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Abstract
Certain miRNAs can attenuate hypoxia/re-oxygenation-induced autophagic cell death reported in our previous
studies, but how these miRNAs regulate the autophagy-related cellular signaling pathway in preventing cell death is
largely unknown. In the current study, the autophagy-related miRNAs of hsa-miR-20b were investigated in an in vitro
model of hypoxia/re-oxygenation-induced endothelial autophagic cell death. Of these, miR-20b was found to be the
most important miRNA which targeted on the key autophagy kinase ULK1 and inhibited hypoxia/re-oxygenation
injury-induced autophagy by decreasing both autophagosomes and LC3I to II transition rate and P62 degradation.
These processes were reversed by the transfection of an miR-20b inhibitor. Re-expression of ULK1 restores miR-20b-
inhibited autophagy. Propofol, a commonly used anesthetic, promoted miR-20b and METTL3 expression and
attenuated endothelial autophagic cell death. The inhibited endogenous expression of miR-20b or silenced METTL3
diminished the protective effect of propofol and accentuated autophagy. Additionally, METTL3 knockdown
significantly inhibited miR-20b expression but up-regulated pri-miR-20b expression. Together, our data shows that
propofol protects against endothelial autophagic cell death induced by hypoxia/re-oxygenation injury, associated with
activation of METTL3/miR-20b/ULK1 cellular signaling.

Introduction
Endothelial cell functional and structural damage

together with other risk factors including adhesion
molecules, inflammation cytokines, and clotting factors1–4

are the underlying causes of vital organ injury or cardio-
vascular disease. These pathological changes finally
result in the development of vascular obstruction with

angiosclerosis, thrombogenesis, and atheromatous plaque
formation to block blood supply towards stroke and/or
myocardial infarction5. On the other hand, reperfusion
following thrombolytic therapy or stent implantation can
cause further vital organ cell injury including endothelial
cell injury. Thus, how to effectively protect from organ
and endothelial cell injury induced by any insults
including ischemia reperfusion is the key of the preven-
tion and/or treatment of vital organ injury or cardiovas-
cular disease.
Autophagy is a physiological process in which damaged

proteins or cell organelles are sequestered within autop-
hagosomes and then fuse with lysosomes for degrada-
tion6. However, excessive autophagy can promote cell
death, especially in myocardial cells and endothelial cells.
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As the core component of the autophagy initiation com-
plex, ULK1 plays an important role in autophagy7.
Environmental factors such as a lack of nutrition, viral
infection, or insulting conditions, may stimulate ULK1
and Beclin1 expression or over-expression which in turn
may lead to cell death8,9. Early studies suggest that myo-
cardial cell survival in stressful environments can be
improved significantly through autophagy activation10,11.
However, dysregulated and sustained autophagy in certain
circumstances can inhibit cell proliferation, and even
accelerate myocardial cell death12,13. Reperfusion injury
can be the consequence of immoderate autophagy, but the
motive of its duration during reperfusion injury is still
largely unknown14. Therefore, the direct contribution of
the key factor ULK1 in the process of ischemia reperfu-
sion injury requires further study.
Propofol, a widely used intravenous anesthetic, has been

reported to inhibit ROS-mediated lipid peroxidation,
alleviating myocardial reperfusion injury and reducing
myocardial stress in patients undergoing cardiac sur-
gery15. Studies have found that propofol inhibits the
activity of nuclear transcription factor NF-kβ during
ischemia reperfusion injury and reduces the adhesion
force of endotheliocytes16. In addition, propofol inhibits
hydrogen peroxide-induced myocardial apoptosis and
attenuates myocardial ischemia reperfusion injury by
regulating autophagy-related genes17–21.
MicroRNAs (miRNAs), a novel class of short and non-

