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Walking is an everyday activity in our daily life. Because walking affects heart rate
variability, in this research, for the first time, we analyzed the coupling among the
alterations of the complexity of walking paths and heart rate. We benefited from the
fractal theory and sample entropy to evaluate the influence of the complexity of paths
on the complexity of heart rate variability (HRV) during walking. We calculated the fractal
exponent and sample entropy of the R-R time series for nine participants who walked
on four paths with various complexities. The findings showed a strong coupling among
the alterations of fractal dimension (an indicator of complexity) of HRV and the walking
paths. Besides, the result of the analysis of sample entropy also verified the obtained
results from the fractal analysis. In further studies, we can analyze the coupling among
the alterations of the complexities of other physiological signals and walking paths.

Keywords: walking path, sample entropy, heart rate variability, complexity, fractal exponent

INTRODUCTION

The analysis of heart reactions in different conditions is a very important topic in physiology.
Walking is an important action of humans which affects their heart rate variability (HRV).

For this purpose, many researchers analyzed HRV while human walks. They employed different
techniques for their analysis. The reported studies that analyzed the effects of regular walking
during a golf game (Parkkari et al., 2000), graded forward and backward walking (Hooper et al.,
2004), dog-walking (Motooka et al., 2006), low-intensity exercise (Brenner et al., 2020), age and
sex of subjects (Corrêa et al., 2013), speed and duration of walking (Saevereid et al., 2014), green
walking (de Brito et al., 2020), and supervised walking (Leicht et al., 2011) on heart rate variations
are worthy of being mentioned.

In this work, for the first time, we evaluated the coupling between the alterations of heart activity
and walking paths. The novelty of our work is employing the concept of complexity to analyze
the coupling between walking path and heart reaction. Considering a system that contains many
parts that interact with each other in highly different ways, the concept of complexity is used to
characterize the behavior of this system. Based on the literature, various techniques have been
developed and utilized for the analysis of complex systems.

A human can walk on a straight line or a path with a complex pattern. Moreover, the HRV (in
the form of the R-R time series) has a complex pattern. Therefore, complexity theory can be used to
study the coupling among HRV and paths. In this study, we used the fractal theory to quantify the
complexity of HRV and paths.
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The fractal theory is a popular technique for the investigation
of complex structures of fractals. In general, fractal objects
have repeating patterns (self-affinity or self-similarity) that are
distributed on every scale inside them. The complexity of these
objects is quantified by the fractal dimension. A more complex
object has a larger fractal dimension. In general, for a fractal
object, the fractal dimension (as the measure of complexity)
satisfies the Szpilrajn inequality:

F ≥ D (1)

where F and D represent the fractal dimension and topological
dimension (Euclidean dimension) of the object, respectively.

Many works have been reported that investigated the
alterations in the complexity of physiological time series using
fractal analysis. We can also find some works which applied
fractal analysis on ECG signals in various conditions. The
reported investigations that analyzed heart rate of normal
subjects in different age groups (Acharya et al., 2004; Soares-
Miranda et al., 2014), predicted cardiac death (Mäkikallio
et al., 2001; Sen and McGill, 2018), evaluated the effects of
pharmacological adrenergic and vagal modulation on heart
rate dynamic (Tulppo et al., 2001), analyzed the variations
of heart rate during non-REM sleep (Togo and Yamamoto,
2001), investigated the variations of heart rate for patients
with peripheral arterial disease (Utriainen et al., 2018), diabetes
(Chau et al., 1993), and chronic obstructive pulmonary disease
(COPD) (D’Addio et al., 2007) using fractal theory are worthy of
being mentioned.

Besides fractal analysis, other non-linear analysis techniques
such as approximate entropy and sample entropy also can be
used to evaluate the complex structure of heart rate. Sample
entropy as a measure of complexity does not depend on
the data length. Because the heart rates of different subjects
have different lengths during walking on the same path, the
calculation of sample entropy helps us to verify the result
of the fractal analysis which is dependent on the length of
data. Sample entropy has been utilized widely to quantify the
complexity of various types of physiological signals. Specifically,
the applications of sample entropy in the analysis of heart
rate have been extensive. The reported works that analyzed
complexity change in cardiovascular disease (Chen et al., 2017),
investigated the HRV of neonates (Lake et al., 2002), predicted
an ischemic stroke in patients with permanent atrial fibrillation
by analysis of heart rate (Watanabe et al., 2015), analyzed heart
rate variability of children after cardiac transplantation (Tuzcu
and Nas, 2005), investigated the recovery of heart rate after
exercise (Javorka et al., 2002), classified the heart rate variability
of healthy subjects versus subjects with obstructive sleep apnea
syndrome (Al-Angari and Sahakian, 2007), and investigated
the effect of low-intensity exercise (Weippert et al., 2014) and
severity of gastric cancer on HRV (Shi et al., 2019) are worthy
of being mentioned.

