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Abstract
Integrating additional prognostic factors into the tumor, lymph node, metastasis stag-
ing system improves the relative stratification of cancer patients and enhances the 
accuracy in planning their treatment options and predicting clinical outcomes. We 
describe a novel approach to build prognostic systems for cancer patients that can 
admit any number of prognostic factors. In the approach, an unsupervised learning 
algorithm was used to create dendrograms and the C-index was used to cut dendro-
grams to generate prognostic groups. Breast cancer data from the Surveillance, 
Epidemiology, and End Results Program of the National Cancer Institute were used 
for demonstration. Two relative prognostic systems were created for breast cancer. 
One system (7 prognostic groups with C-index = 0.7295) was based on tumor size, 
regional lymph nodes, and no distant metastasis. The other system (7 prognostic 
groups with C-index = 0.7458) was based on tumor size, regional lymph nodes, no 
distant metastasis, grade, estrogen receptor, progesterone receptor, and age. The den-
drograms showed a relationship between survival and prognostic factors. The pro-
posed approach is able to create prognostic systems that have a good accuracy in 
survival prediction and provide a manageable number of prognostic groups. The 
prognostic systems have the potential to permit a thorough database analysis of all 
information relevant to decision-making in patient management and prognosis.
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1  |   INTRODUCTION

The tumor, lymph node, metastasis (TNM) staging sys-
tem has undergone 8 revisions since first publication of the 
Cancer Staging Manual in 1976. These revisions have been 
considered vital in addressing improvements in cancer pa-
tient management. The improved modifications have oc-
curred during the accumulation of abundant pathologic and 
molecular data to expand the understanding of the biology 
and clinical behavior of cancer. There is a critical need to 
integrate additional factors into the TNM for a more accurate 
prediction of patient outcomes. For instance, in the AJCC 
Cancer Staging Manual (8th edition),1 the stage groups of 
invasive carcinoma of the breast now include grade (G), es-
trogen receptor (ER), progesterone receptor (PR), and human 
epidermal growth factor receptor-2 (HER2), in addition to the 
traditional primary tumor (T), regional lymph nodes (N), and 
distant metastasis (M). Incorporating additional factors into 
the TNM requires mathematical and statistical models. In this 
report, we describe a novel machine learning-based approach 
to build prognostic systems for cancer. In this approach, the 
Ensemble Algorithm for Clustering Cancer Data (EACCD)2-

4 was used to cluster patients according to survival. The pri-
mary output from running the EACCD is a dendrogram that 
shows how survival varies as levels (categories) of prognostic 
factors change. Cutting the dendrogram according to the C-
index5 divides the patients into various groups. These groups, 
defined by aggregations of the selected prognostic factors, 
are analogous to the stage groups in cancer patient staging. 
We demonstrate applications of the proposed approach to 
breast cancer.

2  |   MATERIALS AND METHODS

2.1  |  Data
Female breast cancer data were obtained from the 
Surveillance, Epidemiology, and End Results (SEER) 
Program of the National Cancer Institute.6 In addition to 
survival and breast cancer-specific censoring indicator, the 
factors considered include T, N, M, G, ER, PR, and age (A). 
Selection of cases, data management, and specifics about fac-
tors are described as follows.

SEER initiated the collection of ER and PR in 1990 and 
T, N, M experienced a major change from earlier Extent 
of Disease scheme to Collaborative Stage scheme in 2004. 
Therefore, cases were selected with the year of diagnosis 
1990-2003, involving 9 registries for 1990-1991, 13 regis-
tries for 1992-1999, and 18 registries for 2000-2003. This 
selection also ensured an 11-year follow-up to 2014, based 
on the information released by SEER in 2017.

The present study examines only those cases which 
were nonmetastatic to distant sites, designated as M0 in 

the TNM staging. For the histologic grade, grade III and 
grade IV were combined into a single category to reduce 
observational variations, and consequently, only 3 grades 
(low, moderate, and high) were considered. For ER and 
PR, only “+” and “−” categories were used in this report. 
Breast cases for ages less than 20 years were not included 
in the analysis. Cases with age of diagnosis equal to or 
larger than 20 years were stratified into 2 groups: 20-50 
and 51+. Age 50 was chosen as the cut-off point because 
of its wide use in the literature such as helping roughly 
stratify premenopausal patients from postmenopausal 
patients.