coding RNAs which contain 20–24 nucleotides, are
intracellular post-transcriptional gene regulators that
negatively control gene expression via degradation or
translation inhibition of their target mRNAs22. A previous
study demonstrated that the high expression of miR-204
in myocardial cells can significantly suppress the cardio-
myocyte autophagy induced by ischemia reperfusion
injury, as miR-204 can inhibit the expression of LC3II23.
Recently, it has been shown that propofol post-treatment
in an in vitro model of hypoxia/re-oxygenation (H/R) led
to a noticeable change in a series of miRNA expression24.
However, whether there was an association between these
miRNAs and the protective effect of propofol on H/R
injury is still unknown.
N6-methyladenosine (m6A) RNA methylation is one of

the most common transcriptional modifications, which
plays a pivotal role in all stages of the life cycle of RNAs,
including splicing process, stability, translation efficiency,
and nuclear retention of mRNAs and noncoding
RNAs25,26. The m6A methyltransferase complex, which
contains methyltransferase like 3 (METTL3), methyl-
transferase like 14 (METTL14), and WT1-associated
protein (WTAP), plays an important role in the mod-
ification of m6A27,28. Among them, METTL3 is the most
reported m6A methyltransferase that can promote the
maturation of miRNAs29.

In the present study, we found that the level of miR-20b
and METTL3 were significantly increased while ULK1
was substantially reduced in the presence of propofol
post-hypoxia treatment in an in vitro endothelial cell H/R
model. Our current study aims to investigate the role of
miR-20b, METTL3, and ULK1 on the protective effects of
propofol-posttreatment against endothelial cell injury
induced by hypoxia reperfusion in vitro.

Results
miR-20b regulated the expression of ULK1
ULK1 is an autophagy initiating factor that is required

for autophagy induction30,31. MiR-20b is predicted to
target ULK1 which contains two sites within the 3′UTR at
nucleotides 475–482 (site 1) and 771–777 (site 2),
respectively (Fig. 1a). Using a luciferase reporter con-
struct, we showed that ULK1 activity was suppressed by
miR-20b (20b) and subsequently restored through use of
an miR-20b inhibitor (IN 20b) (Fig. 1b). Simultaneous
mutation of both sites or only the site 1 hardly influenced
the luciferase activities, but mutation of the site 2 affected
the luciferase activities (Fig. 1b), indicating that site 1 is
the specific binding site of miR-20b. Site-directed muta-
genesis indicates that site 1 is the specific binding site for
miR-20b. Luciferase activity remains constant in the
presence of a site 1 mutation, but remains variable when
only a site 2 mutation is present.
The expression of miR-20b and ULK1 in HUVECs was

significantly decreased by the miR-20b inhibitor (IN 20b)
or miR-20b mimics (20b), respectively (Fig. 1c, d). This
inhibition was further verified through Western blot
analysis (Fig. 1e, f). Conversely, IN 20b increased ULK1
expression through its inhibition of endogenous miR-20b.

Propofol post-treatment inhibited on autophagy induced
by H/R
To investigate the protective effects of propofol against

