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A remarkably wide variety of human
neurotrophic viruses—ranging from her-
pes simplex 1 (HSV-1; Herpesviridae;
dsDNA genome) to Hantavirus (HTV;
Bunyaviridae; (−)ssRNA genome) to
human immunodeficiency virus (HIV;
Retroviridae; (+)ssRNA genome) are asso-
ciated with the rapid up-regulation of
the NF-kB-sensitive pro-inflammatory
microRNA-146a (miRNA-146a) in the
host shortly after infection. This signifi-
cant miRNA-146a up-regulation appears
to be beneficial to the infecting virus
as part of an immune-evasion strategy.
Interestingly, miRNA-146a is also signif-
icantly up-regulated in several human
central nervous system (CNS) disor-
ders. These include Alzheimer’s disease
(AD) and prion disease where miRNA-
146a participates in pro-inflammatory
and innate-immune signaling. This
opinion paper will comment on some
recently clarified roles for the NF-kB-
regulated, pro-inflammatory miRNA-146a
in viral-induced cellular dysfunction, and
how anti-miRNA-146a and/or related
therapeutic strategies may be benefi-
cial in the clinical management of a
broad spectrum of viral-mediated CNS
disease.

The 22 nucleotide, non-coding, sin-
gle stranded RNA (ssRNA) miRNA-146a
(5′-UGAGAACUGAAUUCCAUGGGUU-
3′; 41% C+G; NR_029701) lies at the
crossroads of multiple biological pro-
cesses involved in the innate-immune

response, viral-infection and inflamma-
tory disease (Lukiw and Pogue, 2007;
Cui et al., 2010; Lukiw, 2012; Saba et al.,
2014). miRNA-146a, encoded at chro-
mosome 5q33.3 (chr 5q33.3) in humans,
is a rapidly induced, NF-kB-sensitive
pro-inflammatory miRNA with a rela-
tively short half-life of about ∼2 h in
the human CNS (Taganov et al., 2006;
Lukiw et al., 2008; Sethi and Lukiw, 2009;
Li et al., 2010; Kroesen et al., 2015).
Initially described as being significantly
up-regulated after microbial lipopolysac-
charide (LPS) stimulation of monocytes
and under transcriptional control by
NF-κB, miRNA-146a was subsequently
found to be: (i) up-regulated by pro-
inflammatory cytokines (such as IL-1β

and TNFα; Taganov et al., 2006; Lukiw
et al., 2008; Cui et al., 2010); (ii) induced
by metal sulfate-generated reactive oxy-
gen species (ROS; Pogue et al., 2009);
(iii) up-regulated by neurotoxic 42 amino
acid amyloid beta (Aβ42) peptides in
human primary brain cells (Li et al., 2010;
Alexandrov et al., 2011); and (iv) impli-
cated as a key regulator of innate-immune
signaling in part through interleukin
receptor-associated kinase (IRAK) activa-
tion (Cui et al., 2010; Saba et al., 2014).
Subsequent sequencing across the chr
5q33.3 locus indicated the presence of 3
tandem, canonical NF-kB-binding sites in
the 5′ regulatory-region of the miRNA-
146a gene (Sethi and Lukiw, 2009; Cui
et al., 2010). Combined with functionality

and NF-kB-inhibition assays miRNA-
146a was the first NF-κB-regulated,
pro-inflammatory miRNA identified in
the human CNS (Li et al., 2010, 2011). The
most significant miRNA-146a abundances
to date have been found in astroglial and
microglial cells, the later representing
the “resident scavenging-macrophages”
of the CNS, and key participants in the
brain’s innate-immune surveillance and
inflammatory response-systems (Li et al.,
2010, 2011; Saba et al., 2012). While only
basally expressed in the CNS, miRNA-
146a can be induced 2- to 25-fold or
higher in cultured human primary brain
cells after the application of several dif-
ferent classes of physiological stressors
including treatment with (i) neurotropic
virus (Hill et al., 2009; Lukiw et al., 2009;
Li et al., 2010); (ii) neurotoxic metal
sulfates (such as aluminum sulfate at
low nanomolar concentrations; Pogue
et al., 2009); (iii) microbial endotoxins
including LPS (Taganov et al., 2006); and
(iv) pro-inflammatory cytokines and Aβ

