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Abstract17

Glioma is a highly malignant brain tumor with limited treatment options. We18

employed the Computational Analysis of Novel Drug Opportunities (CANDO)19

platform for multiscale therapeutic discovery to predict new glioma therapies. We20

began by computing interaction scores between extensive libraries of drugs/com-21

pounds and proteins to generate “interaction signatures” that model compound22

behavior on a proteomic scale. Compounds with signatures most similar to those23

of drugs approved for a given indication were considered potential treatments.24

These compounds were further ranked by degree of consensus in correspond-25

ing similarity lists. We benchmarked performance by measuring the recovery26

of approved drugs in these similarity and consensus lists at various cutoffs,27

using multiple metrics and comparing results to random controls and perfor-28

mance across all indications. Compounds ranked highly by consensus but not29

previously associated with the indication of interest were considered new pre-30

dictions. Our benchmarking results showed that CANDO improved accuracy31

in identifying glioma-associated drugs across all cutoffs compared to random32
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controls. Our predictions, supported by literature-based analysis, identified 2333

potential glioma treatments, including approved drugs like vitamin D, taxanes,34

vinca alkaloids, topoisomerase inhibitors, and folic acid, as well as investigational35

compounds such as ginsenosides, chrysin, resiniferatoxin, and cryptotanshinone.36

Further functional annotation-based analysis of the top targets with the strongest37

interactions to these predictions identified Vitamin D3 receptor, thyroid hormone38

receptor, acetylcholinesterase, cyclin-dependent kinase 2, tubulin alpha chain,39

dihydrofolate reductase, and thymidylate synthase. These findings indicate that40

CANDO’s multitarget, multiscale framework is effective in identifying glioma41

drug candidates thereby informing new strategies for improving treatment.42

Keywords: glioma, multiscale drug discovery, computational drug repurposing,43

translational bioinformatics, deep learning, systems biology44

List of Abbreviations45

CANDO Computational Analysis of Novel Drug Opportunities
BBB Blood-brain barrier
P-gp P-glycoprotein
ADME Absorption, distribution, metabolism, and excretion
BANDOCK Bioanalytical docking protocol
AF2 AlphaFold2
CTD Comparative Toxicogenomics Database
MeSH Medical Subject Headings
ECFP4 Extended Connectivity Fingerprints with a diameter of 4
RMSD Root-mean-square deviation
IA Indication accuracy
AIA Average indication accuracy
nIA New indication accuracy
NDCG Normalized discounted cumulative gain
nNDCG New NDCG
PI3K Phosphatidylinositol-3’-kinase
mTOR Mammalian target of rapamycin
JAK Janus kinase
STAT Signal transducer and activator of transcription
STAT3 Signal transducer and activator of transcription 3
AChE Acetylcholinesterase
THRB Thyroid hormone receptor beta
CDK1 Cyclin-dependent kinase 1
DHFR Dihydrofolate reductase
TYMS Thymidylate synthase
CNS Central nervous system
GBM Glioblastoma multiforme
TUBA1C Tubulin alpha-1C chain
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LGG Low-grade gliomas
TOPI Type I topoisomerases
TOPII Type II topoisomerases
CPT-11 Irinotecan
SN-38 7-Ethyl-10-hydroxycamptothecin
FA Folic acid
FR Folate receptor
TRP Transient vanilloid receptor
NIH National Institutes of Health
NCATS NIH Clinical and Translational Sciences
NLM NIH National Library of Medicine
NIST National Institute of Standards of Technology
CCR Center for Computational Research

1 Introduction46

Glioma is one of the most aggressive and fatal forms of malignant brain tumors, partic-47

ularly prevalent among the elderly, with high rates of occurrence and mortality [1, 2].48

Currently, chemotherapy is the primary treatment for glioma due to its aggressive49

progression, various pathologies, and the challenges associated with complete surgi-50

cal removal [3, 4]. However, the effectiveness of chemotherapy is significantly limited51

by factors such as the selective permeability of the blood-brain barrier (BBB), neu-52

rotoxicity, and inadequate drug delivery to the tumor site [5–9]. Furthermore, the53

ATP-dependent efflux transporter, P-glycoprotein (P-gp), located on the BBB, con-54

tributes to the removal of chemotherapeutic agents [10]. A substantial proportion55

of patients with glioma (about 90%) experience tumor recurrence in the local area56

after initial treatment [11]. Unfortunately, effective therapeutic options for recurrent57

glioma are lacking. As a result, there is an urgent need to advance our understanding58

of the molecular pathology of glioma, identify new therapeutic targets, and develop59

innovative treatment strategies. A major challenge in modern medicine is the limited60

availability of new glioma drugs that can cross the BBB [12–14].61

The process of drug discovery aims to identify chemical compounds with thera-62

peutic potential for treating human diseases. Despite substantial advances, the success63

rate for the introduction of new drugs to the market has declined, with the aver-64

age drug discovery pipeline now exceeding 12 years and costing more than 2 billion65

dollars [15, 16]. Computational approaches, such as virtual high-throughput screen-66

ing, are increasingly being used to identify potential lead compounds by simulating67

and evaluating the binding affinity of numerous compounds against a target [17–20].68

Challenges such as the vast combinatorial space of binding poses [21, 22] and ligand69

conformations [23, 24], coupled with the complex dynamics of these systems [25], limit70

the effectiveness of traditional virtual screening in reliably producing effective leads.71

Some computational methods stand out for their efficiency, accuracy, comprehensive72

assessment of interaction spaces, and broad exploration of chemical space, helping to73

address the limitations of conventional approaches [26–33]. Although many computa-74

tional screenings focus on a single protein target, drugs in humans interact with various75
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biological targets through processes such as absorption, distribution, metabolism, and76

excretion (ADME), which influences their efficacy and safety [31–37]. Considering77

drug interactions on a proteomic scale could yield more accurate predictions of bioac-78

tivity and safety by accounting for both primary and secondary targets, essential for79

optimizing therapeutic impact and minimizing toxicity.80

We developed the Computational Analysis of Novel Drug Repurposing Opportu-81

nities (CANDO) platform for multitarget drug discovery, repurposing, and design,82

aiming to address the limitations of traditional single target, single disease approaches83

