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Abstract.—This article investigates a form of rank deficiency in phenotypic covariance matrices derived from geometric
morphometric data, and its impact on measures of phenotypic integration. We first define a type of rank deficiency based
on information theory then demonstrate that this deficiency impairs the performance of phenotypic integration metrics
in a model system. Lastly, we propose methods to treat for this information rank deficiency. Our first goal is to establish
how the rank of a typical geometric morphometric covariance matrix relates to the information entropy of its eigenvalue
spectrum. This requires clear definitions of matrix rank, of which we define three: the full matrix rank (equal to the number
of input variables), the mathematical rank (the number of nonzero eigenvalues), and the information rank or “effective
rank” (equal to the number of nonredundant eigenvalues). We demonstrate that effective rank deficiency arises from a
combination of methodological factors—Generalized Procrustes analysis, use of the correlation matrix, and insufficient
sample size—as well as phenotypic covariance. Secondly, we use dire wolf jaws to document how differences in effective rank
deficiency bias two metrics used to measure phenotypic integration. The eigenvalue variance characterizes the integration
change incorrectly, and the standardized generalized variance lacks the sensitivity needed to detect subtle changes in
integration. Both metrics are impacted by the inclusion of many small, but nonzero, eigenvalues arising from a lack of
information in the covariance matrix, a problem that usually becomes more pronounced as the number of landmarks
increases. We propose a new metric for phenotypic integration that combines the standardized generalized variance with
information entropy. This metric is equivalent to the standardized generalized variance but calculated only from those
eigenvalues that carry nonredundant information. It is the standardized generalized variance scaled to the effective rank
of the eigenvalue spectrum. We demonstrate that this metric successfully detects the shift of integration in our dire wolf
sample. Our third goal is to generalize the new metric to compare data sets with different sample sizes and numbers of
variables. We develop a standardization for matrix information based on data permutation then demonstrate that Smilodon
jaws are more integrated than dire wolf jaws. Finally, we describe how our information entropy-based measure allows
phenotypic integration to be compared in dense semilandmark data sets without bias, allowing characterization of the
information content of any given shape, a quantity we term “latent dispersion”. [Canis dirus; Dire wolf; effective dispersion;
effective rank; geometric morphometrics; information entropy; latent dispersion; modularity and integration; phenotypic
integration; relative dispersion.]

The constituent parts of an organism form an integrated
whole, and it is this integrated whole that develops
ontogenetically and is subject to evolutionary change
in populations (Olson and Miller 1958). This notion
of integration in biological systems can be measured
as the degree of correlation among the parts of an
organism and can refer to phenotype, genotype, and
other factors (Cheverud 1982). In this classic paper,
Cheverud demonstrated that the functional units of
the macaque cranium were tightly correlated and are
therefore not free to develop, or evolve, independently.
This correlation, termed “phenotypic integration” when
referring to shape, is critical in evolving populations
because traits are not free to respond to selection without
impacting dependent traits, and the directionality of
selection response is constrained by these dependencies
(Grabowski and Porto 2017). Yet trait dependency can
also remove constraint by giving a population access
to novel areas of adaptive space (Goswami et al. 2014,
Fig. 5). Consequently, the integration of phenotypic traits
is central to the evolvability of biological systems, and
the topic has received much scrutiny (see Pavlicev et al.
2009a, for a review).

The use of landmark data to analyze biological
shape has become ubiquitous since the modern

codification of geometric morphometrics by Bookstein
(1997); reviewed in Zelditch et al. (2012). Geometric
morphometric data have long been used to study
phenotypic integration, or the strength and patterns
of covariation among the morphological features
comprising a shape (e.g., Klingenberg 2008, Klingenberg
2013; Klingenberg and Zaklan 2000; Zelditch et al. 1992).
The strength of phenotypic integration is frequently
measured by characterizing covariance patterns found
in a covariance matrix of landmarks, most often with
reference to the distribution of the matrix’s vector
of eigenvalues (e.g., Wagner 1984; Pavlicev et al.
2009a,b). This eigenvalue spectrum contains information
about phenotypic integration because, as integration
increases, variance is more concentrated on the first
few eigenvectors. An eigenvalue spectrum with no
integration would have a flat scree plot while increasing
integration leads to larger initial values and smaller
later values in the scree plot. A traditional integration
metric like the eigenvalue standard deviation measures
this property of the eigenvalue spectrum. It is known
that the covariance matrix can be rank deficient
due to superimposition with Generalized Procrustes
Analysis (GPA), and when there are fewer specimens
than variables (Dryden and Mardia 1998; Rohlf 1990).
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However, there is another type of rank deficiency that has
not been fully explored: this is the amount of information
redundancy in the eigenvalue spectrum. In this article,
we demonstrate that this information rank deficiency is
high, and that it adversely impacts integration measures,
in a model system of dire wolves. New measures are
then proposed that account for information redundancy.
The aim is to measure integration with respect to the
information content of a shape, not with respect to the
(arbitrary) number of input variables used to measure it.