H/R-induced injury, cultured HUVECs were treated with
propofol at various concentrations after H/R insult (Fig.
2a). H/R induced the expression of the autophagy-related
protein ULK1 and Beclin1, and increased the transition of
LC3I to LC3II. Those changes induced by H/R were sig-
nificantly reversed by treatment with propofol, in parti-
cular at the concentration of 100 μmol/L (P100) but not of
150 μmol/L (P150) (Fig. 2b–e). Immunofluorescence
staining with anti-LC3 (green) and anti-TOM20 (red)
antibodies was in line with the results from Western
blotting (Fig. 2f). H/R induced a significant number of
LC3 puncta and fragmented mitochondria while cells
were recovered to relative normal morphology upon
propofol treatment except at the concentration of
150 μmol/L (p < 0.05). The propofol (100 μmol/L) treat-
ment significantly reduced the expression of autophagy-
related genes Beclin1 and ULK1, while inducing levels of
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Fig. 1 miR-20b targets ULK1 and regulates its expression. a Luciferase reporter constructs. The 3′UTR (1–1801 bp) of ULK1 was inserted
downstream of the firefly luciferase gene of the pmirGLO vector, named pmirGLO-ULK1. MRE denotes miRNA response element. b Luciferase
reporter assay of the interaction between miR-20b and the predicted MRE in HUVECs. Each pmirGLO-ULK1 was co-transfected with negative control
(NC), miR-20b mimics (20b), inhibitor NC (IN NC), or miR-20b inhibitor (IN 20b) into HUVECs. Detection of the luciferase activity was done after 24 h.
The firefly luciferase activity was normalized to Renilla. c, d qPCR was performed to detect the expression of miR-20b and ULK1 in HUVECs,
respectively. e, f HUVECs lysates were prepared and subjected to western blot analysis by using anti-ULK1 antibody. Data were mean ± SEM (n= 3);
*p < 0.05,**p < 0.01, ***p < 0.001.
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Fig. 2 (See legend on next page.)
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miR-20b expression comparable to that of the H/R and
DMSO group (Fig. 2g–i).

miR-20b regulates H/R-induced autophagy by targeting
ULK1
In order to verify whether miR-20b is involved in the

protective effects of propofol on H/R-induced autophagy,
we built the model as shown in Fig. 3a. We first investigated
whether overexpression of miR-20b could restrain H/R
induced-autophagy. The miR-20b-transfected HUVECs
showed a high level of p62 and low ratio of LC3II/LC3I and
low expression of autophagy-related proteins ULK1 and
Beclin1 than that of the NC group. However, the IN 20b-
transfected cells showed the opposite effect (Fig.3b–f).
Similar findings were observed through immunofluorescent
staining with anti-LC3 (red) and anti-P62 (blue) antibodies.
MiR-20b inhibited the LC3 puncta formation while inhi-
biting the degradation of P62. Conversely, this effect was
reversed by IN 20b (Fig. 3g). The number of ULK1 puncta
(red) induced by H/R decreased upon miR-20b transfection
(Fig. 3h). Electron microscopy results showed that, unlike
the NC, miR-20b significantly inhibited the formation of
autophagosomes under H/R condition (Fig. 3i).

Re-expression of ULK1 restores autophagy inhibited by
miR-20b
To verify that the autophagy-related effects of miR-20b

were caused by the repression of ULK1, we evaluated
whether the overexpression of ULK1-Flag, which lacks the
miRNA-responsive element is resistant to miR-20b-
mediated autophagy suppression. The ULK1-Flag trans-
fection significantly induced autophagy even in the presence
of miR-20b compared to those miR-20b-transfected cells
(Fig. 4a). Western blot demonstrated that the H/R+miR-
20b+ULK1-Flag-transfected cells (H/R 20b+ULK1-Flag)
showed a significant increase in exogenous ULK1, conver-
sion of LC3I to II, as well as the low expression of P62 when
compared with miR-20b-transfected cells (H/R 20b)
(Fig. 4b–d). Similarly, the immunofluorescence results were
consistent with the Western blot data. The number of LC3
dots and fragmented mitochondria were significantly
increased in the H/R 20b+ULK1-Flag group compared to
that of the H/R 20b group (Fig. 4e).

Inhibiting the endogenous miR-20b expression can
significantly reduce the inhibitory effect of propofol on
ULK1 and autophagy
In order to confirm whether the inhibitory effect of

propofol on autophagy induced by H/R was due to the
existence of miR-20b, we hypothesized that the protective
effects of propofol would be attenuated after suppressing
endogenous miR-20b. Indeed, propofol inhibited the
expression of ULK1 and the conversion of LC3 I to LC3 II,
as well as degradation of P62 in the presence of miR-20b
(H/R 20b+ P100). Nevertheless, the autophagy-inhibiting
effect of propofol was suppressed by inhibiting miR-20b
expression shown in both immunofluorescence studies
and Western blotting (Fig. 5a–e).