[38–53]. CANDO exploits the fact that drugs approved for human use achieve thera-84

peutic effects and optimal ADME through interactions with multiple biological targets,85

and that off-target interactions are modulated to minimize adverse drug reactions.86

CANDO capitalizes on this inherent multitargeting property of small molecules by con-87

structing interaction signatures that reflect drug/compound behaviors across various88

biological scales. The platform predicts putative drug candidates for every indica-89

tion/disease by comparing and ranking these interaction signatures in an all-against-all90

manner, with the hypothesis that drugs/compounds with similar interaction signatures91

are more likely to display similar biological behavior. The platform is benchmarked by92

evaluating the recovery of known drug-indication associations in these ranked lists of93

interaction signatures within specified cutoffs. CANDO therefore deepens our under-94

standing of small molecule therapeutics and their effects on proteins, pathways, and95

various diseases by leveraging vast multiscale biomedical data on biological systems96

and the phenotypic impact of their modulation. In addition to rigorous benchmarking97

[38–53], CANDO and/or its components have been extensively validated prospectively98

in the context of more than a dozen indications [38, 41, 47, 50–52, 54–64]. Herein, we99

describe the use of CANDO to predict novel drug candidates for glioma treatment.100

2 Methods101

2.1 Applying the CANDO platform for glioma drug discovery102

overview103

We developed a pipeline within the CANDO platform to identify potential drug104

candidates for glioma (Figure 1). Our approach is based on the hypothesis that105

drugs/compounds with similar interactions across entire proteomes (“interaction sig-106

natures”) are more likely to share therapeutic effects. Signatures were generated by107

calculating interaction scores between every drug/compound and a comprehensive108

library of proteins to capture the proteome-wide behaviors of a compound. Com-109

pounds with interaction signatures closely matching those of drugs approved for glioma110

were identified as potential treatments. We benchmarked performance by measuring111

how frequently known drugs for a given indication were retrieved at various cutoffs112

in ranked lists of predictions. Next, we compared our glioma specific results against113

random controls, as well as across all indications. The novel predictions for glioma114

were then corroborated through literature-based analysis to identify the highest con-115

fidence drug candidates. Finally, we conducted a consensus analysis of proteins with116

the strongest interactions to these novel glioma drug candidates which was further117

corroborated using protein functional annotations.118
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Fig. 1: Overview of pipeline for generating novel putative drug candidates
for glioma within the CANDO multiscale drug discovery platform. Interac-
tion scores between every protein and drug/compound in the corresponding libraries
were calculated using our bioanalytical docking protocol (BANDOCK) [38–53]. This
resulted in a compound-proteome interaction signature for each drug/compound
describing its functional behavior. Interaction signature similarity was then calcu-
lated by comparing pairs of drug-proteome interaction signatures in an all-against-all
manner. These interaction signature similarities were sorted and ranked for all drugs
approved for an indication and used to benchmark performance and generate puta-
tive drug candidates. Benchmarking was conducted by measuring how approved drugs
were recovered at various cutoffs. We performed a literature-based analysis to corrob-
orate the glioma drug candidates for their potential to treat this disease. Finally, we
identified the protein targets with the strongest interactions to these candidates and
further corroborated them using protein functional annotations. The CANDO plat-
form successfully identified multiple candidates demonstrating significant anti-glioma
potential, offering a promising avenue to address the current lack of effective treat-
ments for this disease.

2.2 Curating compound/protein libraries and indication119

mapping120

Our drug/compound library, sourced mainly from DrugBank [65], comprises 2,449121

approved drugs and 10,741 experimental or investigational compounds, totaling 13,457122

molecules. The “Homo sapiens AlphaFold2” (AF2) protein library was curated follow-123

ing the application of the AlphaFold2 structure prediction program [66] to the Homo124

sapiens proteome yielding 20,295 proteins used for this study. The Comparative Tox-125

icogenomics Database (CTD) was used to map the 2,449 approved drugs to 22,771126

drug-indication associations based on DrugBank identifiers for drugs and compounds,127

and Medical Subject Headings (MeSH) terms for approved/associated indications128
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[67, 68]. Benchmarking, which uses a leave-one-out approach (section 2.5), was carried129

out on indications with at least two approved drugs, yielding a drug-indication map-130

ping consisting of 1,595 indications and 13,226 associations. There were 35 associations131

in our drug-indication mapping for the indication glioma (MeSH identifier: D005910).132

2.3 Scoring compound-protein interactions and generating133

interaction signatures134

Interaction scores between each compound and protein were computed using our in-135

house bioanalytical docking protocol (BANDOCK); these scores serve as a proxy for136

binding strength/probability [38, 39, 41, 43, 46, 48]. Binding site prediction was first137

performed using the COACH algorithm from the I-TASSER suite (version 5.1) [69].138

COACH utilizes a library of protein structures bound to ligands, determined through139

x-ray diffraction, to predict the binding sites and corresponding ligands for each pro-140

tein based on structural and sequential similarity [70]. BANDOCK then calculates141

interaction scores by comparing the COACH predicted ligands to the query compound,142

using similarity between their Extended Connectivity Fingerprints with a diameter of143

4 (ECFP4), generated via RDKit [71]. The chemical similarity score is quantified using144

the Sorenson-Dice coefficient [72], which reflects the similarity between the query com-145

pound and the predicted ligand. The highest chemical similarity score is multiplied146

by the corresponding COACH binding site confidence score to assign an interaction147

score between a compound and a protein by BANDOCK [38, 39, 41, 43, 46, 48]. BAN-148

DOCK is applied between every compound and all proteins in the library, producing149

compound-proteome interaction signatures describing (compound) behavior.150

2.4 Calculating ranked compound similarity lists151

CANDO calculates all-against-all similarities between compound-proteome interaction152

signatures to compute drug repurposing accuracy and predict drug candidates [46].153