Table 1 shows the levels (categories) of the factors 
used in this report. In the table, the definitions of T, N, 
and M are from Adjusted AJCC 6th ed. T, N, M, and Stage 
in SEER,7 and those of ER and PR are from the SEER 
Research Data Record Description.8 The levels G1 and G2 
in the table equal grade I and grade II, respectively, as de-
fined in the SEER Research Data Record Description. The 
level G3 is either grade III or grade IV. Note that there are 
no recorded cases with “T0” in the data and thus the defi-
nition of “T0” is omitted.

The characteristics of patients are described by their as-
sociated combination of prognostic factors. A combination 
is a subset of the data that corresponds to one level of each 
selected factor. For example, T1 and N0 produce a combina-
tion, denoted by T1N0, which represents a subset of patients 
whose tumor size is T1 and lymph node status is N0. As in 
T1N0, we use notations of levels of factors to denote combi-
nations in this report.

Two datasets were used for our study. Dataset 1 consisted 
of cases with a complete record of survival, censoring status, 
year of diagnosis, T, N, and M (=M0). Due to the use of 
statistical techniques in our algorithm, we required that the 
minimum number of breast cancer cases in each combination 
of T, N, and M in Dataset 1 be 100. (The use of the cut-off 
number 100 assures that each combination contains a suffi-
cient number of patients and a certain number of deaths. A 
smaller cut-off number serving the same purpose can also 
be used.) Dataset 1 contained 314391 cases, comprising 17 
combinations in terms of T, N, and M. Dataset 2 consisted 
of cases (black and white women) with a complete record of 
survival, censoring status, year of diagnosis, T, N, M, G, ER, 
PR, and A. We also required that the number of cases in each 
combination of T, N, M, G, ER, PR, and A be at least 100. 
Dataset 2 contained 199822 cases, comprising 165 combina-
tions on the basis of T, N, M, G, ER, PR, and A.

2.2  |  EACCD
The EACCD is an unsupervised learning algorithm. The 
computer program algorithm analyzes combinations accord-
ing to survival and thereby generates clusters of survival 
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outcomes. In the analysis of this paper, we use one modified 
version of the EACCD. The algorithm consists of 3 steps: (1) 
computing initial dissimilarities which compares pairwise 
combinations in terms of survival; (2) computing learned 
dissimilarities which teaches the program to learn the data-
driven difference in survival between combinations; and (3) 
performing hierarchical cluster analysis which creates the 
dendrogram visualizing a relationship between survival and 
prognostic factors. The details of these steps are given as 
follows.

We define the initial dissimilarity between 2 combinations 
using the ratio of hazard functions.9 Such a ratio is an effect 
size (independent of the sample size) that measures the mag-
nitude of the difference (with respect to survival) between 
2 combinations. Assuming the proportional hazards model10 
holds for the populations represented by combinations, the 
ratio of the hazard rates corresponding to 2 combinations is 

a constant. In general, there are 2 different ratios (one is the 
reciprocal of the other). The larger ratio is used as the initial 
dissimilarity between 2 combinations.

We compute learned dissimilarities between 2 combi-
nations by employing the initial dissimilarities and the 2-
phase Partitioning Around Medoids (PAM) algorithm.11 
Specifically, we use the initial dissimilarities and PAM to 
partition available combinations into k clusters, where k 
ranges from 1 to n with n denoting the total number of com-
binations. For each k, we define δk(i, j) = 1 if combinations 
i and j are not assigned into the same cluster and δk(i, j) = 0 
otherwise. The learned dissimilarity between combinations i 
and j is defined as the ratio 

∑n

k=1
δk(i, j) to n, which is simply 

the percentage of the times i and j are not placed into the 
same cluster by the PAM algorithm. The learned dissimilar-
ities, which are between 0 and 1, are more data-driven than 
the initial dissimilarities.