Propofol promotes METTL3-mediated pri-miR-20b
maturation
To elucidate the mechanisms underpinning propofol’s

effects on miR-20b induction, we established the H/R
model as shown in Fig. 2a and analyzed the expression
levels of pri-miR-20b and METTL3. The pri-miR-20b
level was significantly decreased while the METTL3 level
was prominently increased in the propofol post-treatment
group (P100) compared with the DMSO control (Fig. 6a,
b). Furthermore, METTL3 and DGCR8 were significantly
upregulated in the P100 group, compared with the DMSO
group (Fig. 6c–e). METTL3 knockdown remarkably
reduced the miR-20b level but increased the pri-miR-20b
level (Fig. 6f–i).

Knockdown of METTL3 restores autophagy inhibited by
propofol
Finally, we went to explore whether METTL3 can affect

autophagy inhibited by propofol. In the H/R injury model,
knockdown of METTL3 leads to increased autophagy. The
level of ULK1 and the ratio of LC3II/I were significantly
increased, while the levels of DGCR8, P62, and METTL3 were
decreased with the METTL3 knockdown (Fig. 7a–f). More-
over, the knockdown of METTL3 eliminated the protective
effect of propofol in H/R injury. The expression of ULK1,
DGCR8, P62, and the ratio of LC3II/I showed no difference
after METTL3 knock down (H/R+ si METTL3+DMSO vs.
H/R+ si METTL3+ propofol) (Fig. 7g–l).

(see figure on previous page)
Fig. 2 Propofol suppresses H/R-induced autophagy. a Built of the hypoxia/re-oxygenation model. The culture media was replaced with glucose
and serum free DMEM. Then the HUVECs in hypoxic conditions was placed with 94% N2, 5% CO2, and 1% O2 using a small enclosed chamber filled at
37 °C for 12 h. Then the medium was changed to culture media and propofol was added with different concentrations: 25 μmol/L (P25), 50 μmol/L
(P50), 100 μmol/L (P100), 150 μmol/L (P150) for 4 h in normal condition. b–e The expression of ULK1, Beclin1, and LC3 was determined in normal
HUVECs, H/R injury HUVECs, H/R+DMSO HUVECs, and propofol post-hypoxia treatment HUVECs. f Autophagosomes and mitochondria were probed
by anti-LC3 (green) and anti-TOM20 (red) in each group as above. Bar, 10 μm. Data were from three independent experiments. g–i PCR was
performed to detect the expression of miR-20b, Beclin1, and ULK1 in normal HUVECs, H/R injury HUVECs, H/R+DMSO HUVECs, and propofol-treated
HUVECs with the most effective concentration of 100 μmol/L. Data were mean ± SEM (n= 3); *p < 0.05, **p < 0.01, ***p < 0.001.
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Discussion
Our results suggest that propofol increased METTL3

expression in hypoxia reperfusion-induced endothelial
injured cells. METTL3 can inhibit H/R-induced autop-
hagy by accelerating the maturation of pri-miR-20b in an
m6A-dependent manner, resulting in the reduction of
ULK1. In our study, the autophagy-related protein P62
was downregulated but the level of ULK1 and the ratio of
LC3II/I were upregulated under conditions of hypoxia re-
oxygenation. These processes were negated by propofol

given during the post-injury phase. Furthermore, propofol
treatment also alleviated H/R-induced autophagy and
increased the expression of miR-20b. Therefore, it can be
concluded that propofol treatment inhibited endothelial
cell autophagy induced by H/R injury that was likely due
to an increase of the miR-20b expression and a decrease
of the ULK1 expression. Our data also indicated that miR-
20b is a novel autophagy-related miRNA and ULK1 was
identified as a target of miR-20b, as shown by a bioin-
formatics analysis. MiR-20b inhibited the expression of