We employed cosine distance for similarity calculations instead of the usual root-mean-154

square deviation (RMSD) [53] as it enhanced computational speed while maintaining155

performance. This process was repeated iteratively for all compound pairs in the156

library, producing a ranked similarity list for each compound.157

2.5 Benchmarking158

Compounds are ranked by the number of times they appear in the similarity lists of the159

associated drugs above a certain cutoff, resulting in a consensus list. We benchmarked160

the performance of CANDO by evaluating the recovery of known/approved drugs161

within similarity lists and aggregated consensus lists across various cutoffs using multi-162

ple metrics. The consensus lists classify/rank compounds according to their consensus163

scores, which reflect how frequently they appear in multiple similarity lists corre-164

sponding to all approved drugs for an indication. As mentioned above (section 2.2),165

we used drug-indication mappings from the Comparative Toxicogenomics Database166

(CTD) [73] to determine the ranking of approved drugs within specific cutoffs (e.g.,167

top 10, 25, 50, 100) in the similarity and consensus lists of drugs for a given indi-168

cation with at least two approved drugs [38–53]. Benchmarking performance for all169
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indications, including glioma, was compared to a random control that calculated the170

probability of correctly selecting an approved drug for an indication by chance, using171

a hypergeometric distribution [51, 74].172

CANDO calculates the following metrics developed in-house to assess performance:173

indication accuracy, average indication accuracy, new indication accuracy, and new174

average indication accuracy. Indication accuracy (IA) is the percentage of cases in175

which at least one approved drug for a given indication appears within a specified176

rank cutoff in the similarity list of another drug associated with that same indication.177

Averaging the IA values for all indications with at least two approved drugs produces178

the average indication accuracy (AIA). New indication accuracy (nIA) captures the179

frequency with which approved drugs for a given indication appear within particu-180

lar cutoffs in the consensus list for that indication. The nIA is averaged across all181

indications to yield the new average indication accuracy (nAIA) metric.182

CANDO also calculates the normalized discounted cumulative gain (NDCG) met-183

ric, an evaluation measure commonly used in information retrieval to assess the184

relevance of ranked items based on their positions [75, 76], to evaluate our predictions.185

In CANDO, NDCG evaluates how effectively a given pipeline prioritizes approved186

drugs for a specific indication within its similarity lists at specified cutoffs. The NDCG187

score ranges from 0 to 1, with 1 indicating a perfect ranking [51]. Similarly, the188

new NDCG (nNDCG) metric assesses the recovery of approved drugs across specified189

cutoffs in the consensus list for an indication.190

2.6 Generating drug predictions and corroborating them using191

literature searches192

The CANDO platform was applied to predict novel putative therapeutics for glioma193

(MeSH identifier: D005910) which had 35 known associations in our drug-indication194

mapping (section 2.2). As described above, drugs/compounds with interaction sig-195

natures similar to those of drugs associated with glioma were ranked. Next, their196

frequency, or consensus, among the similarity lists was used to identify the top 100197

novel drug candidates for glioma. We conducted a literature review using search terms198

that consisted of the name of each putative drug candidate and “glioma” in Google199

Scholar and PubMed. We categorized the candidates as follows: high-corroboration for200

drugs supported by two or more studies showing positive glioma treatment results;201

low-corroboration for drugs targeting glioma-related pathways or supported by a sin-202

gle positive study but lacking confirmation; and no data found when no data was203

present to arrive at any conclusion regarding corroboration.204

2.7 Analyzing top targets and associated pathways for glioma205

We used our in-house top targets protocol to identify the proteins with the206

strongest interactions with each putative drug candidate that was classified as207

high-corroboration above. Interaction scores were calculated as described previously208

(section 2.3) using the BANDOCK protocol, where higher scores (maximum of 1.0)209

indicate stronger predicted interactions. We then conducted a literature search on210
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Google Scholar and PubMed with the names of the putative drug candidates and pro-211

teins to find corroborative evidence supporting the target rationale used by CANDO212

in generating predictions. We used this information to analyze whether the top targets213

of the putative drug candidates overlap with proteins in biochemical pathways linked214

to glioma.215

2.8 Assessing corroboration between protein functional216

annotations and predicted top targets217

We curated three protein libraries, or “gold standards”, from UniProt [77], GeneCards218

[78], and a comprehensive literature search to serve as references for evaluating the219

target predictions for putative glioma treatment candidates. The literature search,220

data presented in Table 3, focused on identifying targets implicated in glioma from221

the top targets analysis for high-corroboration putative drug candidates generated222

by the CANDO platform. The benchmarks assessed the overlap between the gold223

standard libraries and the top protein targets predicted by CANDO for the top 24224

drug candidate predictions. This assessment was repeated with a random set of 24225

drug predictions, and the bottom 24 drug predictions as controls. The bottom 24 drug226

predictions were filtered to include only compounds with at least five heavy atoms227

to maintain meaningful molecular complexity. To quantify the alignment between the228

gold standards and the predictions, we employed three key metrics: (A) frequency229

distribution, (B) percentage overlap, and (C) the Jaccard coefficient, a commonly230

used metric for assessing similarity across datasets [79, 80]. The Jaccard coefficient231

calculates the ratio of the intersection and union of two groups and is defined as:232

J(A,B) =
|A ∩B|
|A ∪B|

In this context, A represents proteins annotated with glioma-related functions, and B233

represents the top protein targets predicted by CANDO. A high Jaccard coefficient234

indicates that CANDO accurately identifies protein targets that are independently235

corroborated by functional annotation libraries.236

Additionally, we compared the Jaccard coefficient across glioma and other disease237

indications by using the top predicted targets from the top 24 or top 100 drug can-238

didate predictions for glioma as one group, and functional protein annotations from239

UniProt as the other group. Selected indications included cancer indications (e.g.,240

metastatic melanoma, non-small cell lung cancer, acute myeloid leukemia) and non-241

cancer diseases (e.g., Alzheimer’s disease, rheumatoid arthritis, asthma). Additionally,242

we analyzed functional annotations for protein targets in the UniProt database to243

assess their association with glioma and other disease indications. The Jaccard coeffi-244

cient was computed separately for glioma-related targets and targets associated with245

other diseases, including cancer indications (e.g., metastatic melanoma, non-small cell246

lung cancer, acute myeloid leukemia) and non-cancer diseases (e.g., Alzheimer’s dis-247

ease, rheumatoid arthritis, asthma). The comparison involved the predicted targets248

from the top 24 and top 100 drug candidate predictions to evaluate performance249

differences across indications.250
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3 Results251