Phenotypic Integration Measures
“The ‘generalized variance’, |�|, the determinant of the
variance-co-variance matrix, is related to the area (or
hypervolume) of the equi-probability ellipses (ellipsoids) of the
distribution.”—VanValen (1974, p. 235).
Properties of the distribution of the eigenvalue vector,
such as its mean or standard deviation, form the basis
of several metrics intended to quantify the strength
of phenotypic integration. As stated by VanValen, the
shape space containing the objects of interest can
be conceptualized as a hyperellipse in the original
variable space. Principal components analysis moves
this hyperellipse to the origin, rotates it, and defines
its principal axes. VanValen realized that two aspects
of this ellipse are pertinent to measuring its degree
of integration: i) its dispersion in dimensionality and
ii) its dispersion in variance on each axis, which
he called “tightness.” While variance dispersion has
received a great deal of attention in subsequent
literature, dimensionality dispersion has not (reviewed
in Najarzadeh 2019).

Cheverud et al. (1983) introduced the first modern
measure of phenotypic integration, defining it as

I =1−
(∏v

i=1
�i

)1/v

or the geometric mean of the eigenvalues of the
correlation matrix of variables v (not the covariance
matrix) subtracted from unity. This quantity is identical
to one minus the vth root of the generalized variance
(Wilks 1932), the quantity proposed by VanValen 1974.
In a wider statistical context, this quantity is termed the
“standardized generalized variance,” or SGV (SenGupta
1987). The SGV is the geometric mean of the eigenvalues,
and so may be thought of as the mean diameter of
the axes in the hyperellipse. In this article, we use 14
landmarks, which yield a total of 28 coordinate variables,
and so the full rank of the covariance matrix will
be 28. However, four degrees of freedom are lost of
the Procrustes analysis, yielding a full rank of 24 (see
Discussion below). Therefore, the SGV is here calculated
as the 24th root of the first 24 eigenvalues for the matrices
in this article:

SGV24 = 24

√√√√ 24∏
i=1

�i

Both Cheverud et al. (1983) and SenGupta (1987)
state that the SGV is comparable (as a measure of
dispersion) among spaces of different dimensionality,
and this assumption is widely accepted, although it
has never been tested (e.g., Najarzadeh 2019). While
both the Cheverud integration and the nearly equivalent
SVG have been used as measures of dispersion, a
consensus has emerged that the standard deviation of
the eigenvalues has more desirable statistical properties.
This eigenvalue dispersion is measured as the standard
deviation of the eigenvalues of the correlation matrix of
GPA landmarks, standardized to the mean eigenvalue
(Pavlicev et al. 2009a):
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√
v∑

i=1

(
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Several other metrics have been proposed for
quantifying the dispersion of phenotypic matrices,
summarized and compared by Pavlicev et al. (2009a).

Integration and Modularity
“However, if the structure of a dataset is strongly modular,
with several different groups of strongly co-varying traits,
then variance will be distributed more evenly across a number
of principal components, and eigenvalue variance will be
relatively low. Thus, the dispersion of eigenvalues provides
a simple measure for comparison of the relative integration
or modularity of the structures described in a matrix. ”—
Goswami and Polly (2010, p. 226).
In the 21st century, the study of covariance matrices
derived from Procrustes superimposition of landmark
data has grown to include the field of modularity and
integration (Klingenberg 2013; Goswami et al. 2014). This
conception of integration is similar to Van Valen’s and
Cheverud’s in that it studies covariance structure but
differs in attempting to identify subsets of variables
that covary relative to others. Rather than relying on a
single overall measure of dispersion, modularity studies
usually test specific models of landmark covariation
against a null model in an attempt to characterize
subsets with high intraset covariation and low interset
covariation (Goswami and Polly 2010). Because these
sets are primary features of the covariance structure,
they should be carried on the first several principal
components, and the entire eigenvalue distribution is
not directly relevant. This approach to modularity has
yielded powerful hypotheses of evolutionary plasticity
and constraint linking development to phenotype, and
to evolutionary changes in modularity over deep time
(e.g., Goswami et al. 2015). Modularity models were
first assessed using the RV coefficient introduced by
Klingenberg (2008). This coefficient has been superseded
by the similar covariance ratio statistic (CR, Adams 2016),
which is more robust to differences in sample size and
data dimensionality.
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In the jargon of the modularity and integration,
phenotypic integration is termed “overall modularity
and integration,” or “whole shape integration”
(Goswami and Polly 2010). Determining this quantity
is generally not an objective in modularity studies, but
when it is measured, the standard eigenvalue dispersion
of phenotypic integration is used (Goswami and Polly
2010; Equations 7 and 8). However, phenotypic
integration metrics should agree with measures of
modularity: a shape should be more integrated (possess
fewer modules) if it has greater eigenvalue dispersion,
and should be less integrated (possess more modules)
if it possesses lesser dispersion, as stated in the quote
above. In a population where modularity is evolving,
an increase in modularity should lead to a decrease
in phenotypic integration and hence eigenvalue
dispersion, and thus a decrease in dispersion metrics
like SVG and eigenvalue standard deviation.