T A B L E   1   Definitions of T, N, M, G, ER, PR, and A for SEER breast cancer data diagnosed 1990-2003

Categories Criteria

Tumor size (T) Tis Carcinoma in situ

T1 Tumor 2 cm or less in greatest dimension

T2 Tumor more than 2 cm but not more than 5 cm in greatest dimension

T3 Tumor more than 5 cm in greatest dimension

T4 Tumor of any size with direct extension to (a) chest wall or (b) skin, only as described below
T4a Extension to chest wall, not including pectoralis muscle
T4b Edema (including peau d’orange) or ulceration of the skin of the breast, or satellite skin 
nodules confined to the same breast

T4c Both T4a and T4b
T4d Inflammatory carcinoma

Regional positive 
lymph nodes (N)

N0 No regional lymph node metastasis histologically

N1 Metastasis in 1 to 3 axillary lymph nodes, and/or in internal mammary nodes with microscopic 
disease detected by sentinel lymph node dissection but not clinically apparent

N2 Metastasis in 4 to 9 axillary lymph nodes, or in clinically apparent internal mammary lymph nodes 
in the absence of axillary lymph node metastasis

N3 Metastasis in 10 or more axillary lymph nodes, or in infraclavicular lymph nodes, or in clinically 
apparent ipsilateral internal mammary lymph nodes in the presence of 1 or more positive axillary 
lymph nodes; or in more than 3 axillary lymph nodes with clinically negative microscopic 
metastasis in internal mammary lymph nodes; or in ipsilateral supraclavicular lymph nodes

Distant metastasis (M) M0 No distant metastasis

M1 Distant metastasis

Histological grade (G) G1 Well differentiated

G2 Moderately differentiated

G3 Poorly differentiated or undifferentiated

Estrogen receptor 
expression (ER)

ER+ Cancer cells can receive signals from estrogen

ER− Cancer cells cannot receive signals from estrogen

Progesterone receptor 
expression (PR)

PR+ Cancer cells can receive signals from progesterone

PR− Cancer cells cannot receive signals from progesterone

Age at diagnosis (A) A1 Age at diagnosis ranging from 20 to 50 in years

A2 Age at diagnosis equal to or larger than 51 in years
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With the learned dissimilarities, the combinations 
are then clustered by applying the complete linkage 
method.12 The primary output of this hierarchical cluster 

analysis is a dendrogram that provides a graphical sum-
mary of patients’ survival based on the levels of prognos-
tic factors.

F I G U R E   1   Breast cancer-specific 
survival of 17 combinations of SEER breast 
cancer patients diagnosed 1990-2003
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F I G U R E   2   Generation of the prognostic system on the basis of T, N, and M using the SEER breast cancer patients diagnosed 1990-2003. (A) 
Dendrogram for 12 combinations according to T, N, and M. A 10-year survival rate in percentage is given beneath each combination. (B) C-index 
curve and n*(=7). (C) Cutting the dendrogram according to n*. (D) Breast cancer-specific survival of 7 prognostic groups
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2.3  |  Prognostic systems
Given any number of prognostic factors, the EACCD method 
generates a dendrogram that displays all possible combinations. 
Given the complexity of the dendrogram, combinations are then 
partitioned so that those with “similar” survival are grouped 
together. Each group amalgamates a cohort of distinct combi-
nations. The resultant cohort stratification produces prognostic 
group assignments which serve the same role as a staging system.

Partitioning combinations exhibited in a dendrogram can 
be accomplished by horizontally cutting the dendrogram at a 
specific level of dissimilarity. With available groups of com-
binations that are obtained by cutting the dendrogram, the 
C-index can be computed to indicate a statistical predictive 
accuracy. The C-index is an estimate of the probability that 
a patient who experienced an event (eg, death) in an earlier 
time had a shorter predicted time than a patient who experi-
enced the event in a later time. A higher C-index implies a 
higher accuracy in survival prediction. In general, the curve 
of the C-index versus the number of groups increases for rel-
atively small numbers of groups and then quickly plateaus 
as more groups are generated. The optimal level of stratify-
ing the dendrogram is achieved when the minimum number, 
(denoted by n*), of groups yields the maximum value of the 
C-index.