In summary, the results of this study provided strong evidence for the utility of the252

CANDO platform in identifying putative drug candidates for glioma. The multitar-253

get approach enabled precise ranking and identification of compounds based on their254

interaction signatures across the human proteome for treating glioma. The drug can-255

didates exhibited high interaction signature similarity to those of established glioma256

treatments and were observed to target critical pathways associated with glioma patho-257

genesis. Benchmarking and comparison with random controls affirmed the robustness258

of the platform, indicating a high degree of predictive accuracy.259

3.1 Benchmarking performance260

Figure 2 illustrates the benchmarking performance of the CANDO platform for glioma261

relative to all indications and random controls for both the similarity and consensus262

lists (section 2.5). The approved drug library returned 35 associated drugs for glioma.263

Figure 2A shows the AIA and nAIA metrics for all 1,595 indications with at least264

two approved compounds. AIA ranged from 22% to 44% at the top 10, 25, 50, and265

100 cutoffs, outperforming random control accuracies, which ranged from 4% to 26%.266

CANDO achieved nAIA values ranging from 9% to 26% across the same cutoffs,267

outperforming the random control for nAIA. The NDCG and nNDCG metrics for all268

indications, presented in Figure 2B, further validate this performance. NDCG values269

ranged from 0.044 to 0.059, while nNDCG values varied from 0.049 to 0.083, both270

exceeding the random control for NDCG.271

Figure 2C focuses on glioma-specific benchmarking, where CANDO demonstrated272

enhanced IA values across all cutoffs compared to controls. The IA for glioma, evalu-273

ated using similarity lists, ranged from 20% to 60% across the top 10 to top 100 cutoffs,274

with a notable top 10 IA of 20%, which is nearly seven times the nIA of 3%. Figure 2D275

presents the NDCG and nNDCG values for glioma-specific predictions. Glioma has276

the same NDCG values at the top 10 and top 100 cutoffs, which are both 0.023, while277

nNDCG values varied from 0.008 to 0.022. In comparison, random controls produced278

substantially lower NDCG/nNDCG values. The IA/AIA metrics, applied to similarity279

lists, and the nIA/nAIA metric, specific to consensus lists, collectively demonstrated280

the robustness of the CANDO platform in leveraging interaction signature similarity281

and consensus frequency to identify potential drug candidates effectively.282

3.2 Identifying drug candidates283

We used the CANDO platform to predict potential drug candidates for glioma (section284

2.6). The 24 most compelling high-corroboration predictions based on ranking metrics285

from the platform and literature analysis are shown in Table 2. The list of all the286

top 100 putative drug candidates is given in Supplementary Materials. The top287

ranked drug candidates were Vitamin D compounds: calcifediol, ergocalciferol, and288

cholecalciferol. Additional drug candidates for glioma included taxanes (cabazitaxel),289

vinca alkaloids (vinflunine), and topoisomerase inhibitors (topotecan).290
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Fig. 2: Benchmarking performance of the CANDO platform for glioma
relative to all indications and random controls. Performance was evaluated
using (A) average indication accuracy (AIA)/new average indication accuracy (nAIA),
as well as the normalized discounted cumulative gain (NDCG)/new normalized dis-
counted cumulative gain (nNDCG) metrics across all indications (B). AIA and nAIA
at the top 10, 25, 50, and 100 cutoffs, ranging from 22% to 44% and 9% to 26%,
respectively, significantly outperform random controls; NDCG and nNDCG metrics,
also significantly higher than random controls. In panels C/D, the indication accuracy
(IA) and new indication accuracy (nIA) metrics, along with NDCG and nNDCG, were
evaluated specifically for glioma. IA ranged from 20% to 60% at the top 10 to top
100 cutoffs, outperforming random controls; NDCG/nNDCG metrics were also higher
than random controls. The results indicated that CANDO consistently outperforms
random controls in identifying and prioritizing relevant compounds across all indica-
tions and glioma-specific predictions.

3.3 Analyzing targets and pathways related to glioma291

The information considered when selecting putative drug candidates for novel treat-292

ment included the top (i.e., strongest interaction) protein targets predicted by293

CANDO, protein and pathway interactions corroborated using the literature, and stud-294

ies of small molecules in the treatment of glioma observed in the literature 2.7. The295

top targets predicted by CANDO are outlined in Table 3 and encompass Vitamin D3296

receptor, thyroid hormone receptor, acetylcholinesterase, cyclin-dependent kinase 2,297

tubulin alpha chain, dihydrofolate reductase, and thymidylate synthase. Among these,298
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Table 2: Predicted drug candidates for glioma using CANDO platform
that were corroborated using literature analysis. The names of the 24 high-
corroboration drug candidates (section 3.2), along with their ranks, consensus/average
scores, and probability values are listed. The consensus score represents the number of
drug–drug interaction signature similarity lists in which a compound appeared within
a particular cutoff. The probability estimates the likelihood of a particular ranked
compound appearing by chance, with lower values indicating a better outcome. The
overall ranking of a potential drug is determined first by its consensus score and then
by its average rank (section 2.6). The best ranked compounds in this consensus list
are considered to be the top predictions for an indication. Vitamin D includes a group
of compounds such as calcifediol, ergocalciferol, and cholecalciferol, which are ranked
as the top three predictions with highest consensus score. This analysis indicates that
the signature similarity pipeline within the CANDO platform can generate putative
drug candidates for glioma.

