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Abstract Human cells typically consist of 23 pairs of chromosomes. Telomeres are
repetitive sequences of DNA located at the ends of chromosomes. During cell replica-
tion, a number of basepairs are lost from the end of the chromosome and this shortening
restricts the number of divisions that a cell can complete before it becomes senescent,
or non-replicative. In this paper, we use Monte Carlo simulations to form a stochastic
model of telomere shortening to investigate how telomere shortening affects normal
aging. Using this model, we study various hypotheses for the way in which shorten-
ing occurs by comparing their impact on aging at the chromosome and cell levels.
We consider different types of length-dependent loss and replication probabilities to
describe these processes. After analyzing a simple model for a population of inde-
pendent chromosomes, we simulate a population of cells in which each cell has 46
chromosomes and the shortest telomere governs the replicative potential of the cell.
We generalize these simulations to Werner’s syndrome, a condition in which large sec-
tions of DNA are removed during cell division and, amongst other conditions, results
in rapid aging. Since the mechanisms governing the loss of additional basepairs are
not known, we use our model to simulate a variety of possible forms for the rate at
which additional telomeres are lost per replication and several expressions for how
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the probability of cell division depends on telomere length. As well as the evolution
of the mean telomere length, we consider the standard deviation and the shape of the
distribution. We compare our results with a variety of data from the literature, cov-
ering both experimental data and previous models. We find good agreement for the
evolution of telomere length when plotted against population doubling.

Keywords Telomere dynamics · End-replication problem · Aging · Werner’s
syndrome · Stochastic simulation

Abbreviations

bps Basepairs
pd Population doubling
sd Standard deviation
WRN Gene responsible for Werner’s syndrome

1 Introduction

While aging is a natural and inevitable feature of all living organisms, the mechanisms
that regulate it and determine an individual’s lifespan remain to be fully elucidated.
Improvements in diet, environment, medical care, and the development of science and
technology, even over the last century, have contributed to an increase in the average
human lifespan from 45 to 75 years (Kirkwood 2005). When trying to understand
these changes, in addition to considering external factors, we should also consider
those processes which occur inside the cells and organs of the human body and limit
lifespan.

In order to understand aging, it is natural to consider what happens to an individ-
ual cell and its progeny and how the changes associated with aging are affected by
processes occurring at the subcellular level (Kirkwood and Austad 2000). Biologically,
there are many processes which occur on the cellular level which contribute to aging
at the organism level. For example, there is the accumulation of oxidative damage,
the appearance of nucleotide mutations during DNA replication, and, during cell divi-
sion, a number of basepairs are lost from one end of a chromosome due to incomplete
replication of the DNA strand: this is known as the end replication problem. Much
research into aging has its origins in the pioneering work by Hayflick and Moorehead
(1961) who, in 1961, discovered that cells have a limited capacity for proliferation.

The DNA in the nucleus of each human cell is partitioned into 46 chromosomes,
a chromosome being a large coiled structure comprising a single piece of DNA. The
regions of repetitive DNA at each end of the chromosome are called telomeres (Cooper
and Hausman 2009): they protect chromosomes from losing genetic material and
prevent chromosome fragments rejoining. We view aging as a telomere shortening
process since it appears that telomere length determines whether a cell can divide and
is a key factor in determining a cell’s potential for proliferation. When the telomere
length is critically short, the chromosome stops replicating (Olovnikov 1971), and the
cell becomes senescent. In this paper, we focus on the role of telomere shortening and
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the onset of senescence as a contributory factor in aging. We are not claiming that
this is the sole factor involved in the aging process of organisms, merely that in the
scenarios we model, we assume that other aging processes can be ignored, and that
the aging effects observed are due to telomere shortening.

At present, there is no consensus about how telomere shortening occurs. It is pos-
sible that the amount of telomere lost when a single chromosome replicates and the
probability that a chromosome divides may vary. For example, chromosomes with
longer telomeres may lose more basepairs and/or have a greater probability of divid-
ing than those with shorter telomeres (Buijs et al. 2004; Portugal et al. 2008).

In this paper, we consider various mechanisms for how much telomere is lost per
replication, and alternative formulae for the probability of replication in a given time
interval (which we term “generation”). We develop a mathematical model to compare
the effect that each rule has on the dynamics of telomere shortening in a population
of cells. We consider the model in various subcases, in Case A, a chromosome (cell)
divides whenever its telomeres are long enough to allow division. In Case B, there is
a probability of each chromosome (cell) dividing. Each of these cases is then further
subdivided into two subcases: in Case A1, every generation all chromosomes with
sufficiently long telomeres divide, and one of each offspring loses a fixed amount
telomere. In Case A2, this rule is generalised so that the amount of telomere lost
depends on telomere length; and again, every chromosome divides during each gener-
ation provided its telomere is sufficiently long. In Case B1, a fixed amount of telomere
is lost in each replication event, but there is a probability of division depending on
telomere length. Case B2 generalises cases A2 and B1 in that both the rate of telomere
loss and the probability of cell division are dependent on telomere length. In each case,
we are interested in investigating how the average telomere length of the chromosomes
and the proportion of dividing chromosomes (or cells) changes with generation num-
ber. Clearly model B2 will provide the best fit to any data, since it incorporates all
other models as special cases. However, attempting to fit the other models to data will
help determine which factors influence the evolution of the distribution of telomere
lengths. There is little experimental evidence on the precise factors which determine
the rate of loss of telomere. Thus one reason for proposing a variety of models in this
paper is to allow the hypotheses that (i) telomere length influences cell division and
(ii) the rate of telomere loss depends on telomere length can be tested against data.
Note these hypotheses are not mutually exclusive.

Similar rules for telomere length changes over generations have been considered by
other authors, including Cases A1, A2, and B1. In Levy et al. (1992) studied Case A1,
and predicted that average telomere length decreases linearly with generation number;
they also found the fraction of dividing chromosomes. Our results for Case A1 are
consistent with those presented in Levy et al. (1992). In Buijs et al. (2004) analyzed
Case A2, with telomere loss linearly dependent on telomere length. They fitted exper-
imental data of Martens et al. (2000) and Zhang et al. (2000) on the distribution of
telomere lengths, verifying that a model in which telomere shortening depends on
telomere length is consistent with the experimental data. In Portugal et al. (2008) con-
sidered Case B1 where telomere loss is fixed, but the probability of division depends
on telomere length; however, in our Case B1, as well as predicting the average telom-
ere length and the fraction of senescent cells, we also consider the probability of cells
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replicating being a nonlinear function of telomere length. Our work on Case B2 where
both telomere loss and cell division probability depend on telomere length, is new, as
is our study of Werner’s syndrome (see below).

An obvious weakness of the above models is that chromosomes are treated as a
single population, in which individual chromosomes undergo division independently.
In reality, they are in groups of N = 46 to cell (in humans), and all 46 must replicate
synchronously when a cell divides. Hence, in this paper, we proceed to generalise the
models to the cell-level where we consider a population of cells, each composed of
N = 46 chromosomes, and a cell replicates only if all of its chromosomes are able to
replicate. This represents a significant generalisation of the existing models. Putting
N = 1 would return us to the model of independent chromosomes considered earlier,
which can thus be thought of as a special case of the cell-level model.