Rank Deficiency in Phenotypic Covariance Matrices
It [PCA] is used to obtain a more economic description of the
N- dimensional dispersion of the original data by a smaller
number of “principal components,” which are formally the
eigenvectors of the dispersion matrix... Hence the number
of principal components that contribute significantly to the
variation of the sample is the actual “dimensionality” of the
dispersion. —G. P. Wagner 1984, pp. 92-93) (emphasis
added).

The rank of a matrix is the dimensionality of the vector
space spanned by its variables. If all variables are
completely independent then the matrix is of “full rank,”
equal to the number of variables, but when one variable
depends completely on another, the matrix has “deficient
rank.” The full rank value of a matrix is the number of
columns; if one estimates a covariance matrix K directly
from phenotypic traits X (without GPA),

Kvivj =cov(xixj)

the mathematical rank—the number of nonzero
eigenvalues in K—will be equal to the full rank. Yet
due to the high degree of correlation in phenotypic
systems (Van Valen 1974; Cheverud 1982; Adams 2016),
many of the higher eigenvalues will be very small.
This effect is exacerbated in geometric morphometric
matrices because each landmark coordinate is treated as
an independent variable, when it is not (demonstrated
below). Therefore, geometric morphometric covariance
matrices derived from highly integrated systems will
have long tails of small, nonzero eigenvalues. This
tail should be trivial, and some part of it should
probably be ignored, but this phenomenon and its
impact have not been explored. In this article, we
quantify this tail as another source of rank deficiency,
one due to information. Information rank deficiency is
defined as rank deficiency arising from trivially small,
but nonzero, eigenvalues. Determining the value of
information rank deficiency relies on the assessing the

information entropy of the eigenvalue spectrum and is
formally defined below.

Rank deficiency (meant here in the general sense,
including information rank deficiency) arises from at
least three sources in geometric morphometric matrices:
the GPA, lack of matrix information due to inadequate
sample size, and true phenotypic covariance. A fourth
possible source is shape distortion introduced by
substituting a correlation matrix for the covariance
matrix. Of these, only phenotypic covariance is of interest
for measuring biological integration, while the others
may confound attempts to measure it. The effect of
Procrustes analysis on rank deficiency is known. The
translation, scaling, and rotation performed during the
analysis remove four degrees of freedom from 2D
landmarks and seven from 3D landmarks (Zelditch
et al. 2012). A covariance matrix derived from 2D GPA
coordinate data will therefore possess v−4 nonzero
eigenvalues, or in other words be mathematically
deficient by four ranks from the full rank.

Information rank deficiency resulting from the
information content of a landmark covariance matrix is
harder to quantify. This lack of information can have
two sources: insufficient sample size and landmark
oversampling. When the number of specimens n is less
than the number of variables v, the maximum rank of
the covariance matrix is n−1, but matrix rank is affected
even when n is greater than v. Grabowski and Porto
(2017) studied the effect of sample size on phenotypic
integration measures, and concluded that n needed to be
more than 10 times v before integration and evolvability
metrics are stable to changes in n. Integration studies
with smaller sample sizes are therefore information poor,
and this should increase information rank deficiency.
What we term landmark oversampling refers to the
dense landmarking of a shape that varies in a small
number of ways. A simple shape with few modes of
variation requires few landmarks to characterize fully.
Use of more than the necessary number of landmarks
will produce redundant covariance among the variables,
which increases information rank deficiency. This source
of information rank deficiency has not been quantified
(but see Bookstein 2015). However, it is tractable, as we
outline in the Discussion.