Drug

rank

Consensus

score

Average

score
Probability Drug name

Drug

rank

Consensus

score

Average

score
Probability Drug name

1 4 28.5 2.68E-05 Calcifediol 51 3 35.3 4.22E-04 Ergosterol

2 4 30.2 2.68E-05 Ergocalciferol 55 3 38.3 4.22E-04 Vinblastine

3 4 37.5 2.68E-05 Cholecalciferol 56 3 38.3 4.22E-04 Lanosterol

6 3 9.0 4.22E-04 Cabazitaxel 63 3 44.0 4.22E-04 Brivaracetam

10 3 10.3 4.22E-04 Docetaxel 64 3 44.3 4.22E-04 Loperamide

25 3 22.0 4.22E-04 Calcitriol 65 3 44.3 4.22E-04 Ginsenosides

26 3 22.3 4.22E-04 Tacalcitol 66 3 47.0 4.22E-04 Gimatecan

29 3 23.0 4.22E-04 Vinflunine 73 3 49.7 4.22E-04 Ortataxel

31 3 23.3 4.22E-04 Vinorelbine 74 3 50.0 4.22E-04 Resiniferatoxin

32 3 23.3 4.22E-04 Folic acid 78 3 51.7 4.22E-04 Irinotecan

49 3 32.7 4.22E-04 Topotecan 80 3 52.7 4.22E-04 Chrysin

50 3 33.0 4.22E-04 Calcipotriol 95 3 66.0 4.22E-04 Cryptotanshinone

the strongest interaction was observed between the Vitamin D3 receptor and calcife-299

diol, with a BANDOCK score of 0.850. Figure 3 highlights various important related300

pathways implicated in the pathogenesis of glioma, including phosphatidylinositol-301

3’-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR), and Janus kinase302

(JAK)/signal transducer and activator of transcription (STAT) pathways.303

Insert figure 3 here...304

3.4 Determining overlap between protein functional305

annotations and CANDO predicted top targets306

Figure 4A illustrates the frequency distribution of overlaps between our three gold307

standard protein libraries and the top protein targets predicted by CANDO. For all308

gold standards, targets of the top 24 drug candidates showed the highest proportion309

of overlaps within the highest ranked bin (1-20). In contrast, targets from the ran-310

dom 24 drug candidates and bottom 24 drug candidates exhibited a comparatively311
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uniform distribution across the 5 bins. Figure 4B presents the cumulative percentage312

overlap as a function of rank cutoff for the predicted targets across the gold stan-313

dard libraries. The targets from the top 24 drug candidate predictions demonstrated314

a near-saturation of overlap at lower rank cutoffs (e.g., 80% overlap by rank 20 for315

Table 3 and UniProt), emphasizing their strong alignment with gold standard targets.316

In contrast, the targets from the random 24 and bottom 24 drug candidate predictions317

exhibited a slower increase in overlap percentage, with cumulative overlaps remain-318

ing below 10% even at a rank cutoff of 100 for Table 2 and GeneCards. As shown in319

Figure 4C, the Jaccard coefficient values further corroborate the findings from the fre-320

quency distribution and overlap percentage analyses. Across all libraries, the Jaccard321

coefficient for the top protein targets from the top 24 drug candidate predictions was322

consistently higher compared to those derived from the random 24 or bottom 24 drug323

candidate predictions.324

We found that the Jaccard coefficient for top (rank ≤ 10) predicted targets of the325

top 24 and top 100 drug candidate predictions for glioma was higher when compared326

to UniProt glioma protein functional annotations (Figure 5). In contrast, the Jaccard327

coefficient was lower when comparing glioma targets to protein functional annotations328

for other indications. Indications demonstrating a lower Jaccard coefficient include329

other cancer indications such as non-small cell lung cancer and metastatic melanoma,330

as well as non-cancer diseases like Alzheimer’s disease and rheumatoid arthritis. This331

result suggests that the top predicted glioma targets identified by CANDO are more332

functionally relevant to glioma-related gold standard protein targets than those of333

other indications, highlighting the effectiveness of the pipeline in identifying meaning-334

ful targets. When compared to the broader rank distribution shown in the earlier line335

plot (Figure 4), the rank ≤ 10 results highlight the ability of the pipeline to capture336

high-confidence and/or known targets for glioma. This trend underscores the utility337

of using stringent rank cutoffs to identify highly specific target overlaps, particularly338

for glioma.339

Insert figure 4 here...340

Insert figure 5 here...341

Insert table 3 here...342

4 Discussion343

CANDO identified potential glioma treatments that included drugs approved for344

other indications such as vitamin D (calcifediol), taxanes (cabazitaxel and docetaxel),345

vinca alkaloids (vinblastine and vinflunine), topoisomerase inhibitors (topotecan and346

irinotecan), and folic acid. Additionally, investigational compounds like ginsenosides,347

brivaracetam, chrysin, resiniferatoxin, and cryptotanshinone were also identified as348

promising drug candidates (Table 2). Literature-based analysis was conducted to349

corroborate these potential drugs and compounds for glioma, examining supporting350

evidence for their targets and pathways (Table 3 and Figure 3). The top drug candi-351

dates generated via the interactomic signature pipeline of CANDO may be exerting352

their therapeutic effects by impacting multiple pathways implicated in glioma. We353

examined the top drugs/compounds and targets predicted by CANDO in further354
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detail, comparing and contrasting to what is known about their relevance to glioma355

in the literature; a detailed description follows below.356

4.1 Vitamin D3 receptor metabolites357

Vitamins may have a role in the etiopathogenesis of central nervous system (CNS)358

cancers [108]. Vitamin D comprises a group of fat-soluble steroids, with vitamin359

D3 (cholecalciferol) and vitamin D2 (ergocalciferol) being the most significant [109].360

Calcifediol (25-hydroxyvitamin D3),is the precursor for calcitriol, the active form361

of vitamin D [110]. Recent research suggests that the levels of the progenitor of362

calcitriol correlate with progression of glioma [111–114]. Cholecalciferol has shown363

promise in glioma treatment, especially glioblastoma multiforme (GBM), due to its364

ability to regulate cell cycle biomarkers and enhance the anti-tumor immune response365

[85, 115]. Studies indicate that vitamin D analogs, including ergocalciferol, could366

modulate biomarkers involved in cell cycle regulation and apoptosis in glioblastoma367