Werner’s syndrome is an inherited disease characterized by rapid aging. In their
second or third decade patients normally develop gray hair, wrinkled skin, alopecia,
diabetes mellitus, and juvenile cataracts (Yamamoto et al. 2003). The average lifespan
for Werner’s syndrome patients is about 45 years and their deaths are often linked
to malignant tumors (Goto et al. 1996). The limited lifespan of Werner’s syndrome
patients is caused by large, spontaneous deletions of DNA, which lead to accelerated
telomere loss and attenuated apoptosis (Faragher et al. 1993). Proliferation of cells
is often measured in population doublings (pd), this relates the number of cells N (t)
at some time t , to an initial value N (0) = N0 by pd = log2(N (t)/N0). Fibroblasts
from Werner’s syndrome patients only undergo approximately 20 population dou-
blings, which is 40 population doublings less than normal human fibroblasts. While
the molecular mechanisms underpinning Werner’s syndrome are unknown, several
hypotheses have been proposed, including the mutator phenotype. Here, the Werner’s
syndrome patient develops chromosomal aberrations, deletions (Wyllie et al. 2000;
Furuichi 2001), and a higher somatic mutation rate (Fukuchi et al. 1989). There is
strong evidence that Werner’s syndrome accelerates a cell’s journey to senescence.
Experiments reported in Tahara et al. (1997) have shown dramatic shortening of telom-
eres in Werner’s syndrome fibroblasts and B-lymphoblastoid cells, and that senescence
happens faster than in normal fibroblasts and B-lymphoblastoid cells. This suggests
that dramatic telomere shortening can accelerate cell senescence.

Tahara et al. (1997) reports that when a population of Werner’s syndrome cells
becomes senescent, the range of telomere lengths, namely 3,500 to 18,500 basepairs
(bp) is much wider than that from a population of normal cells (5,500–9,000 bp).
A possible explanation for this is that the cells of Werner’s syndrome patients con-
tain some chromosomes which have critically short telomeres and others with much
longer ones. Telomere dysfunction is caused by critically short telomeres, which, in the
absence of recombination, trigger premature cell senescence (Chang 2005). Another
hypothesis is that a mutation in the Werner’s syndrome gene plays an important role in
Werner’s syndrome (Bachrati and Hickson 2003), due to its role in DNA maintenance
and repair.

In this paper, we model Werner’s syndrome by assuming that the cell suffers an
extra loss of telomere when it divides (Opresko et al. 2003). Thus, we treat Werner’s
syndrome as an accelerated version of the normal aging model by considering a variety
of amounts of telomere loss per replication and a range of probabilities of this additional
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loss occurring. The remainder of this paper is organized as follows. In Sect. 2, we
propose rules for replication of chromosomes in the case of normal aging and develop
an algorithm using Monte-Carlo simulations. After presenting the results of this work,
in Sect. 3 we generalise the algorithm by scaling the model up to a population of
dividing cells undergoing division in which each cell contains N = 46 chromosomes
(the number of chromosomes in a normal human cell). Finally, in Sect. 4, we form the
replication rule for Werner’s syndrome, Monte Carlo simulations are undertaken and
we compare the dynamics predicted from our models with that for Werner’s syndrome.
Conclusions are drawn and discussed in Sects. 5 and 6.

2 Normal Aging: Model Development

2.1 Single Chromosome

In this section, we develop a mathematical model of normal aging based on the bio-
logical processes summarized in Fig. 1. We consider individual chromosomes which
divide independently of each other. In order for our explanation to be consistent with
later work (Sect. 3), we introduce the model, including the terms “cells” and “chro-
mosomes,” and although we initially consider cells to contain just one chromosome,
we will later relax this assumption so that each cell has 46 chromosomes. The two
strands of the DNA double helix are not reversible, that is, they have a direction. The
two ends of a DNA strand are distinct, one being referred to as the 3’ end and the other
as the 5’ end. This terminology refers to the carbon atom in the deoxyribose molecule
involved in attachment of the next phosphate group. Replication occurs in the 5’ →
3’ direction. During replication the double stranded DNA separates, with one strand
going to each daughter cell. Each strand is used as a template for the construction of a
complementary strand. However, the creation of this secondary strand is incomplete,
leading to a shortening of one end, and a consequent reduction in telomere length.

The mathematical models presented in this paper are based on a number of assump-
tions. First, there is no telomere elongation during replication, that is, we neglect
telomerase activity and assume that there are no recombination events. Secondly, cells
can only exist in one of in two states: a dividing state or a senescent state. When a cell
becomes senescent, it remains in that state: it cannot start dividing again. We do not
account for cell death. Thirdly, we use the term “generation number” to mean iteration
number, that is the timescale over which cells have the opportunity to divide once; in
our algorithm (mathematical model) this is the iteration number and corresponds to the
timescale of interest. In many experiments, instead of this fixed timescale, population

Fig. 1 Diagram showing how telomere length in an individual chromosomes changes during replication.
Thick lines correspond to the template (or parent) strands and thin lines represent replicated strands of the
template associated with each daughter chromosome. The arrows indicate the direction in which replication
takes place
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doubling is used to measure the evolution of the process (Harley and Goldstein 1980).
A population doubling corresponds to the total number of cells doubling. The time
for a population doubling to occur varies as cells age: typically population doublings
occur more quickly at the start of experiments and slow down later. Generation number
and population doubling are similar at the start of simulations or experiments, when
all cells are able to divide. However, at later stages of the experiment or simulation,
the time for one population doubling is longer than the time for one generation as a
greater proportion of cells are senescent and so fewer cells contribute to the growth of
the population.

Initially, we suppose that telomere shortening is caused only by the end replication
problem. We assume that normal chromosome replication produces one chromosome
which is identical to its parent and one which is slightly shorter (see Fig. 1). The
algorithm is summarized in Fig. 2, where Pdiv is the probability of a nonsenescent
cell undergoing division. We use an initial telomere length of 6,000 bps. This is a

Fig. 2 Flowchart illustrating algorithm used to simulate cell division and track the associated evolution of
telomere lengths
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typical value for human telomeres, and is used by Buijs et al. (2004) and Iwama et
al. (1998). Although experimental measurements of telomere length are significantly
longer, they include a threshold length below which telomeres cannot shorten. We
subtract this threshold from our measurement of length, so that our threshold length
is zero.

In more detail, suppose that a chromosome has two telomeres lengths with m and n
base pairs on one strand, denoted (m, n), the other strand having telomeres of length m
and n − y, or (m, n − y). One of these parent strands will be passed to each daughter
cell. Each strand is used as a template for DNA replication, however, this process
is imperfect, and results in incomplete replication. We assume that y base pairs are
lost per replication so that the (m, n) parent strand gains a complementary strand
with telomeres of length (m, n − y), thus producing a daughter chromosome identical
to its parent. The shorter parent, having telomeres of lengths (m, n − y) yields a
complementary strand with lengths (m − y, n − y). This process is illustrated in Fig. 1
and, following Arino et al. (1995), can be written more compactly as follows:

(
m n
m n − y

)
︸ ︷︷ ︸

parent

→
(

m − y n − y
m n − y

)
︸ ︷︷ ︸

(shorter)
daughter

+
(

m n
m n − y

)
︸ ︷︷ ︸
(identical)
daughter

. (1)