(see figure on previous page)
Fig. 3 miR-20b regulates H/R-induced autophagy by targeting ULK1. a The HUVECs were transfected with negative control (NC), miR-20b
mimics (20b), inhibitor NC (IN NC), miR-20b inhibitor (IN 20b) for 24 h. Then the HUVECs in hypoxic conditions were placed as above for 12 h. The
medium was only replaced and placed in normal condition for 4 h after hypoxia. b–f Total proteins were extracted to detect ULK1, P62, Beclin1, LC3II/
I (16KD/18KD) by using β-actin as a reference. Densitometric ratios of these proteins were quantified by using IMAGEJ. g Samples were stained with
anti-LC3 (red) and anti-p62 (blue) antibodies. Bar, 10 μm. h Samples were stained with ULK1 (red) antibodies. Bar, 10 μm. i Electron microscopy was
used to assess the inhibitory role of miR-20b in the H/R-induced autophagy. Bar, 1 μm. Data are mean ± SEM (n= 3); *p < 0.05, **p < 0.01, ***p < 0.001.
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autophagy-related proteins that were induced by H/R
injury via ULK1, whereas the ULK1 overexpression in the
presence of miR-20b reversed autophagy.
Propofol postconditioning with miR-20b overexpression

inhibited LC3 dot formation, LC3I to LC3II conversion
and ULK1 production. The endogenous miR-20b sup-
pression significantly decreased the inhibitory effect of
propofol on ULK1 and autophagy. Propofol post-
conditioning also attenuated ULK1 and pri-miR-20b
levels of the H/R-damaged cells but upregulated
METTL3 and miR-20b. METTL3 knockdown sig-
nificantly inhibited the expression of miR-20b but sur-
prisingly upregulated the expression of pri-miR-20b,
indicating that maturation of miR-20b from pri-miR-20b

depends on METTL3. More importantly, we found that
knockdown of METTL3 induced low levels of DGCR8. It
may be the case that METTL3 enhances the recognition
of pri-miR-20b by DGCR8 and the subsequent processing
to mature miR-20b in an m6A-dependent manner.
Knockdown of METTL3 significantly increased H/R-
induced autophagy and mitigated the protective effects of
propofol. Taken together, it can be concluded that pro-
pofol postconditioning prevents H/R-induced autophagic
cell death via the METTL3/miR-20b/ULK1 signaling
pathway. Our data indicates that miR-20b promotes
endogenous cytoprotective mechanisms (Fig. 8). This is
consistent with the results of the other studies published
previously. Indeed, an in vivo model demonstrated that
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miR-20b promoted ventricular remodeling following
myocardial IR injury in rats by inhibiting the expression of
Smad732. The high expression of miR-20b promoted

endothelial cell viability and reduced H2O2‑induced cell
senescence33. Another study showed that miR-20b-
enriched exosomes protected against kidney stone-

Fig. 6 Propofol promotes METTL3-mediated pri-miR-20b maturation. Built the H/R model as above. a, b qPCR analyses of the level of pri-miR-
20b and METTL3. c–e Western blotting analyses of DGCR8 and METTL3 levels. f, g Western blotting verified the successful knockdown of METTL3.
h, i qPCR analysis of the level of pri-miR-20b and miR-20b after knockdown of METTL3. Data are shown as the mean ± SEM (n= 3); *p < 0.05,
**p < 0.01, ***p < 0.001.
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Fig. 7 METTL3 knockdown restores autophagy inhibited by propofol. a–f Built the H/R model after knockdown of METTL3. Western blotting
analysis of the autophagy-related protein and DGCR8 levels. g–l Built the H/R model after knockdown of METTL3 and treated the cells with or
without propofol at re-oxygenation for 4 h. Western blotting analysis of the autophagy-related protein and DGCR8 levels. Data are shown as the
mean ± SEM (n= 3); *p < 0.05, **p < 0.01, ***p < 0.001.
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induced injury by suppressing autophagy and inflamma-
tory responses34. As an initiator of autophagy, ULK1
regulates autophagy through interaction with upstream
AMPK and mTOR cellular signals, and then transduces
signals to downstream mediators35–37. The presence of
miRNAs including miR-20b under stress conditions leads
to a reduction in ULK1 and other autophagy-related
protein levels below the threshold, and therefore results in
a decrease in LC3 transition and inhibition of autophagic
activity. Specific stimuli promoting autophagy seem to be
counteracted by inhibitor miRNAs such as miR-20b,
limiting excessive and potentially harmful autophagic
activity in cells. Therefore, this current work may indicate
that miR-20b is a new autophagy-related miRNA that
works by suppressing autophagy, which may provide
novel insight into the exploration of the connection of
miR-20b and autophagy.
M6A is a prevalent internal modification of mRNAs,