We define a prognostic system as a collection of the den-
drogram, the (maximum) C-index corresponding to cutting, 
the group assignment, and the survival curves for groups. We 
call each group in a prognostic system a prognostic group. 
Throughout the paper, the breast cancer specific survival 
curves are estimated by the Kaplan-Meier method.13

3  |   RESULTS

In this section, we presented a prognostic system of breast 
cancer for T, N, and M and compare it with the historical 
AJCC 6th edition staging system.14 We then created a prog-
nostic system based on T, N, M, G, ER, PR, and A.

3.1  |  Prognostic system on the basis of T, 
N, and M
We applied EACCD to Dataset 1 to generate a prognostic 
system of breast cancer based only on T, N, and M. The data 
consisted of 17 combinations of T, N, and M with each in-
dividual combination having a minimum of 100 cases. The 
survival curves of these 17 combinations are presented in 
Figure 1. The dendrogram from running EACCD is shown 
in Figure 2A, which displays the relationship (with respect 
to survival) among combinations. The C-index curve is 
given in Figure 2B, which indicates n* = 7 with a C-index 
of 0.7295. (In Figure 2B, the values of C-index are similar 
when the number of groups is close to 7. We chose n*=7 be-
cause we planned to compare the generated system with the 
AJCC grouping that has 7 stage groups.) Cutting the dendro-
gram using n* (Figure 2C) leads to 7 prognostic groups listed 
in the first two columns of Table 2. The survival curves of 
these prognostic groups are presented in Figure 2D. The den-
drogram with cutting in Figure 2C, the 7 prognostic groups 
in Table 2, and the survival curves in Figure 2D define a 

T A B L E   2   EACCD and AJCC grouping of the SEER breast 
cancer patients diagnosed 1990-2003

EACCD AJCC

Group 1 TisN0M0  
T1N0M0

Stage 0 TisN0M0

Group 2 T1N1M0 Stage I T1N0M0

T2N0M0

T3N0M0

Group 3 T1N2M0 Stage IIA T1N1M0

T2N1M0 T2N0M0

Group 4 T2N2M0 Stage IIB T2N1M0

T3N1M0 T3N0M0

Group 5 T1N3M0 Stage IIIA T1N2M0

T3N2M0 T2N2M0

T4N0M0 T3N1M0

T3N2M0

Group 6 T2N3M0 Stage IIIB T4N0M0

T3N3M0 T4N1M0

T4N1M0 T4N2M0

T4N2M0

Group 7 T4N3M0 Stage IIIC T1N3M0

T2N3M0

T3N3M0

T4N3M0
F I G U R E   3   Breast cancer-specific survival of 7 AJCC stage 
groups defined in Table 2
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F I G U R E   4   Dendrogram (in black color) for 165 combinations of the SEER breast cancer patients diagnosed 1990-2003. A 10-year survival 
rate in percentage is given beneath each combination. Lines in red color show 7 prognostic groups from cutting the dendrogram

40 : T4N3M0G2ER+PR+A2
37 : T3N3M0G3ER+PR+A2
40 : T4N2M0G3ER+PR+A2

38 : T4N1M0G3ER−PR−A1
37 : T3N2M0G3ER−PR−A1
39 : T3N2M0G3ER−PR−A2

43 : T4N1M0G3ER+PR−A2
32 : T4N3M0G3ER+PR+A1

38 : T2N3M0G3ER+PR−A2
44 : T1N3M0G3ER−PR−A2
40 : T4N2M0G3ER+PR+A1

43 : T4N1M0G3ER+PR+A2
39 : T2N3M0G2ER+PR−A2
41 : T2N3M0G3ER−PR−A1

35 : T2N3M0G3ER−PR−A2
28 : T3N3M0G3ER−PR−A1
30 : T4N3M0G3ER+PR+A2

29 : T4N1M0G3ER−PR−A2
29 : T4N2M0G3ER−PR−A1

25 : T3N3M0G3ER−PR−A2
20 : T3N3M0G3ER+PR−A2

13 : T4N3M0G3ER−PR−A2
21 : T4N2M0G3ER−PR−A2
15 : T4N3M0G3ER−PR−A1
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53 : T3N1M0G3ER−PR−A2
51 : T3N3M0G2ER+PR+A1