In practice, the number of basepairs lost (y) and the probability that a chromosome
divides (Pdiv) may vary with telomere length. For example, chromosomes with longer
telomeres may lose more basepairs than those with shorter ones and chromosomes with
longer telomeres may have a greater probability of dividing than those with shorter
telomeres. We account for these effects by assuming that y(n) is linearly dependent
on n and Pdiv = Pdiv(n) where

y(n) = y0 + y1n , Pdiv(n) = (a + bn)α , (2)

see Buijs et al. (2004) and Portugal et al. (2008) for a discussion of these alternatives.
In (2), y0 represents the amount of telomere lost each generation, and y1 is a constant
of proportionality, giving a greater loss for long telomeres than short ones (since we
expect y1 > 0); y0, y1, a and b are constants and α is a parameter with 0 ≤ α ≤ 1.
The case α = 1 was considered by Portugal et al. in 2008. In order to see clearly how
changes in average telomere length depend on telomere loss, y(n), and the probability
that a chromosome divides, Pdiv(n), we consider the four cases outlined in Table 1.
For Case B2, both the rate of telomere loss and the probability of replication depend
on telomere length. If the parameters y0, y1, α, a, b are chosen appropriately, Cases
A1, A2, and B1 can be considered as special cases of Case B2: Case A1 is recovered
by setting y1 = 0 and α = 0; Case A2 is obtained by fixing α = 0; and Case B1 by
setting y1 = 0. Simulation results for the four cases are presented below.
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Table 1 Summary of the four models of telomere shortening under consideration

Case Prob of division Pdiv(n)

= (a + bn)α
Telomere loss
y(n) = y0 + ny1

Explanation
(reference)

A1 Pdiv(n) = 1 y(n) = 200 Loss and division are
constant (Levy et al.
1992)

A2 Pdiv(n) = 1 y(n) = 100+n/30 Length-dependent loss
(Buijs et al. 2004)

B1 Pdiv(n) = (n−200)/5750 y(n) = 414 Length-dependent
division probability
(Portugal et al. 2008)

B2 Pdiv(n) = (n−200)/5750 y(n) = 207+n/14 Length-dependent loss
and division

2.2 Case A (Pdiv = 1)

Here, on each time step, any cell that can divide will do so, as Pdiv = 1. The amount
of telomere lost during replication is y = y0 + ny1. For case A1, we assume that
the amount of telomere lost is independent of telomere length, so that y = y0 = 200
basepairs (bps) and y1 = 0. For a fair comparison with Case A1, in Case A2 we choose
a length-dependent loss rate of the form y(n) = 100 + n/30 per generation, so that
when n = 3, 000, the loss rate is 200, as in Case A1. In Case A2, the loss is composed
of two terms: a fixed loss term (100 bps) and a term which is directly proportional to
telomere length (n/30 bps), so that longer telomeres are shortened at a higher rate and
shorter telomeres at a lower rate.

At each generation, we record not only the average telomere length but also the
number of cells that have just replicated. We denote by N (g) the number of cells at gen-
eration g. The quantity φdiv(g) represents the fraction of dividing cells at generation
g and φsen(g) the fraction of senescent cells at generation g, so that

φdiv(g − 1) = N (g) − N (g − 1)

N (g − 1)
, φsen(g) = 1 − φdiv(g). (3)

2.3 Results for Case A

In Fig. 3a, we show how the average telomere length changes with generation number
for Cases A1 and A2. As expected, the average telomere length initially decreases
more rapidly for Case A2 (solid line) than for Case A1 (dashed line), this persists
until the length falls below 3000 bps; the average telomere length then decreases more
slowly for Case A2 than Case A1. After generation 170, the average telomere length
for both models is similar as both populations are senescent.

The results presented in Fig. 3b reveal a similar trend in the proportion of replicative
cells. In particular, until about generation 80, all cells in both models divide because
no cells have yet become senescent. Thereafter, Case A1 has a lower proportion of

123



Stochastic Simulations of Normal Aging and Werner’s Syndrome 1249

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

generation number

av
er

ag
e 

te
lo

m
er

e 
le

ng
th

 (
bp

)

(a)

0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

1

generation number

fr
ac

tio
n 

of
 d

iv
id

in
g 

ce
lls

(b)

Fig. 3 Average results of 1,000 realizations of our model of normal aging, when cases A1 and A2 are
considered; a plot of average telomere length against generation number; b the fraction of dividing cells
plotted against generation number. The average telomere length initially shortens more slowly for Case
A1 (y(n) = 200, mean shown by solid line, dotted lines indicate mean ±2 sd) than for Case A2 (y(n) =
100 + n/30, mean indicated by dashed line, dash-dotted lines show mean ±2 sd). At later times, when the
average telomere length has fallen below 3,000 bps, the telomeres shorten more slowly for Case A2 than
A1. After about 170 generations, both populations are completely senescent and their telomere lengths do
not change

replicating cells than Case A2. By generation 170 the fractions are similar because
almost all cells are senescent. Between generations 80 and 170 the standard deviation
(sd) of Case A2 is greater than that of Case A1 because more basepairs are deleted
per division for Case A2.

At first sight it might seem counterintuitive that the cells with a shorter mean
telomere length (A2 in panel a) have a higher rate of cell division (panel b). This
situation arises because it is not the mean telomere length that governs division, but
the number of telomeres above threshold, and the distribution of telomere lengths is
more widely spread in case A2 than A1. Note that some of the mean ±2 sd curves lie
outside the physically relevant region of φdiv ∈ (0, 1). This is due to the distribution
of telomere lengths being non-normal at the start and of the transition to senescence.
For example, at the end of the process, most chromosomes have the same minimum
telomere length, while there are a few with significantly longer telomeres, but none
with telomeres shorter than the minimum. Thus, the distribution will be skewed.

2.4 Case B: Chromosome Division Dependent on Telomere Length

For case A, we distinguish two types of cells: those that can divide and those which
are senescent. In contrast, for Case B, we have three types of cell: (i) cells that divided
in the generation (g − 1) → g; (ii) cells that were already senescent at generation
(g−1); and (iii) cells that could have divided at generation (g−1) → g but did not do
so. We remark that these cells are not senescent since their telomeres are sufficiently
long that they could divide at a later time.

We denote by N (g) the number of cells at generation g and by φdiv(g) the fraction of
cells that divided at generation g, so that φdiv(g) is as given in (3). At each generation,
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we monitor the telomere length of all cells and use this to determine Ns(g), the number
of cells senescent at generation g, that is, those cells that cannot divide because their
chromosome is too short. Then N (g) − Ns(g) represents the number of cells which
could divide at the next generation. We denote by φsen(g) the fraction of senescent
cells at generation g and by φpot (g) the proportion of cells which had the potential to
divide, but did not do so at generation g, so that,

φsen(g) = Ns(g)

N (g)
, φpot (g) = 1 − φdiv(g) − φsen(g), (4)

and this replaces the definition of φsen in (3).
The simulations presented in this section are similar to those presented in Sect. 2.2.

We start with a single chromosome with average telomere length of 5,950 basepairs
(that is, three telomeres of length 6,000 and one of 5,800), and passage its progeny to
senescence. In order to compare results with Case A1, we first choose the simpler case,
B1, in which the number of basepairs lost per replication is length-independent, while
the probability of division is length-dependent. We assume Pdiv = (n − 200)/5750,
so that initially, when n = 5, 950, Pdiv = 1 and when one of the telomeres reaches
the threshold length for senescence (200 bps), Pdiv = 0. We suppose that y0 = 414
bps are lost per replication, so that when the chromosomes are half-way to senescence
(at n = 2, 975), the expected number of basepairs lost per division (y0 Pdiv) is 200
basepairs, as for Case A1.