peptides, either alone or in combina-
tion (Taganov et al., 2006; Lukiw et al.,
2008, 2010; Li et al., 2010). While the
mechanism for miRNA-146a-mediated
immune-evasion is still not fully under-
stood, in humans this process appears
to require the activation of NF-kB; other
transcription factors such as AP1 may be
used in miRNA-146a activation in mice
(Tung et al., 2010; Ho et al., 2014; Wang
et al., 2014).
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A surprisingly large number of dif-
ferent types of potentially incapacitating
or lethal viruses, possessing either DNA
or RNA genomes, have been shown to
significantly induce miRNA-146a in the
human CNS, immune, lymphatic, hep-
atic or circulatory systems, and these
include (alphabetically-ordered): (i)
Chikungunya virus (CHIKV; Togaviridae;
(+)ssRNA genome; Selvamani et al.,
2014); (ii) enterovirus 71 (EV71;
Picornaviridae; (+)ssRNA genome; Ho
et al., 2014); (iii) Epstein-Barr virus
(EBV; Herpesviridae; dsDNA genome;
Jonigk et al., 2013); (iv) Hantavirus (HTV;
Bunyaviridae; (−)ssRNA genome; Shin
et al., 2013); (v) hepatitis C virus (HCV;
Flaviviridae; (+)ssRNA genome; Joshi
et al., 2013); (vi) herpes simplex virus-
1 (HSV-1; Herpesviridae; dsDNA genome;
Higaki et al., 2003; Hill et al., 2009; Lukiw
et al., 2010); (vii) Henipavirus (Hendra)
virus (HeV; Paramyxoviridae; (−)ssRNA
genome; Stewart et al., 2013); (viii)
human influenza A viruses (H1N1/H3N2;
Orthomyxoviridae; (+)ssRNA genome;
Chen et al., 2012; Terrier et al., 2013); (ix)
hepatitis B virus (HBV; Hepadnaviridae;
dsDNA genome; Liu et al., 2009); (x)
human immunodeficiency virus (HIV;
Retroviridae; (+)ssRNA genome; Duskova
et al., 2013; (xi) human T-cell leukemia
(lymphotropic) virus type 1 (HTLV-
1; Retroviridae; (+)ssRNA genome;
Pichler et al., 2008); and (xii) Japanese
encephalitis virus (JEV; Flaviviridae;
(+)ssRNA genome; Pareek et al., 2014).
Note that (i) this viral-miRNA-146a-
induction/association are all relatively
recent discoveries with more than three
quarters identified within the last 22
months; (ii) all of the most recent viral-
host miRNA-nucleoplasmic signaling
studies indicate the up-regulation of
miRNA-146a; and (iii) viral infection
involving each virus mentioned above is
associated with progressive neuropatho-
logical change. Interestingly (i) miRNA-
146a up-regulation has been associated
with common age-related, human inflam-
matory degenerations such as sporadic
Alzheimer’s disease (AD), and the rare
sporadic prion diseases Creutzfeldt-Jakob
disease (sCJD) and Gerstmann-Straussler-
Scheinker (GSS) syndrome; and (ii) the
etiopathogenesis of AD has recently been
associated with multiple viral infections,

and most recently with latent HCV, HIV-1
or HSV-1 reactivation (Hill et al., 2009,
2014; Lukiw et al., 2011; Ball et al., 2013;
Alexandrov et al., 2014).

Under suitable physiological condi-
tions, often within minutes after viral
infection, signaling via the pre-existing,
heterodimeric transcription factor NF-
kB is accomplished by complex, highly
interdependent, viral-mediated regulatory
mechanisms. These involve protein-
protein interactions, phosphorylation,
ADP-ribosylation, nucleocytoplasmic-
trans-location, ubiquitination and
proteolytic-degradation (Vallabhapurapu
and Karin, 2009; Cui et al., 2010; Lee and
Covert, 2010; Yarbrough et al., 2014; Di
Girolamo, 2015). The most ubiquitous
NF-κB members in non-stimulated cell
cytoplasm are the p50 and p65 (RelA) sub-
units forming the heterotypic p50/p65
NF-kB dimer complexed with mem-
bers of the IκB-inhibitor family (which
prevents nuclear translocation; Zanella
et al., 2013; Di Girolamo, 2015). Typically,
after viral-mediated phosphorylation of
IκBα at specific serine residues, IκBα