47 : T2N3M0G3ER+PR+A1
52 : T3N3M0G2ER+PR+A2

51 : T2N1M0G3ER−PR+A2
53 : T4N1M0G2ER+PR+A2

51 : T3N2M0G3ER+PR+A2
50 : T4N2M0G2ER+PR+A2

53 : T2N3M0G2ER+PR+A2
52 : T1N3M0G3ER+PR+A2
50 : T4N1M0G3ER+PR+A1

62 : T1N2M0G3ER+PR−A2
62 : T1N2M0G3ER−PR−A1
66 : T4N0M0G2ER+PR+A2

57 : T2N2M0G3ER+PR+A1
62 : T3N1M0G3ER+PR+A2

63 : T1N2M0G2ER−PR−A2
62 : T1N3M0G3ER+PR+A1

63 : T1N3M0G2ER+PR+A1
61 : T2N1M0G2ER−PR−A2

63 : T3N2M0G2ER+PR+A2
63 : T1N3M0G2ER+PR+A2
60 : T2N1M0G3ER−PR−A2

56 : T1N2M0G3ER−PR−A2
57 : T2N2M0G2ER+PR−A2

58 : T2N2M0G3ER+PR+A2
60 : T2N3M0G2ER+PR+A1

53 : T2N2M0G3ER−PR−A1
55 : T3N1M0G3ER−PR−A1

53 : T2N2M0G2ER−PR−A1
56 : T3N2M0G3ER+PR+A1

57 : T4N0M0G3ER+PR+A2
53 : T3N1M0G3ER+PR−A2
55 : T4N0M0G3ER−PR−A1

75 : T2N2M0G2ER+PR+A1
72 : T1N2M0G3ER+PR+A1
73 : T3N0M0G3ER+PR+A2

71 : T2N1M0G3ER+PR+A2
70 : T1N2M0G3ER+PR+A2
67 : T2N1M0G3ER−PR−A1

71 : T2N1M0G2ER+PR−A2
72 : T3N2M0G2ER+PR+A1

68 : T2N1M0G3ER+PR−A1
68 : T2N1M0G2ER−PR−A1
67 : T2N2M0G3ER+PR−A1

71 : T1N2M0G2ER+PR−A2
68 : T2N1M0G3ER+PR−A2
67 : T3N1M0G3ER+PR+A1

67 : T3N0M0G3ER−PR−A2
64 : T2N1M0G3ER−PR+A1
68 : T2N2M0G2ER+PR+A2

75 : T2N0M0G2ER−PR−A2
74 : T2N0M0G3ER+PR−A2

75 : T2N1M0G2ER+PR−A1
76 : T3N1M0G2ER+PR+A2

74 : T2N1M0G3ER+PR+A1
77 : T3N1M0G2ER+PR+A1

80 : T1N1M0G3ER+PR−A2
81 : T3N1M0G1ER+PR+A2

77 : T1N1M0G2ER−PR−A2
81 : T1N2M0G2ER+PR+A1

81 : T2N1M0G1ER+PR−A2
78 : T3N0M0G3ER+PR+A1

78 : T2N2M0G1ER+PR+A2
80 : T1N2M0G2ER+PR+A2

76 : T1N1M0G2ER−PR−A1
76 : T2N0M0G3ER−PR−A2

76 : T1N1M0G3ER−PR−A2
75 : T2N0M0G3ER−PR+A2

79 : T2N0M0G2ER−PR−A1
83 : T2N1M0G2ER+PR+A2

82 : T2N0M0G2ER+PR−A2
84 : T2N1M0G2ER+PR+A1

79 : T1N1M0G3ER−PR−A1
81 : T2N0M0G3ER+PR+A2
80 : T3N0M0G3ER−PR−A1

83 : T1N1M0G3ER+PR−A1
86 : T2N0M0G2ER+PR−A1
85 : T1N1M0G2ER+PR−A2
84 : T2N0M0G3ER+PR+A1

83 : T2N0M0G3ER−PR−A1
83 : T1N1M0G3ER−PR+A2
84 : T2N0M0G3ER+PR−A1

87 : T2N0M0G2ER+PR+A2
85 : T3N0M0G2ER+PR+A2

88 : T1N1M0G2ER−PR+A2
86 : T1N1M0G2ER−PR+A1

85 : T1N2M0G1ER+PR+A2
88 : T3N0M0G1ER+PR+A2

86 : T2N0M0G1ER+PR−A2
89 : T2N1M0G1ER+PR+A2

83 : T1N1M0G2ER+PR−A1
81 : T1N1M0G3ER−PR+A1

83 : T2N0M0G2ER−PR+A2
82 : T2N0M0G3ER−PR+A1

85 : T1N1M0G3ER+PR+A1
84 : T1N1M0G3ER+PR+A2

91 : T1N0M0G2ER+PR−A1
91 : T1N0M0G3ER+PR+A2

88 : T1N0M0G3ER−PR−A1
89 : T1N0M0G3ER+PR−A1

91 : T1N0M0G2ER−PR+A2