2.5 Results for Case B1

In Fig. 4a, the average telomere length in Case B1 is shown initially to decrease faster
with generation number than in Case A1. This is because for Case B1, the loss rate
(y(n) = 414 bps per division) is more than twice the value used for Case A1, and
near the start of the simulation most chromosomes are sufficiently long that they have
a high likelihood of dividing.

Although the probability of replication, Pdiv , decreases with telomere length, before
generation 50, Pdiv > 1/2, so the average telomere loss for Case B1 (Pdiv y(n)) is
greater than that for Case A1 (which is only 200 basepairs). At later times, as the
telomeres shorten in length, the average loss rate in Case B1 falls below that for Case
A1. At approximately generation 90, the two curves cross, and thereafter the average
telomere length for Case B1 exceeds that for Case A1. At later generations, Case
B1 exhibits markedly slower convergence to senescence than Case A1. The standard
deviation of telomere length initially increases in a similar fashion in both cases, but
at later times, in Case B1 only decreases a little, whereas the standard deviation of
Case A1 reduces significantly. This is due to the slower onset of senescence for Case
B1.

In Fig. 4b we show how for Case B1 the proportion of each cell type changes with
generation number. The fraction of nonsenescent cells consists of those which divided
(φdiv) and those which did not divide but could have done so, (φpot ). We note that
φdiv decreases and that φsen increases over time. Further, φpot , initially increases with
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Fig. 4 Average results of 1000 simulations for Case B1 with y(n) = 414 and Pdiv(n) = (n − 200)/5750.
a the solid and dashed lines are the average telomere length plotted against generation for Cases B1 and
A1, respectively, with two standard deviations above and below the mean indicated by dash-dotted and
dotted lines. b The dash-dotted line indicates the fraction of senescent cells φsen plotted against generation
number. The solid line indicates the fraction of cells which divided φdiv in the previous generation. The
dashed line indicates the fraction of cells φpot which have the potential to divide, but did not divide in the
previous generation

generation number, attains a maximum between generations 150 and 200, and then
declines to zero.

2.6 Results for Case B2

For Case B2, since the probability of a chromosome dividing varies with telomere
length, we distinguish three types of chromosomes, as for Case B1, using Eqs. (3)–(4)
to calculate φdiv , φsen , and φpot . As for Case B1, we fix Pdiv(n) = (n − 200)/5750,
so that Pdiv = 1 when the average telomere length is n = 5, 950 and Pdiv = 0 when
the average telomere length reaches the threshold value of n = 200. We use a loss rate
of y(n) = 207+n/14, so that half-way to senescence, when n = 2975, Pdiv = 0.487
and y(n) = 420 so that the expected telomere loss is Pdiv(n)y(n) = 205 basepairs,
approximately the same value as for Case A1. A summary of the parameter values
considered is presented in Table 1.

In Fig. 5a, we compare the dynamics of telomere shortening associated with cases
A1 and B2. Initially, the average telomere length for Case B2 (solid line) decreases
significantly faster than in Case A1 (dashed line). However, at later times, Case B2
approaches senescence more slowly than Case A1. This is because the probability of
division for nonsenescent cells and the rate of basepairs on division are both small.
For example, in Case B2, when the telomere length reaches 1,500 bps, (3/4 of the way
to senescence), Pdiv(n) = 0.278 and Y (n) = 314 bps, so the average telomere loss is
only 87 bps, less than half the loss rate associated with Case A1.

The proportion of each type of chromosome (φdiv , φpot , φsen) changes with gen-
eration number in a similar fashion to Case B1 (results not shown). The difference
between Cases A1 and B2 is more noticeable in Fig. 5b, where we compare 1 − φsen ,
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Fig. 5 Comparison of dynamics predicted for Cases A1 (Pdiv = 1, y(n) = 200) and B2 (Pdiv =
(n − 200)/5750, y(n) = 207 + n/14) obtained by averaging results from 1,000 simulations of each case.
a For Case B2, (mean = solid line, ±2 sd = dash-dotted line), the average telomere length decreases more
rapidly than for Case A1, the standard deviations do not rapidly decay to zero. b Case B2 shows a gradual
transition to senescence as the mean fraction of nonsenescent cells, 1 − φsen(n), decreases significantly
more slowly than for Case A1, which shows a sharp transition around generation 150

the fraction of nonsenescent cells. For Case A1, between generations 1–80 all cells
divide; after that, some cells become senescent and the fraction of nonsenescent cells
decreases rapidly from unity to zero. For Case B2, the fraction of nonsenescent cells
φdiv +φpot remains unity until generation 170, about twice as long as in Case A1; and
then decreases only slowly. Since both the probability of division and the amount of
telomere lost decrease, as the generation number increases, the approach to senescence
is extremely slow.

3 Cell Model

3.1 Preliminaries

In Sect. 2, we considered a population of individual chromosomes. In practice, how-
ever, division occurs at the cellular level and cells typically contain many chromo-
somes, this number varying between species. For example, small deer have 6 chro-
mosomes, while carp contain over 100 (Alberts et al. 2008). Since there are 46 chro-
mosomes in normal human cells, in this section, we fix N = 46 to denote the number
of chromosomes in a cell. We start with a single cell, fixing n = 6, 000 basepairs for
each of its N = 46 chromosomes.

Check for senescence Before a cell replicates, we check that none of its telomeres
have fallen below the critical value. If one of the chromosomes has reached the critical
value, then the cell will not replicate and is classed as senescent.

Check for cell division Each chromosome obeys the replication rule (1). For stochastic
simulations, we keep track of the length of each chromosome in each cell. In order to
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present meaningful results, we report the results of simulations using Cg
m to denote a

cell with total telomere length m at generation g. Thus, if n j (g) (with j = 1, . . . , N )
are the lengths of individual chromosomes in a cell, the total telomere length is m =∑N

j=1 n j .
We assume further that if a cell can divide, its probability of undergoing division

depends on the mean telomere length via Pdiv(n) = (a + bn)α where a b and α

are constants and n = m/N . As in Sect. 2 we consider the four cases of telomere
shortening introduced in Table 1.

Rules for division As before we continue to apply length-dependent telomere loss
for each replication, with y(n) = y0 + y1n where y0 and y1 are constants. If a cell
replicates, it produces two daughter cells, with the parent chromosome providing one
chromosome for each daughter cell, although these chromosomes are allocated to the
daughter cells independently and randomly. In consequence, there are 2N ways in
which the 2N daughter chromosomes can be allocated to the two daughter cells.

Check for passaging. We use the passaging method outlined in Sect. 2.1, that is, if the
number of cells exceeds 200, we randomly select 200 from the full population to track
in the next generation; this makes our simulation method similar to the experimental
procedure of passaging. We assume that the rest of the population has similar telomere
length properties as the retained subpopulation. Thus at each generation we record the
telomere lengths in each of 200 cells and plot not only the average telomere length of
chromosomes in the cells but also the shortest telomere length of the 46 chromosomes
in each cell.

In the following subsection, we present results for Case A1 in detail, and in Sect.
3.3 we summarize and compare the results for all four cases.