accounting for about 50% of total methylated ribonu-
cleotides and 0.1–0.4% of all adenosines in total cellular
RNAs. As one of the most common RNA modifications,
m6A is found in almost all types of RNAs, and it has been
implicated in a variety of cellular processes including
mRNA metabolism and miRNA biogenesis38. METTL3,
as the most important component of the “writer” com-
plex, is known to be involved in all stages of the life cycle
of RNA. It plays a pivotal role in pre-mRNA splicing39

microRNA (miRNA) processing29, 3′-end processing40,
mRNA decay41, translation regulation42, and nuclear
export43. It follows that METLL3 exhibits its roles in

normal human physiological process or diseases by reg-
ulating the m6A modification of miRNAs.
Surgery is the frontline treatment for the majority of

patients who admit to hospital. Sadly, postoperative death
constitutes the third cause of death (7.7% of global deaths
per year) with the first and second causes of death being
ischemic heart disease and stroke, respectively44. Those
deaths after surgery involve multiple factors but one key
cause is postoperative organ injury45. It is not surprising
that surgical trauma can cause extensive cell death and
then subsequently damage-associated molecular patterns
(DAMPs) are released from those dead cells to initiate
further biological cascades to cause further cell death and
organ injury46,47. Arguably, vascular endothelial cell injury
is central in all organ injuries and ischemia and reperfu-
sion injury often occurs during and after surgery. There-
fore, development of strategies to protect against
endothelial cell injury and further alleviate organ injury
are very important clinically. Our data clearly demon-
strated that propofol inhibited ischemia/reperfusion
induced endothelial injury, indicating that its periopera-
tive use may have great potential to protect against
endothelial cell/organ injury during and after surgery.
However, our study is a pure in vitro study and how this is
relevant in an in vivo and/or clinical setting is unknown
and warrants further study. Nevertheless, there is clinical
evidence showing that general anesthetics protect against
organ injuries during and/or after surgery although it has
always been debatable. Some papers suggest that volatile
anesthesia may produce more myocardial protection

Fig. 8 Propofol promotes cytoprotective mechanisms via miR-20b. miR-20b expression induced by propofol promotes endogenous
cytoprotective mechanisms of the METTL3/miR-20b/ULK1 regulatory “network” in hypoxia/re-oxygenation injury. METTL3: methyltransferase-like 3;
DGCR8: DiGeorge critical region 8; ULK1: Unc-51-like kinase 1; mRNA: Messenger RNA; pri- miR-20b: primary microRNA-20b; pre-miR-20b: precursor
microRNA-20b; miR-20b: microRNA-20b.
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compared to propofol48–51. Conversely, propofol was also
reported to provide comparable myocardial protectivity
like that of isoflurane in patients undergoing coronary
artery bypass graft surgery52. Whilst no difference in
myocardial protection with either sevoflurane or des-
flurane, or total intravenous anesthesia with propofol as
assessed by measuring serial cTnT values53.
Our work is not without limitations. First, the baseline