dissociates from the p50/p65 dimer, is
ubiquitinated and degraded by the protea-
some, allowing the majority of NF-κB
complexes to translocate through the
nuclear pore complex (NPC; typically
10,000 nuclear pores/neuron; Threadgold,
1976). Here NF-kB subsequently recog-
nizes genomic NF-kB binding sites in
target gene regulatory regions, to tran-
siently activate RNA Pol II-mediated
transcription (Vallabhapurapu and Karin,
2009; Cui et al., 2010; Zanella et al., 2013;
Di Girolamo, 2015). The miRNA-146a
gene for example may be up-regulated
10-fold or more within minutes of viral
infection; importantly NF-κB activation
is usually terminated via IκB protein
re-synthesis and NF-kB-re-inhibition
(Schmid and Birbach, 2008; Hill et al.,
2009, 2014; Cui et al., 2010; Lukiw
et al., 2010). Gel shift assays and live-
cell fluorescence microscopy indicate that
NF-κB activation may exhibit oscillatory
patterns, with levels of nuclear NF-κB
alternately increasing-and-decreasing; this
suggests the intriguing possibility that
NF-kB-based signaling might exploit
the timing of protein-modification and
nucleocytoplasmic shuttling to regu-
late gene expression (Spiller et al., 2010;

Kodaman et al., 2014). Oscillatory varia-
tion in miRNA-146a abundance is not well
understood, indeed viral-mediated phos-
phorylation of IkB and NF-kB activation
and nucleocytoplasmic trafficking is com-
plicated as different viruses may recruit
different viral or host proteins to target
different signaling components of the
NF-kB pathway using multiple strate-
gies. For example polyubiquitination of
the (+)ssRNA HTVL-1 virus encoded
Tax protein activates IkB kinase resulting
in NF-kB activation and nucleocyto-
plasmic translocation, while the dsDNA
EBV-encoded latent membrane protein 1
(LMP1) not only activates IkB kinase to
induce nucleocytoplasmic trafficking of
NF-kB but also appears to be involved in
additional mechanisms including LMP1-
mediated interaction with nuclear proteins
(Currer et al., 2012; Ersing et al., 2013).
Interestingly, many neurotrophic viruses
inhibit nucleocytoplasmic trafficking of
host mRNAs to promote cytoplasmic viral
replication and disrupt expression of anti-
viral factors by the host (Yarbrough et al.,
2014). What is remarkable is that despite a
tremendous variation in their biophysical
and genomic structure, nucleic acid type,
size and life-cycle, in humans all miRNA-
146a-inducing neurotrophic viruses
appear to share the common capabilities:
(i) to target NF-kB-mediated gene expres-
sion; (ii) to induce complex nuclear and/or
nucleocytoplasmic signaling that processes
miRNA-146a precursors to export mature
miRNA-146a back into the cytoplasm; and
(iii) to drive a miRNA-146a-mediated
arachidonic acid signaling cascade
with subsequent pro-inflammatory and
pathogenic consequences (Hill et al., 2009;
Lukiw et al., 2010; Alexandrov et al., 2014;
Yarbrough et al., 2014).