3.2 Results for Case A1 (y(n) = 200, Pdiv = 1)

In Fig. 6, we present averaged results from 1000 simulations in order to show how
the average telomere length changes with generation number. Figure 6a reveals that
as the generation number increases from 1 to 90, the mean telomere length of the cells
decreases linearly, while the standard deviation increases but remains small. After
generation 90, all curves undergo a sharp transition and plateau at constant values; the
mean telomere length being about 1,100 bps. Figure 6a also shows that the average
length of the shortest telomere in each cell decreases linearly but at a slightly faster rate
than that at which the average telomere length decreases. The shortest telomere reaches
the critical length of 200 basepairs at about generation 100 causing the population to
become senescent with an average telomere length of 1,100 basepairs; as the shortest
telomere reaches the critical value, the whole cell stops replicating. In Fig. 6b we
show how the fraction of dividing cells changes with generation number: between
generations 90 and 100, all cells become senescent.

In order to understand better how senescence arises, in Fig. 7 we show how the
distribution of telomere lengths from a particular simulation or realization changes
with generation number. As the generation number increases the distribution spreads
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Fig. 6 Results for Case A1, where the loss term is y(n) = y0 = 200 bps and cells divide whenever
possible, that is, Pdiv = 1. Averages are taken over 1,000 simulations. a The dashed line shows average
telomere length of the chromosome plotted against generation number, the solid lines above and below
are the average telomere length plus and minus twice the standard deviation, respectively. The dash-dot
line shows the average length of the shortest telomere in each cell. b The fraction of dividing cells plotted
against generation number, plus/minus two standard deviations

out as it moves to the left, towards shorter telomere lengths. The results for generations
110, 130, 150 are identical, indicating that the cells here became senescent.

3.3 Comparison of Results for Cases A and B

In this section, we present simulation results similar to those presented in Sect. 3.2.
We start with a single cell containing 46 chromosomes, each with 3 telomeres of
length 6000, and one of length 5,800 bps. We follow its progeny to senescence. In
our previous simulations (see Sects. 2.3, 2.5, 2.6), we assumed that the chromosome
division probability Pdiv was either constant (α = 0 in equation (2); Case A) or
linearly dependent on telomere length (α = 1 in Eq. (2); Case B). In this section, we
consider cases for which 0 ≤ α ≤ 1. For Cases A1 and B1, the amount of telomere
lost per replication is fixed, that is y1 = 0 and the parameters a, b, and y0 in (2) are
chosen to ensure that the average telomere loss per chromosome replication is 200
basepairs. We fix α = 0, 0.25, 0.5, 0.75, 1 separately with a constant telomere loss
of y(n) = y0, whereas for Cases A2 and B2 telomere loss is length-dependent, y(n).
The parameter values are listed in Table 2, and give approximate telomere losses of
200 basepairs per chromosome replication when the system is half-way between the
initial conditions and senescence.

As before, for Case A1, the cell always divides if all telomeres of all chromosomes
exceed the critical length (that is, Pdiv = 1), and the loss of telomere is constant (200
basepairs). Case A2 also has Pdiv = 1, but telomere loss in each replication depends
on telomere length, via y = y0 + ny1 with y0, y1 specified in Table 1.

For Case B1, the number of basepairs lost per replication is fixed (y0 > 0,
y1 = 0), whereas the probability of replication is telomere length dependent with 0 <

Pdiv(n) < 1. We assume Pdiv(n) = (a +bn)α with a = 1/5750 and b = −200/5750
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Fig. 7 At generations 10, 30, 50, 70, 90, 110, 130, 150, we plot histograms showing the distribution of
average telomere lengths from a sample of 200 cells chosen at random. The cells replicate according to
Case A1. Note that for clarity, the horizontal scale (average telomere length) has been reduced by a factor
of 10

as in Table 1. Here n is the mean telomere length over the cell. We consider four differ-
ent values of α and y0, (see Table 2); the values of α being chosen to ensure that when
the mean telomere length is n = 2975 bps, the expected loss Pdiv(n)y(n) is 200 bps.

In Case B2, we consider the same range of values for α, but now both the division
probability and the loss term are length-dependent so that Pdiv = (a + bn)α and
y(n) = y0 + ny1. For the purposes of illustration, we fix y0 by taking half the value
used in Case B1, and choose y1 so that 2975y1 = y0, and when n ≈ 3000, the total
y0 +ny1 is the same as the value of y0 in Case B1. If we were to take the more extreme
case where y0 = 0, then the telomere loss term yn = ny1 would decrease to zero for
short telomeres, giving a degenerate approach to senescence.

We partition the ten Cases listed in Table 2 into two groups, according to whether
telomere loss depends on telomere length: for Cases A1 and B1 telomere loss is fixed,
whereas for Cases A2 and B2 the loss term depends on telomere length. For Cases A1
and A2, we distinguish two types of cells: those which can divide and those which
are senescent. However, in Cases B1 and B2 the probability of cell division depends
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Table 2 The parameter values for the 10 different cases, each of which has an expected telomere loss of
about 200 bps per chromosome replication when half-way to senescence (n = 3, 000)

Case α y0 y1

Case A1 0 200 0

Case A2 0 100 1/30

Case B1.1 0.25 240 0

Case B1.2 0.5 288 0

Case B1.3 0.75 345 0

Case B1.4 1 414 0

Case B2.1 0.25 120 1/25

Case B2.2 0.5 144 1/21

Case B2.3 0.75 172.5 1/17

Case B2.4 1 207 1/14

The loss is given by y(n) = y0 + ny1 and the probability of division is Pdiv = (a + bn)α = ((n −
200)/5750)α , that is, a = −200/5750 and b = 1/5750

on telomere length and, as in the chromosome model, we distinguish three types of
cells: those which have just divided (φdiv), those which could have divided but did not
(φpot ), and those which are senescent (φsen). To compare Cases B and A, we define
the fraction of nonsenescent chromosomes in Case B as (φdiv + φpot ) = φnonsen .

In Fig. 8a we compare Case A1, with various examples from Case B1. Case A1
is the simpler model in which cells always replicate (that is Pdiv = 1), and telomere
is lost at a fixed rate of 200 bps per replication. In Case B1, there is a probability
of cell division, Pdiv = ((n − 200)/5750)α and the loss rate is constant y(n) = y0
with 240 ≤ y0 ≤ 414, the precise value depends on α according to Table 2. The plot
shows how the average telomere length of the cells changes with generation number
for different values of α. Before generation 80, Case B1.4 loses telomeres at the fastest
rate followed by Cases B1.3, B1.2, B1.1, and A1.

Figure 8a also shows that when the cells reach senescence, Case B1.4 yields cells
with the longest telomeres (closely followed by B1.3). Because Case B1.4 has the
largest loss term y(n) = y0, it also has the largest critical threshold length. As the
generation number increases, Case A1 shows a sharp transition from linear loss (at a
relatively slow rate) to senescence. By contrast, Cases B1.1–B1.4 exhibit increasingly
smooth and diffuse transitions, from linear loss to a plateau. This is because the rate
of loss of telomere declines as the telomeres shorten.

In Fig. 8b we show how the fraction of dividing cells changes with generation
number for the different cases. As before, Case A1 shows a sudden transition near
generation 100, while the transitions for Cases B1.1–B1.4 are more gradual. In all
cases, however, the cells become fully senescent around generation number 100.