Therefore, we employed the fractal theory and sample entropy
to evaluate the coupling among the complexities of heart rate
and walking paths. In the next section, we talk about the
methodology. Then, the procedures of data collection and

processing will be presented. The result section will provide the
findings. Finally, we will discuss the results.

MATERIALS AND METHODS

In this work, we evaluated the coupling among the complexities
of the HRV and paths of movement. In other words, we analyzed
how the alteration in the complexity of a path affects the
complexity of the HRV. Therefore, we employed fractal theory
and analyzed the alterations of the fractal exponent of the HRV
versus the alterations of the fractal exponent of the path of
movement. Its larger values indicate greater complexity.

In this study, we considered the R-R time series (obtained
by extracting R peaks of ECG signals), as the heart rate. We
calculated the fractal exponent of the R-R time series and walking
path using the box-counting method. As Eq. 2 shows, the fractal
dimension is computed based on the variations of the number
(N) and size (ε) of boxes used in each iteration of the box-
counting algorithm.

FD = lim
ε→0

log N (ε)

log 1/ε
(2)

Equation 3 shows the general form of fractal dimension (order of
c) (Soundirarajan et al., 2020):

FDc = lim
ε→0

1
c− 1

log
∑N

j=1 rc
j

log ε
(3)

rjwhich stands for the probability, is defined as

rj = lim
T→∞

tj

T
(4)

where tj and represent the total time of occurrence in the j-th bin
and the total period of the time series, respectively.

On the other hand, considering the same walking path, the
extracted R-R time series for different subjects had different
lengths. To overcome the effect of this issue, and therefore verify
the result of fractal analysis, we computed the sample entropy of
HRV. Similar to the fractal exponent, a bigger value of sample
entropy indicates higher complexity. Therefore, sample entropy
was employed to verify the findings of the fractal analysis.

Considering a signal in the form of
{r (1) , r (2) , r (3) , . . . , r(n)}with a constant interval of α,
we define a template vector of length zembedding dimension) in
the form of Rz (i) = {ri, ri+1, ri+2, . . . , ri+z−1}and the distance
function d

[
Rz (i) , Rz

(
j
)]

(i 6= j)s to be Chebyshev distance.
Then, the sample entropy (SamEn) is formulated as

SamEn = −log
B
C

(5)

Considering ε as the tolerance (0.2×
standard deviation of data), B stands for the number of
template vector pairs that

d[Rz+1 (i) , Rz+1
(
j
)
] < ε (6)
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Besides, C stands for the number of template vector pairs that

d[Rz (i) , Rz
(
j
)
] < ε (7)

We designed four walking paths for our experiment that are
shown in Figure 1. Each path included 120 points that subjects
put their feet on them. The direction of walking was from left
to right in each path. We designed these paths based on their
fractal exponents. As Figure 1 and Table 1 show, the first path
as a straight line has a complexity of 1. By moving to other paths,
the complexity of paths increases.

Therefore, subjects walked on various paths and accordingly,
we analyzed the coupling among the alterations of the complexity
of the HRV and paths.

Data Collection and Analysis
The ethical committee of Monash University has approved this
study (No. 19719). We have experimented on nine healthy
students (6 M, 3 F, 18–22 years old). They signed an informed
consent form after they agreed to participate.

For the recording of ECG signals, we used the Shimmer ECG
device. Because the shimmer ECG kit is a mobile device, it gave
us the ability to record subjects’ ECG signals while walking.
We recorded ECG signals from participants with a sampling
frequency of 256 Hz. Four recording electrodes and one reference
electrode of the ECG device were put on each subject’s chest based
on the map that is shown in figure 3-3 in Figure 3-3 (2019).

The experiment has been conducted in two similar sessions. In
each session, we asked participants to look through and walk on
the designed points on the paths without doing extra movements
or looking around. Initially, we recorded the ECG signals of
subjects while resting for 1 min. After that, participants walked on
the first to the fourth path, while we recorded their ECG signals.
It should be noted that they rest for a minute (by sitting on a
chair) once they reached the last point of each path. This period
brought their heart activity to the normal condition before they
move on another path.