autophagy in the presence of propofol up to 150 μM
without insult was not changed as we reported previously24.
Whether the protection against H/R-induced autophagic
cell death demonstrated in the current study is “insult
specific” remains unknown. Second, unlike our data, it has
been reported that METTL3 enhances autophagic flux and
inhibits apoptosis in H/R-treated cardiomyocytes, suggest-
ing that METTL3 is a negative regulator of autophagy54.
However, METTL3 is a generic regulator of RNA and the
cell type used in our experiments and experimental con-
ditions are different from the previous study; all of which
may explain this discrepancy. Finally, for sake of argument,
anesthetics can act on any type of body cells and hence the
complicated changes of METTL3, miR-20b, and ULK1
under insult and propofol found in this study may be just an
association and hence the true targets or mechanistic
actions of propofol may be far more than these.
In summary, our findings provide a novel mechanism of

METTL3 in preventing H/R-induced autophagic cell death
by accelerating pri-miR-20b maturation in a m6A-
dependent manner during propofol post-conditioning. In
addition, this study elucidated the molecular mechanism of
autophagy-related miRNAs in inhibiting excessive autop-
hagy by regulation of the autophagic core protein ULK1,
and miR-20b prevented H/R-induced autophagic cell death
by regulating ULK1 during propofol post-conditioning.

Methods
Cell culture and injurious model
Human umbilical vein endothelial cells (HUVECs)

were used in this study. The cells were cultured in DMEM
supplemented with 10% fetal bovine serum and 1%
penicillin-streptomycin at 37 °C with air containing 5%
CO2. Hypoxic challenge was achieved with a gas mixture
containing 1% O2, 5% CO2, and 94% N2 for 12 h in a
hypoxic chamber (Billups-Rothenberg, Del Mar, CA,
USA) with or without propofol up to 150 μmol/L for 4 h,
and then recovered in the DMEM for further analysis.

Plasmids, miRNAs, or siRNA transfection
Transfection of plasmids and mimics were performed

using Lipofectamine 2000 according to the manufacturer’s
instructions. Transient knockdown of target genes was
performed with Lipofectamine 3000 and siRNA: MiR-20b
mimics (5′-CAAAGUGCUCAUAGUGCAGGUAG-3′; 5′-A
CCUGCACUAUGAGCACUUUGUU-3′), negative control

(NC) (5′-UUCUCCGAACGUGUCACGUTT-3′; 5′-ACGU
GACACGUUCGGAGAATT-3′), miR-20b inhibitor (5′-CU
ACCUGCACUAUGAGCACUUUG-3′) inhibitor NC (5′-C
AGUACUUUUGUGUAGUACAA-3′) or METTL3 siRNA
(5′-GGUGACUGCUCUUUCCUUATT-3′;5′-UAAGGAAA
GAGCAGUCACCTT-3′) (Genema, shanghai, China). The
full-length sequence of ULK1 cDNA was cloned into the
LvCGP-C-flag (Longqian Biotech, shanghai, China). The 3′
UTR of ULK1 cDNA was cloned into pmirGLO dual-
luciferase miRNA target expression vector (Promega) with
XhoI and XbaI restriction sites using the following primers:
5′-TAACTCGAGCCTTTCTGGCCTGGCTGGG-3′ (ULK
1-F), 5′-TAGTCTAGATGACACCAGCCCAACAATTC
C-3′(ULK1-R). Mutations were made by site-directed
mutagenesis, changing microRNA target site from “GCACT
TTA” to “cgtgaaat’ or/and “CACTTT” to “gtgaca”(Longqian
Biotech, shanghai, China). Q5® High-Fidelity DNA Poly-
merase (Bio Labs, M0491S) was used for PCR reaction.