The behavior of Cases B2 and A2 is almost identical to that of B1 and A1. However,
Fig. 8c, d differ from Fig. 8a, b because we have plotted these results against population
doubling (pd) instead of generation number. If we denote the total number of cells in
the population by N (g) we have, from (3)
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Fig. 8 Average of 1,000 simulations, parameters given in Table 2. a Average telomere length plotted
against generation number. b The same data as (a), showing the fraction of dividing cells φdiv(g) plotted
against generation number. c Average telomere length plotted against population doubling. d The fraction
of dividing cells, 1 − φsen , plotted against population doublings

Table 3 Values of pw and x used in simulations of Werner’s syndrome

pw 0 0.2 0.4 0.6 0.8 1

x 0 1000 500 333 250 200

Note xpw = 200 in all cases except the first

N (g + 1) = (1 + φdiv(g))N (g), and pd = log2

(
N (g)

N (0)

)
. (5)

Thus, even though g can increase without limit, pd will reach a maximum when
φdiv = 0, that is, when all cells are senescent. Comparing the results in Fig. 8c, d we
observe that Case B2.4 reaches senescence with the smallest number of population
doublings, that is the smallest total number of cells, and Case A2 yields the largest
final population size.
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Fig. 9 The four ways in which telomere shortening can occur with Werner’s syndrome and normal aging.
The thick lines represent the template (parent) strands and the thin lines represent the replicated strands of
the template in the daughter chromosomes. The arrows show the directions of replication

4 Modelling Werner’s Syndrome

In this section, we generalise the above models to describe Werner’s syndrome. We
start with models in which each cell contains a single chromosome and where Werner’s
syndrome manifests itself via the deletion of extra basepairs from each telomere. We
then upscale these models to study cells that contain many chromosomes.

4.1 Development of the Chromosome Model

As above, we denote by m and n the lengths of the telomeres at each end of the
chromosome. During replication, y basepairs are lost from one of the daughter chro-
mosomes due to normal aging. We introduce an additional degree of stochasticity into
the replication process by defining a probability pw that during replication, one of
the daughter chromosomes suffers a further telomeric loss of x bps due to Werner’s
syndrome.

To allow a fair comparison of different values of pw we choose x and pw so that
the expected loss due to Werner’s syndrome is the same in all cases, that is xpw =
constant (see Table 3 for a list of the values considered). For comparison, we also
present results for the case pw = x = 0 which corresponds to normal aging.

In more detail, at the start of replication, for each cell, (and on each generation), we
generate a random number r from a uniform distribution over [0,1). If r < pw then
replication occurs as described below; otherwise, if r ≥ pw, then normal replication
occurs as in (1). The four ways in which an additional deletion can occur are depicted
in Fig. 9. If we assume that the probability px of each of these replication rules are
the same, then Fig. 9 can be written as
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(
m n
m n − y

)
→

(
m − y n − y

m n − y

)
+

(
m n − x
m n − x − y

)
,

with probability px = 1

4
, (6a)(

m n
m n − y

)
→

(
m − y n − y

m n − y

)
+

(
m − x n
m − x n − y

)
,

with probability px = 1

4
, (6b)(

m n
m n − y

)
→

(
m − y n − x − y

m n − x − y

)
+

(
m n
m n − y

)
,

with probability px = 1

4
, (6c)(

m n
m n − y

)
→

(
m − x − y n − y

m − x n − y

)
+

(
m n
m n − y

)
,

with probability px = 1

4
. (6d)

In normal aging, chromosomes stop replicating when the telomere length reaches
a critical value, which we have assumed to be zero. However, in Werner’s syndrome,
senescence is less well defined, since it depends on whether the extra deletion occurs
in the same place as the loss due to normal aging, or at a different end. For example,

consider the case n = y, for which the telomere can be schematised as

(
m y
m 0

)
.

Strictly speaking, (6) suggests that there are four possible outcomes. However, rules
(6a) and (6c) lead to physically unrealistic telomere lengths; we will assume that these
outcomes cannot occur, and in such cases the parent chromosome remains undivided.
Thus, when one end of a Werner’s syndrome chromosome nears the critical telomere
length, the three possible outcomes following replication are

(
m y
m 0

)
→

(
m − y 0

m 0

)
+

(
m − x y
m − x 0

)
,

with probability px = 1

4
, (7a)(

m y
m 0

)
→

(
m − x − y 0

m − x 0

)
+

(
m y
m 0

)
,

with probability px = 1

4
, (7b)(

m y
m 0

)
→

(
m y
m 0

)
, with probability px = 1

2
. (7c)

Equation (7a) corresponds to (6b) in the case n = y, and similarly, (7b) corresponds
to (6d).
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Fig. 10 a Average telomere length plotted against population doubling for simulations of Werner’s syn-
drome. b The proportion of nonsenescent cells plotted against population doubling for Werner’s syndrome
simulations. For each value of p = pw , we present results obtained by averaging over 2,000 simulations.
For parameter values, see Table 3

To summarize, when a Werner’s syndrome deletion occurs, replication follows one
of Eqs. (6a–6d), each outcome occurring with probability px = 1/4, provided that the
telomere length exceeds the critical telomere length. If, during replication, telomere
loss would result in a length below the threshold, then replication will not occur, as in
(7c).

We use the same initial data as in earlier sections, that is, we start simulations with
a single chromosome three of whose telomeres have lengths m = n = 6, 000 bps, and
one of length 5,800 bps. We assume a loss of telomere of y = 200 bps per replication
due to normal aging, as in Case A1, and we continue to define as senescent those
chromosomes whose telomeres are less than 200 bps in length. We use the passaging
method described in Sect. 2.1.

4.2 Results for the Chromosome Model of Werner’s Syndrome

Our aim is not only to contrast normal aging with Werner’s syndrome, but also to com-
pare alternative characterisations of Werner’s syndrome; that is, we compare frequent
losses of a small amount of telomere (large pw, small x) with rare losses of larger
amounts (small pw, larger x).

Figure 10a shows how the average telomere length varies with population doubling
and the probability of undergoing a Werner’s deletion increases. We observe that
when pw > 0, all cases yield similar results, because the average rate of telomere
loss per replication event is the same (200 basepairs). For Werner’s syndrome, that
is, pw > 0, as the number of population doublings increases, the average telomere
length decreases linearly for the first 50 pds (in contrast to 100 pd when pw = 0).
There ensues a second period, of about 50 pds, during which the rate of telomere loss
occurs at a slower rate, until, by approximately pd 100, the entire population becomes
senescent.
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Table 4 Summary of the key
data from Figure 10

pw x pd at which
senescent cells
first appear

Final number
of population
doublings

Mean telomere
length at senes-
cence

0 0 85 150 250

0.2 1000 11 110 387

0.4 500 20 93 300

0.6 333 27 89 216

0.8 250 31 89 247

1 200 35 97 244

We summarize the data from Fig. 10 in Table 4. As might be expected, the smallest
pd at which senescence occurs is for the system with the largest deletion (x = 1000),
whereas the latest occurs for the system with the smallest deletion (x = 200) at pd 35.
Note that this is not where the change in gradient in the curves in Fig. 10a occurs. As
expected, Table 4 also reveals that Werner’s syndrome cells reach senescence faster
than normal aging (pw = 0); all Werner’s syndrome populations become senescent
after 93±4 population doublings apart from the case pw = 0.2, which takes only
slightly longer. The final dataset shown in Table 4 is the average pd at which the whole
system becomes senescent. This shows that the cases with rare but massive telomere
deletions due to Werner’s syndrome become senescent with longer telomeres than
those cases with more frequent but shorter deletions. Also as noted above, cases with
large but rare deletions actually yield more pds than the smaller frequent deletions.
Figure 10b shows how the fraction of nonsenescent chromosomes φdiv varies with
pd and with pw. The graphs are similar for pw > 0, with perhaps the case of pw =
0.2 exhibiting more interesting behavior. All curves depart from φdiv = 1 at the
population doubling (pd) where senescence starts (central column of Table 4); however,
we observe senescence of the whole population at approximately the same pd for all
pw > 0. When pw = 0.2 the proportion of dividing cells initially declines only slowly;
while later, around pd 85, there is a transition to a more rapid increase in senescence.
The case with pw = 0.2 reaches senescence a few pds later than those cases with
higher values of pw, as can also be seen in Fig. 11.