[115]. Cell cycle arrest is one of the most well-studied mechanisms accounting for the368

anti-tumor activity of vitamin D in gliomas. Vitamin D has been shown to induce anti-369

glioma effects through cell cycle arrest and the phosphoinositide 3-kinase (PI3K)/Akt370

pathway [87].371

4.2 Taxanes372

Taxanes are a class of diterpenes commonly used as chemotherapy agents, mainly373

including cabazitaxel, docetaxel and paclitaxel [116–118]. Cabazitaxel is a second-374

generation semisynthetic taxane. Contrary to other taxane compounds, cabazitaxel is375

a poor substrate for P-gp efflux pump; therefore, it easily penetrates across the BBB376

[119, 120]. Cabazitaxel shows a significant inhibitory effect on glioma [121, 122]. Other377

studies have reported that cabazitaxel exerts its anti-proliferative effects on cancer378

cells by binding to tubulin [123]. One study indicates that tubulin alpha-1C chain379

(TUBA1C) may potentially regulate the pathogenesis of glioma through Janus kinase380

(JAK)/signal transducer and activator of transcription (STAT) (JAK-STAT) pathway381

[124]. Docetaxel, a taxane-class anti-mitotic agent, demonstrates the ability to induce382

cell apoptosis in glioma and shows substantial inhibitory activity against tumor growth383

[125]. Furthermore, it is recognized as one of the leading drug candidates for brain384

tumor therapy [126]. In our study, both cabazitaxel and docetaxel are predicted to385

strongly interact with TUBA1C, with predicted interaction scores of 0.716 and 0.790,386

respectively (Table 3).387

4.3 Vinca alkaloids388

Vinca alkaloids are a class of chemotherapy agents with anti-mitotic and anti-389

microtubule properties, including compounds such as vinflunine, vinorelbine, vin-390

blastine, and vincristine [127–129]. Vinflunine, a fluorinated vinca alkaloid, disrupts391

microtubule dynamics, a process essential for cell division, and has shown potential392

for glioma treatment [130, 131]. Vinorelbine, a semi-synthetic vinca alkaloid, is an393

anti-mitotic chemotherapy drug used to treat various cancers, including breast cancer,394

non-small cell lung cancer, and glioma [132]. Its antitumor effect arises from its ability395
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to inhibit mitosis by interacting with tubulin [133]. In 2000, a pilot study of weekly vin-396

blastine in patients with recurrent low-grade gliomas (LGG) yielded promising results397

[134, 135]. Compared to vinflunine and vinorelbine, vinblastine demonstrated a higher398

interaction score with the TUBA1C target (Table 3).399

4.4 Topoisomerase I inhibitors400

Topoisomerase inhibitors are chemical compounds that block the action of topoiso-401

merases, which are broken into two broad subtypes: type I topoisomerases (TopI) and402

type II topoisomerases (TopII) [136, 137]. TopI inhibitors, like topotecan, are water-403

soluble camptothecin analogs that have shown cytotoxicity toward a variety of tumor404

types [138]. Topetecan can pass through the BBB and exhibits significant activity405

in treating glioblastoma multiforme[139, 140]. Additionally, it has been observed to406

induce cell cycle arrest at the G0/G1 and S phases [90, 141]. Irinotecan (CPT-11), a407

prodrug of 7-Ethyl-10-hydroxycamptothecin (SN-38), shows some antitumor activity408

in patients with recurrent glioblastoma multiforme, with response rates of 0 to 17%409

in several trials [142, 143]. Gimatecan is a lipophilic oral camptothecin analogue with410

preclinical activity in glioma models [144].411

4.5 Folic acid412

Folic acid (FA) targets the folate receptor (FR), which is overexpressed on the cell413

surface of various cancer cells [145, 146]. Folate supplementation, particularly at high414

doses, has been suggested to have cytotoxic effects on glioma cells, making it a poten-415

tial candidate for further exploration in glioma therapies [147]. In addition, utilizing416

lidocaine liposomes modified with folic acid has been demonstrated to suppress the417

proliferation and motility of glioma cells [148]. One clinical research study explored418

the role of folate-related compounds, such as L-methylfolate, in combination thera-419

pies for glioma, showing potential epigenetic modifications and enhanced sensitivity420

to standard treatments like temozolomide [149]. Zhao, et al. [101] hypothesized that421

inhibition of dihydrofolate reductase/thymidylate synthase might modulate the cell422

sensitivity of glioma cells to temozolomide through the mTOR signaling pathway.423

DHFR and TYMS are key metabolic enzymes in the folic acid signaling pathway, with424

high predicted interaction scores of 0.755 and 0.688, respectively, to folic acid in this425

study (Table 3).426

4.6 Other drug candidates and key target interactions427

Ginsenosides, active components found in Panax ginseng, show potential in glioma428

treatment due to their various therapeutic properties, including anticancer and neu-429

roprotective effects [150, 151]. Additionally, ginsenoside has been shown to inhibit the430

growth of human glioma U251 cells, promoting apoptosis and affecting key signaling431

pathways involved in cell survival and death [152]. Additionally, compounds such as432

brivaracetam, which lack enzyme-inducing activity on the cytochrome system, could433

be considered promising candidates for addressing brain tumor-related epilepsy [153].434

Chrysin, an active natural bioflavonoid, is predicted to target cyclin-dependent kinase435

1 with an interaction score of 0.655 (Table 3), and has been proven to protect against436
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carcinogenesis [107]. Cyclin-dependent kinase is the target for glioma cell cycle arrest437

at G2 and M phases [154]. Chrysin exerts anticancer activity in glioblastoma cell438

lines possibly via the ERK/Nrf2 signaling pathway [155]. Resiniferatoxin, a naturally439

occurring irritant tricyclic diterpene which combines structural features of the phorbol440

ester tumor promoters and of capsaicin [156]. It activates transient vanilloid receptor441

(TRP), which was previously associated primarily with cardiovascular and neuronal442

regulation, but might also present avenues for exploration in glioma pathogenesis [157].443