For our analysis, we considered the R-R time series as the
heart rate variability (HRV) signal. For this purpose, we wrote
a set of codes in MATLAB that generated the R-R time series.
These written codes detected R peaks through QRS analysis and
accordingly generated R-R time series. For this purpose, our code
first de-trended ECG signals using fast Fourier transform and
accordingly transformed the result to time-domain via inverse
fast Fourier transform. After that, our code used “findpeaks”
command in MATLAB to find the peaks based on the minimum
specified voltage, and the minimum distance of each two
consecutive peaks. Figure 2 shows a sample of raw ECG signal
(A) and extracted the R-R time series for 20 s of data (5,120
sample points) (B). It should be noted that we visually checked
all selected peaks to ensure their correctness.

We processed the R-R time series in case of different walking
paths by computing their fractal exponent and sample entropy
in MATLAB 2019a (MathWorks, United States). The duration of
walking for each subject was different in the case of various paths;
therefore, the length of his/her R-R time series was different.
However, we processed the same length of data (58.19 s) for

all subjects in case of rest. A code based on the box-counting
algorithm calculated the fractal dimension of R-R time series
using boxes with the sizes of 1

2 , 1
4 , 1

8 , 1
16 , . . . . the minimum box

size is calculated in the box-counting algorithm (Han, 2020).
Initially, we checked the assumption of the ANOVA test

(normality, equality of variances, and independence). After that,
the ANOVA test was conducted to evaluate the significance
of alterations of the complexity of HRV due to walking. We
compared the fractal exponent (and sample entropy) of HRV
among various conditions (rest and walking paths) using a
post hoc Tukey test. The effect of variations of paths on the
alterations of the complexity of HRV was investigated u sing
effect size analysis, and Cohen’s d has been reported. We also
analyzed the coupling between the calculated values of fractal
exponent and sample entropy using the Pearson correlation
coefficient. We interpreted the results based on the significance
level of 95%.

RESULTS

The assumptions of the ANOVA test for the calculated values
of fractal exponent and sample entropy have been fulfilled. The
presented results are based on the average of calculated values
in two sessions of the experiment. The alterations of the fractal
exponent of the R-R time series are shown in Figure 3. For
a better comparison, we mapped the fractal exponent of paths
in Figure 4.

P value = 0.0320 and F value = 2.7975 calculated from the
ANOVA test indicate that the fractal dimension of heart rate has
changed significantly as the result of walking. According to the
obtained results, the heart rate has the largest fractal exponent
during rest. The fractal exponent indicates the complexity;
therefore, the heart rate experiences the greatest complexity
during rest. The trend of alterations of the fractal exponent
shows that shifting from first to the fourth path reduced the
complexity of heart rate.

By comparing the obtained results in Figure 3 with the
complexity of various paths in Figure 4, it can be said that the
complexity of heart rate decreased when participants moved on
a path with a larger complexity. Therefore, the alterations of
the complexities of HRV and paths are coupled. The value of
correlation coefficient (R = −0.8657) between the variations of
the fractal exponents of HRV and walking path also proves a
strong negative coupling between them.

Table 2 compares the fractal exponent of heart rate among
various pairs. As is shown, the alteration of the fractal exponent
of heart rate among rest and the fourth path was significant.
In fact, the difference in the complexity of paths affects the
result of pairwise comparisons, and greater differences between
the complexities of paths would potentially cause significant
differences in the fractal exponents of HRV. This table also shows
the effect sizes. As it is clear, the fourth path with the largest
complexity had the largest influence on the alterations of the
complexity of heart rate.

Figure 5 demonstrates the alterations of the sample entropy of
the R-R time series in rest and various paths.
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FIGURE 1 | The designed paths. The direction of walking was from left to right in each path.
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TABLE 1 | The complexity of various paths.

Number Fractal exponent

1 1.0000

2 1.6381

3 1.8826

4 1.9771

P value = 0.0455 and F value = 2.5599 calculated
from the ANOVA test indicate that the sample entropy
of heart rate has changed significantly as the result of
walking. Based on the obtained results, the heart rate has
the highest sample entropy in case of rest. Therefore, it
can be said that the heart rate experiences the greatest
complexity during rest. The trend of alterations of the
sample entropy in the case of different paths indicates that

by shifting from first to the fourth path, the complexity of
heart rate decreases.

By comparing the obtained results in Figure 5 with the
complexity of different walking paths shown in Figure 4, it
can be said that by moving on a path with greater complexity,
the complexity of heart rate decreased. Therefore, the trend of
alterations of sample entropy is similar to the trend of alterations
of the fractal exponent.

Table 3 compares the sample entropy of heart rate between
various conditions. Based on this result, similar to what we
observed in Table 2, the alterations of the sample entropy
of heart rate among rest and the fourth path was significant.
As previously mentioned, the difference in the complexity
of paths affects the result of pairwise comparisons, and
greater differences between the complexities of paths would
potentially cause significant differences in the sample entropy
of HRV.

