε (exons 11–12), Gtf2i(9–12), Gtf2i(9), Gtf2i(12),
and Gtf2i(−) [19,20]. The Gtf2i protein has an N-terminus leucine zipper, six I-repeat DNA-binding
motifs, and two NLSs [44]. The presence and number of these motifs are not changed among these
coding variants. Variations in combinations of exons 9–12 may affect complex conformation of
Gtf2i proteins [55] and different combinations of Gtf2i variant dimers regulate target genes [42,56].
Each splice variant in the coding region of Gtf2i is possibly involved in the transcription of its own set
of target genes [55,56]. Thus, Gtf2i variants in the coding region may be involved in the differential
regulation of the expression of target genes via variable Gtf2i dimer organization (see review by Roy [44]).

In addition, variations in the isoforms of the coding region with different combinations of exons
9–12 change the length of the PEST sequence (a protein sequence enriched in proline, glutamate, serine,
and threonine), which may lead to changes in the stability of this protein [20]. Furthermore, there are
specific combinations of the variants in the 5′UTRs and those in the coding region [20]. Therefore,
the properties and functions of Gtf2i are also affected by the corresponding 5′UTR, which regulate
localization of Gtf2i mRNA. This suggests that Gtf2i function varies depending on its cellular and
subcellular localization.

Phosphorylation of the tyrosine248 residue, which is encoded by exon 9, is involved in
translocation to the nucleus and activation of the transcriptional activity of Gtf2i [41,57]. Isoforms
lacking exon 9, Gtf2i(12), and Gtf2i(−) in the brain may have functions other than transcriptional
regulation in the nucleus. Another function of Gtf2i outside the nucleus is agonist-induced calcium
entry, as has been suggested for the ∆ isoform [58]. However, this function of Gtf2i may not occur in
the brain Gtf2i since the ∆ isoform is not expressed in the brain tissue.
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4. Relationship between GTF2I and Neuropsychiatric Abnormality

4.1. Copy Number Variation in Williams–Beuren Syndrome Region and Neuropsychiatric Diseases

The human GTF2I is implicated in Williams–Beuren syndrome (WBS) and 7q microduplication
syndrome (7dupASD; ASD, autism spectrum disorder). WBS is characterized by altered facial
appearance, cardiovascular abnormalities, severe visuospatial cognitive abnormalities, and abnormal
social behavior (hypersociability) [59,60]. The linkage of the GTF2I gene to WBS was suggested by the
fact that patients with WBS exhibit hemizygous deletion of a 1.5 Mb region in chromosome 7q11.23
(WBS region), containing 28 genes, including GTF2I [59,60]. Thus, GTF2I is regarded as one of genes
responsible for human WBS [60,61]. Genotype–phenotype correlation studies of patients with mild
WBS phenotype and normal IQ carrying a shorter deletion of this region have shown that GTF2I
contributes to the alteration in social behavior of patients with WBS, but not to visual-spatial cognitive
impairment, craniofacial features, and other WBS features [59,61]. The linkage between GTF2I and
WBS is also supported by a study on haploinsufficiency of Gtf2i mice. Gtf2i heterozygous mice showed
increased social interaction, similar to the behavior in patients with WBS, although learning and
memory, especially spatial memory, were normal in these mice [62].

The 7dupASD, also known as Somerville–van der Aa syndrome, is caused by duplication of
the same WBS region. Symptoms of patients with 7dupASD have cognitive abnormalities, such as
language delay and deficits in social interaction [63,64]. Thus, opposite and graded phenotypes have
been observed between patients with WBS and patients with 7dupASD (microdeletion and duplication
of WBS region, respectively) (Figure 2) [63–65], suggesting that dosage of genes in this region is
an important determinant of the symptoms in WBS and 7dupASD. Thus, copy number variations
(CNVs) of the WBS region are related to some symptoms of WBS and 7dupASD. This suggests that
accuracy of the expression level (dosage) of the genes in this region is critical for normal neuronal
development related to symptoms in WBS and 7dupASD. This concept is in good agreement with
the notion that CNVs (deletions or duplications of small chromosomal regions) are responsible for
various neuropsychiatric disorders [65]. Alteration of Gtf2i expression may alter the expression profile
of the downstream genes via its role in transcription regulation. This may be one of the molecular
mechanisms underlying CNV effects (regulation by GTF2I dosage) in WBS and 7dupASD.