93 : T1N2M0G1ER+PR+A1
91 : T2N0M0G2ER+PR+A1

91 : T1N0M0G3ER+PR+A1
92 : T2N0M0G1ER+PR+A2

87 : T1N0M0G3ER−PR−A2
85 : T2N0M0G1ER−PR−A2

89 : T1N0M0G3ER+PR−A2
92 : T2N1M0G1ER+PR+A1

89 : T3N0M0G2ER+PR+A1
88 : T1N0M0G3ER−PR+A1

88 : T1N0M0G2ER−PR−A1
89 : T1N0M0G2ER−PR−A2

90 : T1N0M0G3ER−PR+A2
92 : T1N1M0G2ER+PR+A1
91 : T1N1M0G2ER+PR+A2

96 : T1N1M0G1ER+PR+A2
97 : T2N0M0G1ER+PR+A1

94 : T1N0M0G2ER+PR−A2
92 : T1N0M0G2ER−PR+A1

94 : T1N0M0G2ER+PR+A2
94 : T1N1M0G1ER+PR−A2

99 : T1N0M0G1ER−PR+A1
98 : T1N0M0G1ER+PR+A1

96 : T1N0M0G1ER+PR−A2
95 : T1N0M0G1ER−PR−A2

97 : T1N0M0G1ER−PR−A1
96 : T1N0M0G2ER+PR+A1

97 : T1N0M0G1ER+PR+A2
98 : T1N1M0G1ER+PR+A1

98 : T1N0M0G1ER−PR+A2
98 : T1N0M0G1ER+PR−A1
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prognostic system (C-index = 0.7295) for the breast cancer 
in light of T, N, and M.

For a comparison, the AJCC Cancer Staging Manual 
(6th edition) partitions Dataset 1 into 7 stage groups shown 
in the third and fourth columns of Table 2 and Figure 3. 
Note that the breast cancer anatomic staging system in the 
AJCC 6th edition is the same as the one in the 7th or 8th 
edition except that the latter two versions split stage I into 
stage IA and stage IB. However, differentiating stage IA 
from stage IB requires a category “N1mi” which was not 
available in SEER until 2004. Therefore, we used the AJCC 
staging in the 6th edition here. Also note that stage IV in 
AJCC staging (6th edition) was not included since our data 
were restricted to M0.

Two direct comparisons between AJCC and EACCD can 
be made. One involves overlapping. In the AJCC system, the 
survival curves of stage IIIB and stage IIIC overlap with each 
other (Figure 3). The survival curve of stage IIIB is lower 
than the curve of stage IIIC until year 8. The issue of over-
lapping does not occur with EACCD (Figure 2D). Another 
comparison is regarding the C-index. Calculation shows the 
AJCC system (Table 2 and Figure 3) has a C-index of 0.7287, 
which is lower than the C-index (0.7295) of the system in 
Figure 2. This implies that the performance of the prognos-
tic system generated by EACCD is at least as good as the 
AJCC staging system in terms of the accuracy in survival 
prediction.