FIGURE 2 | A sample of recorded ECG signal with the specified R peaks (A) and extracted R-R time series (B).
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FIGURE 3 | The fractal exponent of heart rate variability. Error bars indicate
the SD.

FIGURE 4 | The fractal dimension of different paths.

TABLE 2 | Comparing the fractal exponent of HRV.

Pair p Cohen’s d

Rest condition and 1st path 0.8989 0.2660

Rest condition and 2nd path 0.6937 0.4090

Rest condition and 3rd path 0.1343 0.7446

Rest condition and 4th path 0.0293 0.9801

1st path and 2nd path 0.9958 0.1422

1st path and 3rd path 0.6391 0.5292

1st path and 4th path 0.2491 0.8049

2nd path and 3rd path 0.8433 0.4351

2st path and 4th path 0.4218 0.7453

3rd path and 4th path 0.9340 0.3396

The effect sizes are presented in this table. As it is clear, the
fourth path with the largest complexity had the largest influence
on the alterations of the complexity of heart rate. Moreover,
the value of correlation coefficient (R = 0.9588) between the
variations of sample entropy and fractal exponent indicates a
strong positive correlation between them.

Therefore, the result of the analysis of sample entropy of
heart rate validates the findings of fractal analysis. In general,
the alterations of the complexities of HRV and walking path are

FIGURE 5 | The sample entropy of heart rate variability. Error bars indicate the
SD.

TABLE 3 | Comparing the sample entropy of HRV.

Pair p Cohen’s d

Rest condition and 1st path 0.9978 0.0907

Rest condition and 2nd path 0.9398 0.2786

Rest condition and 3rd path 0.5526 0.6011

Rest condition and 4th path 0.0363 1.1622

1st path and 2nd path 0.9932 0.1269

1st path and 3rd path 0.7854 0.3572

1st path and 4th path 0.0989 0.8104

2nd path and 3rd path 0.9507 0.3067

2st path and 4th path 0.2135 0.9079

3rd path and 4th path 0.5731 0.6972

coupled; as subjects walked on a path with a larger complexity, a
larger change was seen in the complexity of their heart rates.

DISCUSSION AND CONCLUSION

We evaluated the effect of walking on different paths on HRV.
For this purpose, for the first time, we considered the concept of
complexity, and by employing fractal theory and sample entropy,
we studied the alterations of the complexity of heart rate in
case of walking on various paths with various complexities. The
findings showed greater alterations in the complexity of heart
rate as the result of walking on paths with greater complexities.
In other words, the complexities of the heart rate and walking
paths are coupled. The result of statistical analysis demonstrated
significant alterations in the complexity of HRV due to walking
on the various paths. Moreover, moving on a path with a larger
complexity had a larger effect on the alterations of the HRV.

Our analysis is more advanced compared with the studies
(Parkkari et al., 2000; Hooper et al., 2004; Motooka et al., 2006;
Leicht et al., 2011; Corrêa et al., 2013; Saevereid et al., 2014;
Brenner et al., 2020; de Brito et al., 2020) that only evaluated HRV
in walking without relating it to the characteristics of the walking
path. Besides, decreasing the complexity of HRV in walking
compared with the rest has been observed in Shi et al. (2017), and
therefore, the result of our analysis is valid.
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Here, we refer to the connection between the brain and
heart to elaborate on the obtained results in this study.
In Kamal et al. (2020), we showed that the alterations
of the complexities of EEG signals and walking paths are
coupled. Because the human brain regulates the heart activity
through the physiological network, therefore, the alterations
of the complexity of EEG signals are mapped on the
alterations of the complexity of HRV. In other words, the
complexity of EEG (Kamal et al., 2020) and HRV experiences
larger alterations when participants move on paths with
larger complexities.

In this work, we evaluated the variations of HRV during
walking. In further studies, similar experiments can be
performed in case of other physiological signals. For example,
we can analyze how respiration signals change while walking
on different walking paths. We can simultaneously analyze
the brain’s reaction while subjects walk on different paths.
As was mentioned previously, because the human brain
regulates all activities of the body, couplings should exist
among the alterations of the complexities of EEG signals
and other biomedical signals in walking. For example, we
can evaluate the coupling among the alterations of EEG,
ECG, and moving paths. This analysis will help us to
evaluate the coupling among brain and heart activities
during walking that specifically has great importance in
rehabilitation science.

Besides, our analysis can be further extended for patients with
various heart disorders. Therefore, we can evaluate the coupling
among the complexities of HRV and moving paths in the case of
these patients. Accordingly, we can understand how a disorder
affects heart activity, and by adjusting paths, we can regulate
heart reactions. In other words, we can design the path in which
patients can walk with fewer problems for their hearts.
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