Substituting a correlation matrix for a covariance
matrix also affects information rank, by artificially
inflating it. In a correlation matrix, each coordinate
of each landmark is awarded full rank and given a
variance of 1. Normally this standardization allows
variables that are measured on different scales to
be compared on the same scale. However, Procrustes
superimposed landmarks are already standardized to
a common shape coordinate system, and the use of a
correlation matrix puts each landmark coordinate onto
its own independent scale, which warps the variable
space by reducing strong directional variation in some
coordinates and inflating small directional variance in
others (for discussion of the desirability of the covariance
matrix for geometric morphometric applications see
Goswami and Polly 2010, p. 217).
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Information Entropy and Effective Rank
The first to point out the problem of redundancy

in the mathematical rank of K in a phenotypic
integration context was Van Valen (1974), who tailored
an information metric to correct for it. The problem of
information rank deficiency can be framed in terms of the
eigenvalues of a matrix, with the rank of interest being
the subset of eigenvalues carrying significant variance,
as stated in the quote above. This number is smaller than
the set of eigenvalues that carry nonzero variance, and
hence smaller than the mathematical rank. The question
of the number of “significant” eigenvalues is a general
question in data analysis, and there are many techniques
for determining this number, summarized by Cangelosi
and Goriely (2007) in the context of cDNA microarray
data. They include the broken stick model, Cattell’s
SCREE test, and Bartlett’s sphericity test among many
others (see also Hine and Blows 2006; Bunea et al. 2011).
All these techniques share fundamental shortcomings,
such as forcing an integer value onto the rank, and
recourse to an ad hoc criterion to assess the cutoff for
significance.

The problem of redundancy in eigenvalue
distributions has been solved by a different strategy in
signal processing with “information entropy” (Shannon
1948). Information entropy is a metric used to measure
how much a signal (such as an MP3 audio file) can
be compressed without loss of information. At least
two metrics based on Shannon’s information entropy
have been proposed to characterize the dimensionality
of covariance matrices in a biological context (for a
thorough mathematical development see Cangelosi and
Goriely 2007). Those authors develop a dimensionality
metric for cDNA microarray data they termed the
“information dimension.” A very similar metric called
“effective rank” (and “effective dimensionality”) was
developed by Roy and Vetterli (2007). The advantages
of this approach are that it measures the information
content of only the nonredundant nonzero eigenvalues,
and it uses a continuous rather than integer scale.

We follow Roy and Vetterli (2007) in our application
of Shannon entropy to the information rank problem in
geometric morphometrics. Given a covariance matrix K
of full rank v derived from Procrustes shape coordinates
with eigenvalues �V:

�1 ≥�2 ≥ ...≥�v ≥0

following Shannon (1948), the Shannon entropy ES of K
is defined as

Es =−1∗
v∑

i=1

(
�i∑
�V

)(ln
�i∑
�V

).

Note that the eigenvalues are standardized to the trace
of �; this is necessary because the information entropy
was originally defined in a probability context, and
the terms being evaluated must therefore sum to unity
(Shannon 1948). Roy and Vetterli define their effective
rank as e raised to the power Es; the “effective rank” of

K is here defined in the same way, and is equivalent to
the concept of “information rank” discussed above:

Re =eEs.

This effective rank, Re, of K is a continuous metric,
is based on solid theoretical grounds from information
theory, and may be thought of as the significant
number of dimensions of the shape space represented
by K, or equivalently as the number of nonredundant
eigenvalues in K.

Study Design
In this article, we show that effective rank is a

good measure of the nontrivial rank of a geometric
morphometric covariance matrix, and we demonstrate
its effectiveness on two samples of Pleistocene dire
wolf mandibles from Rancho La Brea. We develop our
argument in three steps, and introduce new materials
and method descriptions at each stage. This organization
allows sequential presentation of results as they become
necessary for further methodological development.

We first apply the concept of effective rank to
investigate the information rank deficiency in landmark
data from jaws of two dire wolf populations separated by
5000 years. We demonstrate that the covariance matrices
are highly effective rank deficient. Through use of a
permutation test, we characterize the magnitude of the
effective rank deficiency arising from lack of matrix
information. When combined with the rank deficiency
expected from the GPA, this allows us to quantify
the information rank deficiency due to phenotypic
covariance. Lastly, we quantify the rank inflation arising
from use of the correlation matrix. ii) We then evaluate
the impact of the observed effective rank deficiency
on the assessment of integration and modularity
changes between the populations. Existing phenotypic
integration metrics fail to capture a demonstrable
change in integration. We employ jackknifing to
produce confidence intervals for hypothesis testing
and normalize the rank degeneracy due to matrix
information content with a measure we term “effective
dispersion.” iii) Finally, we generalize the concept of
effective dispersion to the case of arbitrary matrix
information content, using a metric we call “relative
dispersion.” This allows comparison of phenotypic
integration among data sets of different sample sizes
and landmark numbers. We demonstrate its utility by
showing that a Smilodon data set is much more tightly
integrated than either of the dire wolf populations.