In Fig. 10, we present the averaged results, with no measure of the degree of
variability within the simulation data. In Fig. 11a we show how the standard deviation
of the average telomere length varies with pd. For Werner’s syndrome (pw > 0), the
larger x is (smaller pw), the larger the standard deviation of average telomere length
throughout the simulation. The standard deviation starts at zero as all simulations
have the same initial data of a single of chromosome. Initially, the standard deviation
increases with the square root of pd as one would expect, reaching a peak, which occurs
earlier for larger deletions, x . Comparing these figures with Table 4 we note that the
peak occurs just after the chromosomes start to senescence. The standard deviation
then decreases linearly with pd, approaching zero when the entire population reaches
senescence.
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Fig. 11 a The standard deviation of the telomere length plotted against population doubling, the same
data as in Fig. 10a. b The standard deviation of the fraction of nonsenescent chromosomes plotted against
population doubling, again, the same data as in Fig. 10b

Figure 11b shows how the standard deviation of the fraction of dividing (nonsenes-
cent) chromosomes varies with pd. At early times the standard deviation is identically
zero since all chromosomes are dividing in all simulations. Once some senescent chro-
mosomes appear in some simulations (see Table 4), the standard deviation increases
gradually, reaching a maximum shortly before total senescence of the whole pop-
ulation occurs, and then the sd decreases rapidly as the entire population becomes
senescent. The shape of curves is broadly similar for 0.4 ≤ pw ≤ 1, while pw = 0.2
is a little more like that of normal aging, having a gradual increase at intermediate
times with a significant acceleration just before the maximum, which occurs at larger
pd than other cases of Werner’s syndrome (pw > 0.2).

4.3 Results for the Stochastic Cell Model of Werner’s Syndrome

We now use the techniques outlined in Sect. 3.1 to extend the single chromosome
model to a cell-level model, with N = 46 chromosomes per cell. We apply the
replication rules (6–7) with probability pw to each chromosome in each cell, and use
Eq. (1) otherwise. If one chromosome is unable to divide, due either to normal aging
or Werner’s syndrome, the cell is unable to divide, but is retained in the population
and may attempt to divide in a subsequent generation.

We record the average telomere length and the fraction of dividing cells over each
generation. We find that both quantities evolve in a similar fashion to the single chro-
mosome model; the main difference is that a cell with N = 46 chromosomes becomes
senescent earlier, and with much longer telomeres, than the single chromosome model.

In order to illustrate the distribution of telomere lengths in Werner’s syndrome,
we record both the average telomere length and the shortest telomere of 200 cells in
one simulation, every five generations from 15 to 45. The resulting data, presented
in Fig. 12, shows that, as the generation number increases, the mean telomere length
steadily reduces while the distribution of telomere lengths slowly spreads out. The
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Fig. 12 Histogram of average telomere length (left) and shortest telomere length (right) of the cell in a
simulation of Werner’s syndrome with pw = 0.2 and x = 1, 000. The horizontal scale in graph is reduced
by a factor of 10, that is, 0 ≤ n ≤ 6, 000 bps

distribution of the shortest telomere lengths exhibits distinct behavior: at generation
15 the distribution is bimodal, but as the generation number increases, the distribution
becomes unimodal again (the initial conditions having been unimodal) and approaches
zero telomere length. The bimodality is due to a significant number of cells having
suffered a massive Werner’s deletion, while others have undergone only normal aging;
for example, at later times, some telomeres may have undergone three or four massive
deletions and others only one or two. At generation 45, the shortest telomere length
of almost all cells is close to zero and so they are senescent. The telomere lengths of
many other chromosomes in the cell are still sizable, so the average telomere length
remains fairly large, specifically about 2500 bps. Thus, if data were available on the
distribution of telomere lengths in replicating cells and in the population of senescent
cells, it would be possible to determine roughly the size of deletions (x) and the
probability of additional Werner’s deletions occurring (pw).
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Fig. 13 a Average telomere length plotted against population doubling; solid line shows our simulation
results, the dotted line, the fit of Levy et al. (1992), circles show the experimental data from Levy et al. (1992).
b Again, average telomere length is plotted against population doubling; the circles show experimental data
from Zhang et al. (2000), the dotted line shows the results of Buijs et al. (2004) and the solid line is our
simulation data (Case A1). Note that the solid and dotted lines coincide. c The number of cells plotted
against generation number, the solid line indicates results from our Case B1 and the dotted line is a fit
to a Gompertzian growth model. All three plots demonstrate the close agreement between our simulation
results, those of previous models, and experimental data

5 Discussion

In this paper, we have developed chromosome- and cell-level models of telomere
loss during replication and compared alternative models of telomere shortening dur-
ing replication. In this section, we compare our results with experimental data and
simulations obtained by other groups.

The first case we consider is that in which a fixed amount of telomere is lost
during chromosome/cell replication, and in each timestep the cells divide if their
telomeres are long enough to allow replication (Case A1). Levy et al. (1992) modeled
telomere shortening of chromosomes with a constant telomere loss caused by the
“end-replication” problem. Their model predicted average telomere length decreasing
linearly with generation number. In our first model, we see that the average telomere
length of the chromosomes in the cell decreases linearly as the population doubling or
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generation numbers increase. This behavior only occurs before appreciable numbers
of cells become senescent, and this result is consistent with the work of Levy et
al. (1992). In Fig. 13a, we compare our results with the data used by Levy et al.,
and find that our simulation results are identical to Levy’s work (the two curves are
indistinguishable). This is as expected since their model is fundamentally the same as
our Case A1. Our Case A2 corresponds to the situation in which the amount of telomere
loss during chromosome replication is dependent on the length of the telomere. Buijs
et al. (2004) showed that the shortening process was dependent on telomere length.
They fitted experimental data of the distributions of telomere lengths at various stages
of the shortening process to normal, log normal and Weibull distributions, with a
loss term that is linearly dependent on telomere length as in (2). Figure 13 b shows
that our simulation results are consistent with the results of Buijs et al. and with the
experimental data which they used.

In Case B1, cell division is assumed to be a random process with the probability
of a cell or chromosome replicating being dependent on telomere length. The amount
of telomere lost per replication is fixed. Portugal et al. (2008) developed a similar
stochastic model, though their focus was on the growth rate of the cells, rather than
average telomere length. They predicted Gompertzian growth in the cell population.
Figure 13c shows that the total cell population in our simulations can also be fitted
by a Gompertzian growth law. This has the form N = a exp(−be−ct ) where N is the
total number of cells, with a, b, c > 0; such a growth law satisfies the differential
equation dN/dt = cN log(a/N ). While N grows exponentially at early times, the
term log(a/N ) decreases linearly, and then saturates at zero as N increases to a. In our
model we have dN/dt = γ Nφdiv(t), with φdiv exhibiting similar behavior, namely
linear decay to zero, although this follows a period during which φdiv = 1. Thus,
Gompertzian growth is broadly consistent with our model.