Out of about 24,000 miRNAs so far
identified in all species, only about 300
are encoded by viruses (miRBase v.20;
Liu, 2014). There is evidence that viral-
encoded miRNAs regulate the expression
of their own genes or the host’s genes,
or both (Liu, 2014; Yao and Nair, 2014).
dsDNA viruses encode most of the viral-
encoded miRNAs, with members of the
family Herpesviridae accounting for the
vast majority, indicating the significance
of viral miRNA-mediated gene regula-
tion in the biology of HSV infection (see
above; Yao and Nair, 2014). In general
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DNA viruses that contain miRNA encoded
in their viral DNA require access to the
RNA polymerase II and miRNA processing
machinery located within the nucleus in
order to express that miRNA. In contrast,
RNA viruses can replicate in the cytoplasm
and, therefore, rarely encode miRNA (Liu,
2014; Swaminathan et al., 2014; Yao and
Nair, 2014). There are, however, notable
exceptions - for example infection with
Ebola virus [EBOV; Filoviridae; (−)ssRNA
genome] that causes a highly lethal hemor-
rhagic fever syndrome in humans rapidly
induces 3 EBOV genome-derived miR-
NAs that subsequently target host mRNA
(Liang et al., 2014). Indeed, perhaps as part
of complex survival and immune-evasion
strategies, neurotrophic viruses may mod-
ulate host miRNA precursor processing
to favor viral miRNA production, thus
contributing to viral-disease pathogenesis
via multiple and highly interactive mecha-
nisms (Conrad and Niepmann, 2014; Liu,
2014; Yao and Nair, 2014; Yarbrough et al.,
2014).

In summary, viruses have evolved mul-
tiple and complex strategies to subvert
and evade the host immune-response to
ensure their own replication and survival
(Hill et al., 2014; Kodaman et al., 2014;
Yarbrough et al., 2014). While there is
still debate as to whether up-regulated
miRNA-146a is beneficial to the infecting
virus or a protective host innate-immune
response, at least 7 recent observations
suggest that a virally-induced NF-kB-
mediated up-regulation of miRNA-146a is
significantly pathogenic and disruptive to
homeostatic CNS function: (i) the antivi-
ral acycloguanosine acyclovir prevents an
HSV-1-induced miRNA-146a-activated
pro-inflammatory cell-death program
in human CNS cells via reduction in
miRNA-146a abundance (Lukiw et al.,
2010); (ii) up-regulated miRNA-146a has
been shown to significantly down-regulate
expression of complement factor-H to
induce a progressive and lethal pro-
inflammatory degeneration in stressed
human primary brain cells (Cui et al.,
2010; Alexandrov et al., 2014); (iii) both
viral and cytokine (IL-1β, TNFα) induced
up-regulation of miRNA-146a triggers
a chronic human retinal-degeneration
(Kutty et al., 2013; Alexandrov et al., 2014;
Hill et al., 2014); (iv) a progressive up-
regulation of miRNA-146a accompanies

pro-inflammatory neuropathology in
lethal human CNS disorders includ-
ing sporadic AD and the human-prion
diseases GSS and sCJD (Lukiw et al., 2011;
Saba et al., 2012); (v) a progressive up-
regulation of miRNA-146a accompanies
AD-type neuropathology in several trans-
genic animal models of AD (including
Tg2576 and 5xFAD; Alexandrov et al.,
2011, 2014; Li et al., 2011); (vi) quenching
of miRNA-146a using anti-miRNA-146a
strategies restores homeostatic immune
signaling in CHIKV-infected human
fibroblasts (Selvamani et al., 2014);
and (vii) inhibition of EV71-induced
miRNA-146a-upregulation employing
anti-miRNA-146a strategies has been
observed to inhibit viral propagation and
improve survival rates in mouse models
(Ho et al., 2014). It is our opinion: (i) that
NF-kB inhibition may not be an effective
therapeutic strategy for neurotrophic viral
infections because NF-kB is a ubiquitous
transcription factor with large potential
for off-target effects; and (ii) that virally-
induced miRNA-146a excess could be
effectively neutralized using perfectly com-
plementary locked nucleic acid-stabilized
anti-miRNA-146a oligonucleotides, and
thereby act as an anti-viral agent for a wide
variety of DNA- and RNA-virus-induced
disease (Lukiw, 2013; Maguire et al., 2014).
Indeed, a major advancement in antiviral
therapy might involve a broad-spectrum,
anti-miRNA-146a strategy which, per-
haps in combination with antivirals
such as acyclovir and/or the recently
described gene editing methods using
CRISPR/Cas9 (clustered regularly inter-
spaced short palindromic repeats/caspase
9)-mediated or other gene therapy tech-
nologies (Doudna and Charpentier, 2014;
Maguire et al., 2014; Hochstrasser and
Doudna, 2015). We envision these to have
considerable therapeutic potential in the
future clinical management of viral infec-
tions where miRNA-146a up-regulation
appears to play a pathogenic role.
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