Luciferase assay
HUVECs were seeded in a 12-well plate one day before

transfection. When the cell had grown to the density of
70–80%, for reporter assays, they were transiently co-
transfected with 0.3 μg of reporter plasmid in the presence
of 100 nM NC, miR-20b mimics (20b), inhibitor NC (IN
NC), or miR-20b inhibitor (IN 20b) every three wells
using Lipofectamine 2000 (this and other reagents are
shown in Supplementary Table 1). Firefly and Renilla
luciferase activities were measured consecutively by using
Dual-Luciferase Reporter Assay System according to the
manufacturer’s protocol.

Quantitative real-time RT-PCR
Total RNA was extracted with TRIzol (Life Technolo-

gies, Carlsbad, CA, USA) followed by a DNase treatment
to eliminate contaminating genomic DNA (Thermo
Fisher Scientific, Boston, MA, USA; B43), and a reverse
transcription reaction (Thermo Fisher Scientific; K1622).
Amplification and relative quantification of cDNA was
carried out with SYBR Premix Ex TaqTM (Tli RNaseH
Plus) (TaKaRa, Shiga, Japan; RR420A) according to the
manufacturer’s protocol. Relative quantitative PCRs for
miRNAs were performed with SYBR PrimeScript miRNA
RT-PCR Kit (TaKaRa; RR716). Fold changes were calcu-
lated using the 2−ΔΔCT method with normalization to the
GAPDH control. The qRT-PCR primers (IBSBIO,
Shanghai, China) are shown in Supplemental Table 2.

Western blot
Proteins used for immunoblotting were collected in lysis

buffer containing a phosphatase inhibitor (Roche, Basel,
Switzerland; 4693116001) on ice. Lysates were mixed with
loading buffer and boiled for 10min to denature protein.
Protein samples were separated by 10% SDS/PAGE and
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then transferred to a PVDF membrane. Membranes were
blocked with 5% non-fat milk dissolved in phosphate
buffered saline with tween-20 (PBST) for 1 h at room
temperature. Then, the membranes were incubated with
various primary antibodies (see Supplementary Table 3) at
4 °C overnight, followed by HRP-labeled secondary anti-
bodies’ incubation at room temperature for 2 h. GAPDH
or β-actin antibodies were probed to detect the loading
control. Bands’ densitometric data against loading controls
were done with ImageJ software (Bethesda, MD, USA).

Immunofluorescent staining
HUVECs were cultured to reach 70% confluence on

coverslips, and then washed with PBS (pre-warmed) and
fixed with 4% paraformaldehyde at 37 °C for 20min after
various treatments. The cells were permeabilized with
0.1% Triton X-100 on ice. After blocking in 1% albumin
bovine V for 30min at room temperature, cells were
incubated with various primary antibodies (see Supple-
mentary Table 3), diluted in 0.01% Triton X-100 for 1 h at
room temperature. Cells were then washed with PBS five
times, and then secondary antibodies were applied for
another 1 h at room temperature. Cell images were cap-
tured with a TCS SPF5 II Leica confocal microscope and
software (LAS-AF-Lite_2.2.0_4758; Leica Microsystems,
Wetzlar, Germany).

Electron microscopy
HUVECs were fixed in 2.5% glutaraldehyde in 0.1M

sodium phosphate buffer, pH 7.4, at 37 °C for 2 h, and then
dehydrated in a graded ethanol series and embedded.
Approximately 70 nm ultrathin sections were mounted on
nickel grids. The samples were then stained and visualized
using a 120-kV Jeol electron microscope (JEM-1400; JEM,
Peabody, MA, USA) at 80 kV. Images were captured using a
Gatan-832 digital camera (GATAN, Pleasanton, CA, USA).

Statistical analyses
Cultured cells in well plates were randomly used in

different experimental groups and all experiments were
independently carried out at last three times with different
sets of cultures. Data are expressed as mean ± SEM and
are also presented as dot plot. Statistical analyses were
performed using one-way ANOVA with Bonferroni’s
multiple comparisons (GraphPad Software Inc., San
Diego, CA, USA). A p value < 0.05 was considered sta-
tistically significant.
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