While models A1, A2, and B1 have been used by other researchers, Case B2 is new.
In this case, we combined telomere length-dependent loss with a model in which the
probability of replication is also dependent on telomere length. When the parameters
are chosen appropriately, all earlier models can be recovered as special cases. In Eq.
(2) which governs how the number of basepairs lost and the probability of division
depends on telomere length, n; we fix y1 = 0 and α = 0 for Case A1, so that the
amount lost is length-independent (y(n) = y0) and all nonsenescent cells divide,
Pdiv = 1. For A2, we fix α = 0 so that Pdiv = 1 but the loss term y(n) = y0 + y1n is
left general; and for B1, we take y1 = 0 so that the loss term is constant, y(n) = y0,
but the probability of division is left general.

While Levy et al. (1992), Portugal et al. (2008) and Buijs et al. (2004) have con-
sidered populations of independent chromosomes undergoing replication following
Cases A1, A2, and B1, we have generalized their results to investigate replication of
cells which contain N = 46 chromosomes. We consider how the fraction of dividing
cells (chromosomes) changes as the generation number increases. We notice that chro-
mosomes become senescent when their telomeres have reduced to about 150–250 bps
in the model where chromosomes replicate independently. However, in the model with
46 chromosomes per cell, when the cells reach senescence, the telomeres have lengths
of about 1,150–1,500 bps per chromosome. This is because if the length of even one
chromosome falls below the critical value then all other chromosomes, which contain
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Fig. 14 Average results of 200 simulations of the cell-level model, Case B2, in which both the number of
base pairs lost in replication, and the probability of a cell dividing are dependent on telomere length, via
(2), with values given by Y (n) = 10 + 0.043n and Pdiv(n) = (n/12200 − 0.03)0.25 respectively. a Mean
telomere length plotted against population doubling, (solid line), the dashed lines indicate two standard
deviations above and below the mean. Circles show the experimental results of Zhang et al. (2000).
b The mean fraction of nondividing cells plotted against population doubling, (solid line), the dashed lines
indicate two standard deviations above and below the mean. The anomalously large standard deviation in
the first few population doublings is due to there being few cells present in the simulations at early times.
Since the simulations start with one cell and in the later stages retain only 200 cells, it takes eight generations
for the population to reach 200 cells. Note in particular, the good agreement in b where there is a sudden
sharp increase in the fraction of nondividing cells around pd 65. This is due to the majority of cells in the
population becoming senescent around this population doubling

longer telomeres, also cease dividing. Thus, if we consider an increased number of
chromosomes per cell, the average telomere length at which they become senescent
will also increase.

Figure 14 demonstrates that our stochastic simulation results for the cell-level model
of Case B2 can be fitted to the experimental data of Zhang et al. (2000). Both the
average telomere length and the fraction of replicating (nondividing) cells are plotted
against pd. We use our model to estimate the rate of telomere loss and the probability
of a cell division. We use an initial telomere length of 12,200 basepairs, the amount
of telomere loss is Y (n) = 10 + 0.043n and the probability of a cell dividing is
Pdiv(n) = (n/12200 − 0.03)0.25.

6 Conclusions

In this paper, we have developed a series of increasingly complex mathematical mod-
els to study telomere shortening in a population of healthy aging chromosomes, and
in a population of cells each of which contains N = 46 chromosomes. We have also
generalized these models to investigate the effects of Werner’s syndrome. In normal
aging, y basepairs are lost from a telomere in each replication; in Werner’s syndrome,
there is an additional loss of x basepairs at one or other end of one of the daugh-
ter chromosome in some or all replication events. In each model, we have simulated
systems in which the amount of telomere lost is fixed, or is length-dependent; cases
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where cells/chromosomes divide whenever possible, or when there is a probability
of division which depends on telomere length. For Werner’s syndrome, we have con-
sidered cases where a small amount of telomere is lost every replication, and cases
where there is a probability of a much larger deletion. We expect the latter case to be
the more relevant, since it leads to the more gradual reduction in the proportion of
proliferating cells, note that the p = 0.2 curve in Fig. 10 provides a better to fit to Fig.
2 of Faragher (2004) than any of the p values.

Comparing the results of Werner’s syndrome and normal aging, we have seen that
Werner’s syndrome cells (chromosomes) reach senescence significantly earlier than
normal cells, which confirms that Werner’s syndrome accelerates the aging process
matching a characteristic clinical feature of Werner’s syndrome, namely the prema-
ture appearance of aging (Yamamoto et al. 2003). Another significant observation
from our results is that when cells with Werner’s syndrome become senescent, they
contain longer telomeres than cells subject to normal aging alone, and a broader range
of telomere lengths. Figure 12 indicates that the shortest telomere length in the cell
reaches the critical value while the average telomere length is still quite long. These
results are consistent with the explanation of Chang (2005), who predicted that popula-
tions of cells with Werner’s syndrome will contain some very short telomeres with the
majority retaining longer telomeres. Thus, in Werner’s syndrome, we observe not only
an accelerated telomere shortening, but also a higher variability in telomere lengths
causing premature senescence. Both these properties contribute to accelerated aging
that characterizes Werner’s syndrome.

This greater variance is maximised with the largest values of loss and the smallest
probability of extra Werner’s deletions. This case also gives rise to a multi-peaked
distribution of the shortest telomere lengths in each cell.

In the case of normal aging, with fixed loss and all cells dividing whenever their
telomeres are sufficiently long we see a linear decrease in average telomere length, with
a sharp transition to senescence. In the more general cases where telomere loss and/or
the probability of division are length-dependent, the population’s progression into
senescence and transition from telomere shortening to a plateau are much smoother.
We note that the total number of cells/chromosomes in the population fits well to a
Gompertzian growth curve, as shown in Fig. 13c.

Finally, in Sect. 5 we have compared our models against experimental data from the
literature, and the models of other theoreticians. We have plotted the average telomere
length against population doubling. We have found good fits both to the models of
Levy et al. (1992) (see Fig. 13) and Buijs et al. (2004), and the data of Zhang et al.
(2000). The fit shown in Fig. 14 yields only a weakly length-dependent probability of
replication, Pdiv = (n/12200 − 0.03)0.25 which has the range 0.785 < P < 0.992
for 5000 < n < 12200, but a strongly length-dependent telomere loss term of the
form Y (n) = 10 + 0.043n giving the range 225 < Y < 535.

In another paper Qi et al. (2013), we use asymptotic techniques to investigate
how, for normal aging, quantities such as the telomere length, and the fraction of
senescent cells vary with time (population doubling or generation number), as well as
the shape of the distribution of telomere lengths. This theory describes the kinetics of
the rules simulated here by a discrete dynamical system which, using techniques from
asymptotic analysis, can be approximated by a partial differential equation, for which
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the exact solutions are available in a number of cases. This work builds on the papers
of Antal et al. (2007) and Hirt et al. (2013). Further simulation results and theoretical
analysis is available in Qi (2011). In future work Qi et al. (2014), we propose to model
and analyze the effect of the telomere-lengthening enzyme telomerase, using both
simulations and asymptotic approximations.
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