3.2  |  Prognostic system on the basis of T, N, 
M, G, ER, PR, and A
We used Dataset 2 to build a prognostic system according to 
T, N, M, G, ER, PR, and A. The data consist of 165 combina-
tions based on T, N, M, G, ER, PR, and A with each includ-
ing at least 100 patients. Figures 4 and 5 show a prognostic 
system with 7 prognostic groups and a C-index of 0.7458, 
where a detailed definition of prognostic groups is given in 
Table 3.

The C-index of the system based on T, N, M, G, ER, PR, 
and A is 0.7458, which is higher than the C-index (0.7295) 
of the prognostic system based on T, N, and M. This in-
dicates that adding G, ER, PR, and A into the collection 

{T, N, M} increases accuracy in survival prediction by 
0.7458-0.7295 = 0.0163.

4  |   DISCUSSION

We described a systematic approach to creating prognostic 
systems for cancer. The approach contains two major steps: 
running the EACCD to produce dendrograms and cutting 
dendrograms to generate prognostic groups according to the 
C-index. We demonstrated the approach using the SEER 
breast cancer data.

In addition to providing prognostic groups analogous to 
stage groups, a prognostic system (as reported in this study) 
for breast cancer provides other valuable information. It 
presents Kaplan-Meier estimates of breast cancer specific 
survival for each prognostic group. It provides the C-index 
indicating the accuracy of survival prediction. It also supplies 
a dendrogram showing details on the change of survival rates 
as factor levels vary.

The biomarker HER2, important for management and 
prognostic information, was not included in the present study. 
We focused on data with at least 10 years follow-up and 
SEER initiated collection of HER2 results in 2010. Future 
studies with more robust data entries will include this import-
ant biomarker.

The approach to creating prognostic systems described in 
this paper has several advantages. First, it admits any number 
of prognostic factors. With a large number of prognostic fac-
tors included in the data, the approach can generate a small 
number of manageable prognostic groups that have approxi-
mately the same survival prediction accuracy as the original 
data. Second, the approach can be readily applied to integrate 
any prognostic factors including biomarkers into the TNM 
staging system to predict the outcome of patients. Third, the 
survival curves of prognostic groups, derived from the ap-
proach, do not show crossover in general. This facilitates the 
use of the prognostic systems by clinicians and researchers. 
Fourth, the dendrogram from the approach provides details 
on the change of survival rates as levels of factor vary. This 
can be useful for accurate clinical counseling and aid dis-
cussions regarding mortality, as well as open other avenues 

F I G U R E   5   (A) C-index curve and 
n*(=7) using the dendrogram in Figure 4. 
(B) Breast cancer-specific survival of 
7 prognostic groups from cutting the 
dendrogram in Figure 4 according to n*
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T A B L E   3   EACCD grouping of the SEER breast cancer patients diagnosed 1990-2003