MATERIALS AND METHODS

Two terminal Pleistocene populations of dire wolves
(Canis dirus) were sampled from two pits (13 and 61/67)
at Rancho La Brea. The samples are separated by about
5,000 years (Stock and Harris 1992; Binder and Van
Valkenburgh 2010; O’Keefe et al. 2014; Brannick et al.
2015). The material is stored at the Tar Pit Museum
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FIGURE 1. Landmarks used in this study, numbered on a schematic
dire wolf jaw (a), and (b) a representative Canis dirus dentary from Pit
61/67, Rancho La Brea, California.

at Hancock Park, Los Angeles. Pit 13 wolves show
elevated tooth breakage and wear, while those from
61/67 do not (Binder et al. 2002), which are thought
to indicate differences in nutrient stress at times when
prey resources are scarce (Van Valkenburgh 1988,
Van Valkenburgh 2009; Meloro 2012). Size and shape
differences between the two populations have also been
documented and attributed to differences in nutrition
(O’Keefe et al. 2014; Brannick et al. 2015; for a full
discussion see Supplementary Appendix 2).

Using 119 dire wolf jaws (n= 36 from Pit 13 and
n=83 from pit 61/67), we collected 14 landmarks
of the 16 used Brannick et al. (2015, Fig. 1) using
tpsDig2 (Rohlf 2013). Positions of landmarks were
chosen to give a general outline of the mandible and
capture information of functional relevance. We omitted
landmarks used by Brannick et al. at the angle of the
mandible because it was difficult to identify and showed
unacceptably large variance, and an interior landmark
in the masseteric fossa to make the dataset amenable to
outline-based iterative semilandmarking. All specimens
were anatomical lefts, laid flat and photographed with
a 5 cm scale-bar that allowed us to standardize scale
before landmark digitization. We also collected 14 similar
landmarks from 81 Smilodon fatalis jaws from pits
61/67 and 13 at the Tar Pit Museum and University
of California Museum of Paleontology (pooling was
necessary to increase sample size).

ANALYSIS AND RESULTS

Part 1: Rank Deficiency in Dire Wolf Mandibles
In this section, we identify the sources of rank

deficiency in the covariance matrix derived from

the Canis dirus data from Pit 61/67. After Procrustes
superimposing the landmark data using the geomorph
package in R (Adams et al. 2020), we calculated the
eigenvalues of the correlation and covariance matrices
of the superimposed landmarks and correlation and
covariance matrices for data from which interlandmark
covariance was removed by random permutation of the
columns in the original data matrix. Figure 2 shows scree
plots for the eigenvalue vectors and their effective ranks
as calculated from Equations 3 and 4 (R code is provided
in Supplementary Appendix 1 available on Dryad
at http://dx.doi.org/10.5061/dryad.d7wm37q01).
Effective rank was also calculated for 10,000 matrices
in which each column of landmark coordinates was
permuted to remove interlandmark covariances. The
mean and standard deviations are also reported in
Figure 2.

The scree plots of both the correlation and covariance
matrices demonstrate that the vector of eigenvalues
for each matrix contains 24 nonzero eigenvalues, the
expected mathematical rank given the loss of four
ranks to the GPA. Eigenvalues 25–28 are nonzero in the
permuted matrices showing that this mathematical rank
deficiency is recovered when the matrix is randomized.
Both real matrices are also highly information rank
deficient. The effective rank of the covariance matrix is
11.362, meaning that less than half of the 24 nonzero
eigenvalues carry meaningful information. The number
of effective ranks in the permuted covariance matrix
is about 21, indicating that the covariance matrix is
information poor by about seven ranks. Four of these are
from the Procrustes analysis; the rest are probably due to
insufficient sample size (Grabowski and Porto 2017), as
demonstrated by the permuted information content (Fig.
2). The information rank deficiency due to phenotypic
covariance is therefore 21 minus the effective rank of
the real matrix (11.36), or about 9.64 ranks. Therefore
12.64 ranks, or over half, of the eigenvalue distribution
is redundant. The small values of the higher eigenvalues
are caused mainly by phenotypic covariance, but they
do not carry novel information about it, and lack
of matrix information acerbates this deficiency. The
eigenvalue spectrum is overdetermined with respect
to its information content, and its distribution will
be affected as a result. Figure 2 also shows that the
rank of the correlation matrix is 12.424. Use of the
correlation matrix therefore adds over one full rank of
information relative to the covariance matrix. We believe
this rank increase is noise, as described in the first
section. The pattern for the permuted matrices is similar;
the correlation matrix adds almost three ranks of noise
over the value for the covariance matrix.