Int. J. Mol. Sci. 2017, 18, 411 6 of 11 

 

entry, as has been suggested for the Δ isoform [58]. However, this function of Gtf2i may not occur in 
the brain Gtf2i since the Δ isoform is not expressed in the brain tissue. 

4. Relationship between GTF2I and Neuropsychiatric Abnormality 

4.1. Copy Number Variation in Williams–Beuren Syndrome Region and Neuropsychiatric Diseases 

The human GTF2I is implicated in Williams–Beuren syndrome (WBS) and 7q microduplication 
syndrome (7dupASD; ASD, autism spectrum disorder). WBS is characterized by altered facial 
appearance, cardiovascular abnormalities, severe visuospatial cognitive abnormalities, and abnormal 
social behavior (hypersociability) [59,60]. The linkage of the GTF2I gene to WBS was suggested by the 
fact that patients with WBS exhibit hemizygous deletion of a 1.5 Mb region in chromosome 7q11.23 
(WBS region), containing 28 genes, including GTF2I [59,60]. Thus, GTF2I is regarded as one of genes 
responsible for human WBS [60,61]. Genotype–phenotype correlation studies of patients with mild 
WBS phenotype and normal IQ carrying a shorter deletion of this region have shown that GTF2I 
contributes to the alteration in social behavior of patients with WBS, but not to visual-spatial cognitive 
impairment, craniofacial features, and other WBS features [59,61]. The linkage between GTF2I and 
WBS is also supported by a study on haploinsufficiency of Gtf2i mice. Gtf2i heterozygous mice showed 
increased social interaction, similar to the behavior in patients with WBS, although learning and 
memory, especially spatial memory, were normal in these mice [62]. 

The 7dupASD, also known as Somerville–van der Aa syndrome, is caused by duplication of the 
same WBS region. Symptoms of patients with 7dupASD have cognitive abnormalities, such as 
language delay and deficits in social interaction [63,64]. Thus, opposite and graded phenotypes have 
been observed between patients with WBS and patients with 7dupASD (microdeletion and 
duplication of WBS region, respectively) (Figure 2) [63–65], suggesting that dosage of genes in this 
region is an important determinant of the symptoms in WBS and 7dupASD. Thus, copy number 
variations (CNVs) of the WBS region are related to some symptoms of WBS and 7dupASD. This 
suggests that accuracy of the expression level (dosage) of the genes in this region is critical for normal 
neuronal development related to symptoms in WBS and 7dupASD. This concept is in good agreement 
with the notion that CNVs (deletions or duplications of small chromosomal regions) are responsible 
for various neuropsychiatric disorders [65]. Alteration of Gtf2i expression may alter the expression 
profile of the downstream genes via its role in transcription regulation. This may be one of the 
molecular mechanisms underlying CNV effects (regulation by GTF2I dosage) in WBS and 7dupASD.  

 
Figure 2. Psychiatric phenotypes dependent on copy number variations (CNV) of the Williams–
Beuren syndrome (WBS) region and GTF2I. (A) Effects of CNV on the WBS region; (B) Effects of CNV 
on GTF2I. Characteristic features of WBS and 7dupASD are listed. Gray circles indicate presence of a 
single copy of the GTF2I and X indicates the absence of the gene. 