T N M G ER PR A

Group 1

T1 N0 M0 G1 Any ER Any PR 20+

T1 N0 M0 G2 ER− PR+ 20-50

T1 N0 M0 G2 ER+ PR− 51+

T1 N0 M0 G2 ER+ PR+ 20+

T1 N1 M0 G1 ER+ PR− 51+

T1 N1 M0 G1 ER+ PR+ 20+

T2 N0 M0 G1 ER+ PR+ 20-50

Group 2

T1 N0 M0 G2 ER− PR− 20+

T1 N0 M0 G2 ER− PR+ 51+

T1 N0 M0 G2 ER+ PR− 20-50

T1 N0 M0 G3 Any ER Any PR 20+

T1 N1 M0 G2 ER+ PR+ 20+

T1 N2 M0 G1 ER+ PR+ 20-50

T2 N0 M0 G1 ER− PR− 51+

T2 N0 M0 G1 ER+ PR+ 51+

T2 N0 M0 G2 ER+ PR+ 20-50

T2 N1 M0 G1 ER+ PR+ 20-50

T3 N0 M0 G2 ER+ PR+ 20-50

Group 3

T1 N1 M0 G2 ER− PR+ 20+

T1 N1 M0 G2 ER+ PR− 20+

T1 N1 M0 G3 ER− PR− 20-50

T1 N1 M0 G3 ER− PR+ 20+

T1 N1 M0 G3 ER+ PR− 20-50

T1 N1 M0 G3 ER+ PR+ 20+

T1 N2 M0 G1 ER+ PR+ 51+

T2 N0 M0 G1 ER+ PR− 51+

T2 N0 M0 G2 ER− PR− 20-50

T2 N0 M0 G2 ER− PR+ 51+

T2 N0 M0 G2 ER+ PR− 20+

T2 N0 M0 G2 ER+ PR+ 51+

T2 N0 M0 G3 ER− Any PR 20-50

T2 N0 M0 G3 ER+ PR− 20-50

T2 N0 M0 G3 ER+ PR+ 20+

T2 N1 M0 G1 ER+ PR+ 51+

T2 N1 M0 G2 ER+ PR+ 20+

T3 N0 M0 G1 ER+ PR+ 51+

T3 N0 M0 G2 ER+ PR+ 51+

T3 N0 M0 G3 ER− PR− 20-50

Group 4

T1 N1 M0 G2 ER− PR− 20+

T1 N1 M0 G3 Any ER PR− 51+

(Continues)
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T N M G ER PR A

T1 N2 M0 G2 ER+ PR+ 20+

T2 N0 M0 G2 ER− PR− 51+

T2 N0 M0 G3 ER− Any PR 51+

T2 N0 M0 G3 ER+ PR− 51+

T2 N1 M0 G1 ER+ PR− 51+

T2 N1 M0 G2 ER+ PR− 20-50

T2 N1 M0 G3 ER+ PR+ 20-50

T2 N2 M0 G1 ER+ PR+ 51+

T3 N0 M0 G3 ER+ PR+ 20-50

T3 N1 M0 G1 ER+ PR+ 51+

T3 N1 M0 G2 ER+ PR+ 20+

Group 5

T1 N2 M0 G2 ER+ PR− 51+

T1 N2 M0 G3 ER+ PR+ 20+

T2 N1 M0 G2 ER− PR− 20-50

T2 N1 M0 G2 ER+ PR− 51+

T2 N1 M0 G3 ER− Any PR 20-50

T2 N1 M0 G3 ER+ PR− 20+

T2 N1 M0 G3 ER+ PR+ 51+

T2 N2 M0 G2 ER+ PR+ 20+

T2 N2 M0 G3 ER+ PR− 20-50

T3 N0 M0 G3 ER− PR− 51+

T3 N0 M0 G3 ER+ PR+ 51+

T3 N1 M0 G3 ER+ PR+ 20-50

T3 N2 M0 G2 ER+ PR+ 20-50

Group 6

T1 N2 M0 G2 ER− PR− 51+

T1 N2 M0 G3 ER− PR− 20+

T1 N2 M0 G3 ER+ PR− 51+

T1 N3 M0 G2 ER+ PR+ 20+

T1 N3 M0 G3 ER− PR− 20-50

T1 N3 M0 G3 ER+ PR+ 20+

T2 N1 M0 G2 ER− PR− 51+

T2 N1 M0 G3 ER− Any PR 51+

T2 N2 M0 G2 ER− PR− 20+

T2 N2 M0 G2 ER+ PR− 51+

T2 N2 M0 G3 ER− PR− 20+

T2 N2 M0 G3 ER+ PR− 51+

T2 N2 M0 G3 ER+ PR+ 20+

T2 N3 M0 G2 ER+ PR+ 20+

T2 N3 M0 G3 ER+ PR− 20-50

T2 N3 M0 G3 ER+ PR+ 20+

T3 N1 M0 G3 ER− PR− 20+

T3 N1 M0 G3 ER+ Any PR 51+

T A B L E   3   (Continued)

(Continues)
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of epidemiologic research for patient survival. Fifth, the ap-
proach can be applied to any survival data for any noncancer 
disease to produce prognostic systems for the disease under 
study. Finally, this data-driven approach applies whenever 
the data are available, therefore providing timely updates of 
prognostic groups and their survivals.

In summary, the proposed approach is able to create 
prognostic systems that have a good accuracy in survival 
prediction and provide a manageable number of prognostic 
groups. The prognostic systems have the potential to permit 
a thorough database analysis of all information relevant to 
decision-making in patient management and prognosis.
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