We observed evidence of interaction between resiniferatoxin and the thyroid hormone444

receptor beta target (Table 3 and Figure 3). Cryptotanshinone is one of the main rep-445

resentative components isolated from the roots of Salvia miltiorrhiza. Lu, et al. [158]446

indicated that cryptotanshinone can inhibit human glioma cell proliferation.447

As shown in Table 3 and Figure 3, we predicted interactions between topotecan,448

irinotecan, and cryptotanshinone and acetylcholinesterase (AChE), a newly recognized449

marker for glioma (Table 3). One study reported that irinotecan or its metabolites450

directly interact with AChE, inhibiting the conversion of acetylcholine to choline,451

which leads to an accumulation of acetylcholine and subsequent cholinergic syndrome452

symptoms [159]. Bioinformatic analysis has shown that AChE is connected to proteins453

in the PI3K/Akt pathway, which promotes anti-apoptotic and proliferative effects in454

brain tumors [94]. There is limited evidence of interactions between topotecan, irinote-455

can, cryptotanshinone, and AChE; our study therefore provides predictive evidence of456

these interactions. Additionally, predictions of topotecan and resiniferatoxin targeting457

thyroid hormone receptor beta are novel to this study. The thyroid hormone recep-458

tor influences glioma progression by regulating the PI3K/Akt signaling pathway [92].459

Therefore, candidates targeting the PI3K/Akt pathway may hold promise for glioma460

treatment.461

Our protein list, derived from predictions, highlights glioma-relevant targets but is462

inherently incomplete, similar to databases like UniProt or GeneCards, as each cap-463

tures only a partial view of glioma biology. While this list serves as one of the curated464

gold standards for our analysis, incorporating known treatment targets in future stud-465

ies could provide a more comprehensive benchmark. Limitations of this study include466

the arbitrary rank cutoffs, which may exclude moderately ranked targets that over-467

lap meaningfully with gold standard libraries, and the use of the Jaccard coefficient,468

a binary metric that overlooks relative ranks or prediction scores. Additionally, our469

focus on glioma leaves the robustness of this approach across other indications under-470

explored, particularly for diseases with fewer validated targets. Finally, the analyses471

may bias toward frequently predicted top targets, underrepresenting less common472

targets with potential therapeutic value. To address these limitations, future stud-473

ies will integrate score-based cutoffs, and consider a broader range of rank and score474

distributions.475

5 Conclusions476

We utilized our CANDO platform to explore potential novel treatments and their477

associated protein targets for glioma. By integrating a combination of computa-478

tionally generated and experimentally observed data from benchmarking, prediction,479
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corroboration of putative drug candidates using literature-based searches, top protein480

target analysis, and protein functional annotation, we identified promising treat-481

ments for glioma, including Vitamin D, taxanes, vinca alkaloids and topoisomerase482

inhibitors. Additionally, we highlighted several protein targets and related path-483

ways linked to glioma, including Vitamin D3 receptor, thyroid hormone receptor,484

acetylcholinesterase, cyclin-dependent kinase 2, tubulin alpha chain, dihydrofolate485

reductase and thymidylate synthase. This study offers insights into the potential mech-486

anisms underlying glioma and demonstrates the potential of the CANDO platform in487

identifying effective treatments against this disease.488
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Fig. 3: Downstream pathways of top targets for putative drugs for
glioma treatment predicted by CANDO. The top targets for putative drugs
for glioma are those with the strongest interactions as predicted by our CANDO
platform (Table 3) and verified by a functional annotation search (section 3.4). The
phosphatidylinositol-3’-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR),
Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3)
pathways play important roles in the biology of malignant gliomas [81–84]. Topote-
can, irinotecan, and cryptotanshinone all interact with acetylcholinesterase (ACHE),
ranking 8th (topotecan and irinotecan) and 1st (cryptotanshinone), respectively. Com-
pounds resiniferatoxin and topotecan strongly interact with the thyroid hormone
receptor beta (THRB). The targets ACHE and THRB both influence glioma cell pro-
liferation and survival by regulating the PI3K/Akt signaling pathway (blue). Cell
cycle arrest is one of the most well-studied mechanisms accounting for the anti-
tumor activity of vitamin D in gliomas (orange). The compound chrysin interacts
with cyclin-dependent kinase 1 (CDK1), targeting glioma cell proliferation via the
ERK/Nrf2 signaling pathway (green). Dihydrofolate reductase (DHFR) and thymidy-
late synthase (TYMS) are key targets of folic acid, modulating glioma cell proliferation
through the mTOR signaling pathway (red). Taxanes (e.g., cabazitaxel) and vinca
alkaloids (e.g., vinblastine) interact with tubulin alpha-1C, influencing glioma through
the JAK-STAT pathway (yellow). Our study allows for comprehensive mechanis-
tic understanding of drug candidate behavior across multiple scales, showcasing the
CANDO platform’s capability to accurately identify novel drug candidates and their
mechanisms through a multifaceted strategy.
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Fig. 4: Overlap between protein functional annotations and CANDO pre-
dicted top targets across gold standard libraries. This figure compares the
overlap between CANDO predicted targets and gold standard annotations (Table 3,
UniProt, and GeneCards) for glioma-related proteins. A) Frequency distributions show
the proportion of predicted targets that overlap with gold standard proteins within
rank bins for top 24 drug candidate predictions (blue), random 24 drug candidate
predictions (orange), and bottom 24 drug candidate predictions (green). B) The line
graphs show the percentage of gold standard proteins that overlap with prediction
targets as a function of rank cutoff (from 10 to 100). C) Targets from the top 24
drug candidate predictions demonstrate a higher Jaccard coefficient compared to from
random 24 and bottom 24 drug candidate predictions across all gold standards. The
Jaccard coefficient quantifies the similarity between CANDO predicted targets and
gold standard targets. Each column corresponds to a different gold standard: Table 3
(left), UniProt (center), and GeneCards (right). Results demonstrate targets from the
top 24 drug candidate predictions generally reflect a stronger signal compared to that
of random or bottom drug candidate predictions, highlighting the predictive accuracy
of the top candidates.
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Fig. 5: Overlap between protein functional annotations and CANDO pre-
dicted top targets across indications. This bar chart compares the overlap
between targets with the strongest predicted interactions to our top drug candidates
and existing protein annotations across glioma and other indications, using the Jac-
card coefficient (vertical axes). The Jaccard coefficient quantifies the overlap between
protein functional annotations (from UniProt) and CANDO-predicted drug targets.
Two comparisons are made: the overlap with top 24 drug candidate predictions (blue)
and the overlap with top 100 drug candidate predictions (orange). A higher coef-
ficient indicates stronger alignment between the predicted and known targets. The
horizontal axis lists the various indications, including cancers (glioma, hepatoblas-
toma, metastatic melanoma) and non-cancer conditions (diabetes mellitus type II,
coronary artery disease, and chronic kidney disease). Results show that the Jaccard
coefficient for glioma is notably higher than that of other indications, highlighting the
effectiveness of the CANDO platform in identifying glioma-related protein targets.
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Table 3: Top targets analysis for high-corroboration putative drug candidates for
glioma generated by the CANDO platform. The name of the high-corroboration drug
candidates, their predicted ranks based on consensus scoring (section 2.6), the rank of the
target from the top targets analysis (section 2.7), the target UniProt identifier, the predicted
interaction score between these predictions and targets, the target name, and the evidence
we found for the target being implicated in glioma, are listed. Higher scores indicate a higher
likelihood of interaction. From this analysis, we highlighted Vitamin D3 receptor, thyroid
hormone receptor, acetylcholinesterase, cyclin-dependent kinase 1, tubulin alpha chain, dihy-
drofolate reductase and thymidylate synthase as the most promising targets for glioma.