Figure 2. Psychiatric phenotypes dependent on copy number variations (CNV) of the Williams–Beuren
syndrome (WBS) region and GTF2I. (A) Effects of CNV on the WBS region; (B) Effects of CNV on GTF2I.
Characteristic features of WBS and 7dupASD are listed. Gray circles indicate presence of a single copy
of the GTF2I and X indicates the absence of the gene.
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Induced pluripotent stem cells (iPSCs) prepared from both patients with WBS and patients with
7dupASD demonstrated that dosage of the WBS region contributes to transcriptional dysregulation
of genes involved in disease-relevant pathways, such as cell adhesion, migration, calcium
homeostasis, inner ear morphogenesis, craniofacial phenotypes, and kidney epithelium development.
These processes are deeply related to WBS and 7dupASD [66]. For example, an experiment using
four different conditions of GTF2I dosage level produced by lentivirus-mediated RNA interference
against GTF2I from this patient-derived iPSCs found that expression of the transcription factor BEN
domain containing 4 (BEND4), which is immediately downstream of GTF2I, was repressed in a
dosage-dependent manner [66]. This further supports the involvement of GTF2I in WBS and 7dupASD.

4.2. GTF2I Abnormality Is Related to Neuropsychiatric Diseases

Some neuropsychiatric disease-related single nucleotide polymorphisms (SNPs) have been found
in GTF2I. Two SNPs in GTF2I related to ASD were found in a study on 1142 individuals with ASD,
and were observed to be associated with severe deficiency in social skills and repetitive behavior [67].
These two SNPs of GTF2I reside in the intron between the exon 1 (encoding the 5′UTR) and the exon 2
(including the start codon of GTF2I). Because this region contains multiple splice sites and produces
various alternative 5′UTRs [19,20], these SNPs may cause abnormal splicing of the GTF2I 5′UTR
(in both human and rat). Intriguingly, from a search in the 5′UTR region of the GTF2I genomic sequence
using the NCBI SNP database (Available at: https://www.ncbi.nlm.nih.gov/snp/?term=GTF2I), there
are more than 10 SNPs in the 5′UTR of GTF2I. These 5′UTR SNPs may be related to altered localization
and translation of GTF2I mRNA. These findings shed light on the importance of 5′UTR splice variation
of GTF2I for neuronal function.

As previously mentioned, Gtf2i may affect the excitatory/inhibitory balance of brain through
Dlx5/Dlx6 regulation. Disruption of this pathway has been suggested to be a possible mechanism
that causes autism [68,69]. Indeed, human DLX5/DLX6 are associated with ASD [70]. Furthermore,
autism-associated SNPs have been reported in I56i, an enhancer element of the DLX5/DLX6. These
mutations may alter the binding properties of this element to GTF2I and DLX2, which would
impair the transcriptional activation of I56i [47]. Alteration of the excitation/inhibition balance is a
hypothetical basis of ASD [68]. Aberrant development of GABAergic interneurons reportedly results
in neurodevelopmental disorders, such as epilepsy, schizophrenia, and ASDs, including tuberous
sclerosis, fragile X syndrome, Angelman syndrome, and Rett syndrome [69,71]. Thus, Gtf2i abnormality
(e.g., abnormal Gtf2i expression level), via imbalance of the excitatory/inhibitory neuronal balance in
the brain, may result in the development of ASD symptoms.

5. Concluding Remarks

Focusing on Gtf2i, here, we reviewed and discussed the roles of 5′UTRs in mRNA targeting into
dendrites and translational regulation within dendrites. In many neuropsychiatric diseases, including
WBS, the effects of dosage regulation of genes on the pathogenesis of neuropsychiatric disorders have
been recently emphasized. Dosage alteration may impair transcription of downstream genes, which
may affect neural development, neural structure, and circuit formation related to neuropsychiatric
disorders. We suggest that the 5′UTR of Gtf2i mRNA may play a role in the spatiotemporal specific
regulation of its protein level via postsynaptic local translation. Direct evidences showing the
involvement of 5′UTRs in neuropsychiatric disorders still needs to be established. One powerful
method is finding 5′UTR mutation(s) of causal genes related to neuropsychiatric disorders by whole
genome sequencing of patient samples. Further studies on dosage regulation of causal genes in
neuropsychiatric disorders should be advanced.
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ASD autism spectrum disorder
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