Part 2: Modularity Models and Phenotypic Integration
Metrics

In this section, we introduce the Pit 13 dire wolves
and show they are more integrated than those from
Pit 61/67. We do this by testing both populations for

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab088#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab088#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab088#supplementary-data
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FIGURE 2. Rank deficiency and its sources in Pit 61/67 dire wolves. Scree plots for four data treatments are plotted. Note that the last four
eigenvalues are exactly zero for both the correlation and covariance matrices computed from the real data (the mathematical rank = 24), reflecting
the loss of four degrees of freedom to the GPA. The effective rank of permuted data shows rank deficiency due to lack of matrix information;
the true effective ranks are much smaller than this, and the greater deficiency is due to phenotypic covariance, as well as the four ranks lost to
the GPA. Effective ranks for each matrix are: Permuted covariance = 21.028 ± 0.226; permuted correlation = 23.728 ± 0.258; covariance = 11.362;
correlation = 12.424.

modularity against a range of candidate two- and three-
parameter models. We then calculate the eigenvalue
distribution and SVG for the two covariance matrices
and show that both fail to capture the modularity change.
We then modify the SVG to use only the nonredundant
eigenvalues and show that this measure does capture the
modularity change.

Modularity models.—A challenge in all modularity
studies is initial specification of the models to be tested.
In this article, we use a data analytic approach: principal
components analysis and multivariate allometry vectors
of interlandmark distances are used to identify candidate
models. While important, this specification of models
is tangential to our discussion of rank deficiency, and
we include it below as Supplementary Appendix 2
available on Dryad. This allows us to move directly to
testing the candidate models for the two data sets. A
total of 14 models of modularity were suggested by
data analysis in Supplementary Appendix 2 available on
Dryad, and these models were tested individually using
the CR statistic (Goswami and Polly 2010; Fig. 3; Table
1), performed in the geomorph package in R (Adams
et al. 2020). The models were tested both on the pooled
data, and on data divided by pit. Effect-size tests and
tests against a model of zero modules were performed
on 61/67 wolves only, as only these wolves displayed
significant modularity; representative tests and results
are listed in Table 1.

There are two models with statistically significant CR
values (Table 1). Both are two parameter models that
contrast the length of the postcanine tooth row with
the rest of the jaw. The effect sizes of the modularity
models with significant CRs were compared using the
compare.CR function in geomorph; the effect sizes

were not significantly different. Comparison with a
null model of zero modules was performed using the
same function. The cheek teeth are clearly a module
for pit 61/67 wolves. For Pit 61/67 wolves only, the
cheek tooth model (3–7) was significantly better than
the null model, while the model containing only the
molars (4–7) was marginally so. The anterior–posterior
width of the canine and of the condyloid process
(1,2,9,10) do not form a distinct module on their own;
the significant CR of the three-module model is driven
by the presence of the cheek tooth module. The canine
does not take part in this module and therefore has
significant variance attributable to another factor. The
inability of the modularity tests to identify the canine
and condyloid process as a module was surprising. We
believe it was not identified because most of its variation
covaries with size (Supplementary Appendix 2 available
on Dryad). The cheek teeth vary against size, and this
allows identification of that module. We note that Pit 13
wolves had no significant modules, and must therefore
be more phenotypically integrated than Pit 61/67 wolves.

The magnitude of the CR differences between pits was
surprising, given they are taken from populations of the
same species at the same location, sampled 5000 years
apart. Due to sample size differences (the sample size
of Pit 13 was 36 while that of 61/67 was 83), we were
concerned that a lack of statistical power was obscuring
the modularity signal in Pit 13. To test for this, we
jackknifed the 61/67 sample to 36 members to mirror the
sample size of Pit 13 before rerunning the CR analysis.
Although confidence intervals widened in these subsets,
the covariance structure of Pit 61/67 was still evident and
significantly modular, indicating that the modularity
difference between pits is not attributable to differences
in sample size. The pooled CR statistics, run on all 119

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab088#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab088#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab088#supplementary-data
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FIGURE 3. Candidate modularity models for the Canis dirus jaw tested in this article. The preferred modularity model for Pit 61/67 wolves
is D, a two-parameter model of (3,4,5,6,7) versus all other landmarks. This is the model with the best statistical support, but only in Pit 61/67
(Table 1). The preferred model for Pit 13 wolves is A, the one-parameter model. The other models shown did not have significant modularity
according to the CR statistic; all models tested are listed in the caption to Table 1.

TABLE 1. Results of representative modularity model tests

Model vs. all other LMs CRpooled Pvalue CR13 Pvalue CR61/67 Pvalue Pnull

1,2 1.17 0.427 1.234 0.581 1.063 0.219 —
1,2,9,10 1.10 0.573 1.201 0.838 1.090 0.491 —
1–7 1.15 0.837 1.147 0.786 1.171 0.921 —
3–7 0.96 0.052 1.067 0.387 0.898 0.022∗ 0.031∗
4–7 0.92 0.046∗ 0.994 0.108 0.894 0.028∗ 0.046∗
1,2,9,10; 1.06 0.244 1.192 0.719 1.029 0.226 —
3,4,5,6,7