Drug

rank
Drug name

Target

rank

Target

identifier
Score Target name Evidence

1 Calcifediol 1 P11473 0.850

Vitamin D3 receptor

Yuan, et al. (2023) [85]

Diesel, et al. (2005) [86]

Sze-Ching Lo, et al. (2022) [87]

2 Ergocalciferol 32 P11473 0.605

3 Cholecalciferol 3 P11473 0.740

6 Cabazitaxel
13 P68363 0.725 Tubulin alpha-1B chain

Liu, et al. (2018) [88]

Hu, et al. (2022) [89]

19 Q9BQE3 0.716 Tubulin alpha-1C chain

10 Docetaxel
13 P68363 0.800 Tubulin alpha-1B chain

19 Q9BQE3 0.790 Tubulin alpha-1C chain

73 Ortataxel
13 P68363 0.580 Tubulin alpha-1B chain

19 Q9BQE3 0.572 Tubulin alpha-1C chain

29 Vinflunine
2 P68363 0.672 Tubulin alpha-1B chain

18 Q9BQE3 0.633 Tubulin alpha-1C chain

31 Vinorelbine
2 P68363 0.669 Tubulin alpha-1B chain

18 Q9BQE3 0.631 Tubulin alpha-1C chain

55 Vinblastine
2 P68363 0.765 Tubulin alpha-1B chain

18 Q9BQE3 0.721 Tubulin alpha-1C chain

49 Topotecan

2 P11387 0.565 DNA topoisomerase I

Zhang, et al. (2013) [90]

Ma, et al. (2020) [91]

Zhang, et al. (2021) [92]

Li, et al. (2023) [93]

Obukhova, et al. (2021) [94]

Tsuji, et al. (2024) [95]

Jones, et al. (2017) [96]

Guo, et al. (2017) [97]

Lei, et al. (2020) [98]

3 P06276 0.373 Cholinesterase

4 P10828 0.371 Thyroid hormone receptor beta

5 P02768 0.370 Albumin

8 P22303 0.359 Acetylcholinesterase

9 P27487 0.358 Dipeptidyl peptidase 4

97 O00763 0.301 Acetyl-CoA carboxylase 2

66 Gimatecan

2 P11387 0.459 DNA topoisomerase I

3 P27487 0.392 Dipeptidyl peptidase 4

4 P14174 0.389 Macrophage migration inhibitory factor

7 P15559 0.373 NAD(P)H dehydrogenase quinone 1

10 O00763 0.364 Acetyl-CoA carboxylase 2

78 Irinotecan

2 P11387 0.466 DNA topoisomerase I

8 P22303 0.390 Acetylcholinesterase

37 O00763 0.324 Acetyl-CoA carboxylase 2

47 P15559 0.317 NAD(P)H dehydrogenase quinone 1

56 Lanosterol

1 P48449 0.960 Lanosterol synthase

Nguyen, et al. (2023) [99]

Han, et al. (2020) [100]

Li, et al. (2023) [93]

9 Q9Y6A2 0.437 Cholesterol 24-hydroxylase

10 P02768 0.435 Albumin

65 Ginsenosides
1 P48449 0.610 Lanosterol synthase

4 P02768 0.503 Albumin

32 Folic acid

1 P00374 0.755 Dihydrofolate reductase Zhao, et al. (2019) [101]

Kunikowska, et al. (2022) [102]

Ding, et al. (2015) [103]

3 Q04609 0.723 Glutamate carboxypeptidase 2

6 P04818 0.688 Thymidylate synthase

63 Brivaracetam 1 P24941 0.390 Cyclin-dependent kinase 2 Liu, et al. (2022) [104]

64 Loperamide

2 Q9Y6A2 0.522 Cholesterol 24-hydroxylase Han, et al. (2020) [100]

Was, et al. (2019) [105]

Jones, et al. (2017) [96]

5 Q92769 0.467 Histone deacetylase 2

24 O00763 0.440 Acetyl-CoA carboxylase 2

74 Resiniferatoxin
2 P10828 0.425 Thyroid hormone receptor beta Zhang, et al. (2021) [92]

Lu, et al. (2022) [106]8 Q96GR4 0.402 Palmitoyltransferase ZDHHC12

80 Chrysin 7 P06493 0.655 Cyclin-dependent kinase 1 Jiang, et al. (2022) [107]

95 Cryptotanshinone
1 P22303 0.473 Acetylcholinesterase Obukhova2021, et al. (2021) [94]

Lei, et al. (2020) [98]7 P15559 0.362 NAD(P)H dehydrogenase quinone 1
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