Representative module models are listed on the left column, with CR statistics for three data partitions in subsequent columns. Pit 61/67 wolves
have two significant modules comprising the check teeth vs. the rest of the jaw, while Pit 13 wolves do not show significant modularity between
these or any other modules. As shown in Figure 3, Pit 13 wolves are best fit with a one-parameter model, while Pit 61/67 wolves are best fit
with a two-parameter model. Wolves from 61/67 are therefore significantly more modular than those from Pit 13. Other modularity models
tested that were not significant include the two-parameter models (4,5,6,7,13,14), (4,5,6,7,8), (4,5,6,7,8,13,14), (1,2,8,9,10), and (1,2,14,9,10,11), and the
three-parameter models ((1,2,8,9,10)(4567)), ((1,2,9,10)(4,5,6,7,13,14)), and ((129,10)(4,5,6,7,8)).

wolves, indicate that the inclusion of the Pit 13 wolves
actually degrades the global modularity signal (Table 1).
This indicates that the relative lack of modularity in Pit
13 is real.

Measures of whole-jaw integration.—The eigenvalue
dispersion and SVG metrics were calculated using
eigenanalysis, bootstrapping, and permutation codes
written in R (R Core Team 2014; Supplementary
Appendix 1 available on Dryad). The eigenvalue
standard deviation metric is significantly less in Pit 13

wolves (Table 2: ��, 13 <61/67, P=0.00008), while the
SGV24 metric is equivalent between the two groups (13
= 61/67, P=0.837, Student’s T in this and subsequent
comparisons). This implies that eigenvalue dispersion is
significantly less in Pit 13, and those wolves should be
more modular than Pit 61/67. Yet this is not the case;
the modularity tests reported above clearly show that
Pit 61/67 wolves are significantly modular, while Pit
13 wolves are not. The eigenvalue dispersion is less in
Pit 13 even though the jaws are more integrated. The
SGV24 metric fails to detect the increase in modularity.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab088#supplementary-data
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As demonstrated above, over half of the ranks used to
calculate both metrics are redundant, and we believe the
SGV24 is essentially measuring noise. We experimented
with the use of the covariance matrix in the SGV24 to
see if the failure of that metric was due to use of the
correlation matrix. Use of the covariance matrix requires
standardization of the eigenvalues before calculation
to control for different matrix variances. This modified
metric is also reported in Table 2, and like the SGV24 it
is equivalent between the two matrices. Rank inflation
due to use of the correlation matrix is therefore not the
reason for failure of the SGV24.

Effective rank-scaled SGV or “effective dispersion”.—
Calculation of the effective rank for the two populations
indicates that the rank of Pit 61/67 is less than that of Pit
13 (Fig. 4: Re, 13 >61/67, P = 0.00148). To account for
this difference in dimensionality dispersion, we modify
the SGV to consider only the nonredundant eigenvalues
of the covariance matrix. This metric includes only the
eigenvalues that carry significant information, that is,
those up to the effective rank of the matrix. We label this
quantity SGVRe and calculate it as follows:

SGVRe = Re

√∏
�Re = Re

√√√√√
⎛
⎝[Re]∏

i=1

�i

⎞
⎠∗(

Re −[Re])(�[Re]+1
)

where Re is the effective rank of the covariance matrix,
and [Re] is the integer value of the effective rank. The
SGVRe is the Rth

e root of the product of the eigenvalues
up to the integer value of Re, multiplied by the decimal
remainder of Re times the next smallest eigenvalue.
The value for this statistic was calculated for the
different data partitions using code written in R, with
jackknifed confidence intervals for Pit 61/67 (Table 2;
Supplementary Appendix 1 available on Dryad). Using
this measure, Pit 13 wolves have significantly higher
dispersion than those of Pit 61/67. Hence, they are
more integrated, while 61/67 wolves are more modular.
The SGVRe metric successfully recovers the increase in
modularity exhibited by 61/67 wolves.

Previous authors rejected SGV as a statistic to measure
dispersion because its distribution has undesirable
properties (Pavlicev et al. 2009a); they preferred the
standard deviation of the eigenvalues because of its
linearity and because it has the same units as the input
data. Because the SGVRe is an average variance, one
may utilize the definition of the standard deviation to
transform the SGVRe into a similar measure:

De =√
SGVRe = 2Re

√√√√√
⎛
⎝[Re]∏

i=1

�i

⎞
⎠∗(

Re −[Re])(�[Re]+1
)

where the square root of the SGVRe is a new metric,
De, that we call “effective dispersion.” It measures
dispersion in both variance and dimensionality together
and accounts for the information rank deficiency that

misleads the classical integration metrics. The De metric
is significantly different between the two samples (P =
0.0049; Table 2).

Part 3: Matrix Information and Relative Dispersion
Permuted rank standardization.—Sample size impacts
effective rank; the effective rank of 61/67 wolves at n= 36
is 9.89, while the full matrix of n=83 has an effective rank
of 11.362 (Figs. 2 and 4). Clearly the derivation of a version
of De that accounts for matrix size is desirable, as this
will allow comparisons between matrices of different
sizes. Pavlicev et al. (2009a) accomplish a similar
standardization for eigenvalue standard deviation by
dividing the observed eigenvalue standard deviation
by its maximum possible value to yield their “relative
standard deviation.” Because they use the correlation
coefficient in their calculations, the minimum possible
correlation in a matrix is simply the number of traits
minus one, because each trait adds an additional unit
of uncorrelated variance. A relative version of effective
dispersion is more difficult to calculate because the
minimal covariance in a matrix is not derivable from first
principles, because the input variance for each variable
is not one. Also, because the matrix is information
rank deficient, this must also be considered, suggesting
that an approach based on effective rank is necessary.
The quantity needed for standardization must therefore
preserve the variances of the input variables, but remove
their statistical covariance, and must also be treated for
rank deficiency. This can be construed as a question-
specific randomization problem, as described by Manly
1997; Chapter 1). We generate a quantity with the
desired properties by permuting the columns in of the
landmark data, and then calculating a set of the resulting
covariance matrix. These matrices will preserve the input
variances on the diagonal, but will remove statistical
covariance on the off-diagonal (although covariances
will still be nonzero in a rank-deficient matrix). The
effective rank of the permuted matrix can then be
calculated, yielding �Re.This permuted effective rank
is the maximum matrix rank given the variable input
variances, and no statistical correlation among them. It
is the amount of matrix information and is driven by
sample size in reasonably complex shapes. It can be
used as a basis for standardizing De for matrix size.
The effective dispersion is the mean eigenvalue variance
limited to its nonredundant information content, and we
wish to scale De to an expectation of maximum possible
information content per axis. We are not concerned
with scaling for the variance in the matrix, but for
the amount of information in one dimension of an
uncorrelated matrix that conserves this variance. The
appropriate scaling term is therefore one rank of the
permuted matrix, or 1/�Re. This yields the definition
for the “relative dispersion,” or Dr:

Dr = De√
1

�Re

=
2Re
√∏

�Re√
1

�Re

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab088#supplementary-data
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TABLE 2. Whole jaw integration measures for the Canis dirus mandible data sets

Data partition ��,± SGV24,± covSGV24,± SGVRe,± De±
Canis dirus 13 0.277 0.363 0.0108 4.131e−5 0.0064
n=36 — — — — —
Canis dirus 6167j 0.304 0.362 0.0108 3.496 e−5 0.0058
n=36 0.027 0.029 0.0008 1.42 e−5 0.0012

All reported confidence intervals are one standard deviation of 10,000 jackknife or permutation replicates. The De metric is significantly
different between the two samples (P = 0.0049). Quantities listed are eigenvalue standard deviation (correlation matrix, 24 eigenvalues),
(� �); standardized generalized variance 24 (SGV24); standardized generalized variance 24 using the covariance matrix, and standardizing the
eigenvalue vector to the sum of eigenvalues (covSGV24); standardized generalized variance effective rank (SGVRe); and effective dispersion
(De).

FIGURE 4. Scree plots and effective rank for GPA landmark data of Canis dirus jaws. Blue is Pit 13, black is Pit 61/67. Confidence intervals for
effective rank (Re) are 10,000 jackknife replicates of the Pit 61/67 sample to an n=36. Eigenvalue dispersion appears greater in Pit 61/67 wolves,
even though they have significant modularity and Pit 13 wolves do not. However the amount of total variance is greater in Pit 13, and the Pit 13
effective rank is significantly larger, so the variance is spread over a greater number of dimensions. The permuted dimensionality is also shown
on both plots; this value is identical between pits (�Re =16.84), demonstrating that the rank deficiency difference between the pits is due to
phenotypic covariance only (i.e., the rank deficiency due to lack of matrix information is equivalent). The effective rank of both matrices is very
deficient, with fewer than half of the 24 eigenvalues being meaningful. The effective rank of Pit 13 wolves is 10.414; the permuted effective rank
is 16.841 ± 0.345. The jackknifed effective rank for Pit 61/67 wolves is 9.89 ± 0.656, while the permuted value at n=36 is 16.832 ± 0.519.

Relative Dispersion of Canis dirus and Smilodon.—To
demonstrate the use of relative dispersion, we turn to the
third data set used in this article, that of RLB Smilodon
fatalis (Meachen et al. 2014). These data comprise 14
2D landmarks on 81 jaws, hence, are quite similar
to the dire wolf data (11 of the 14 landmarks are
homologous between Smilodon and Canis dirus). We
began by calculating the effective rank for Smilodon,
and comparing it to Pit 61/67 dire wolves (Fig. 5). Both
samples were bootstrapped for confidence intervals, and
the sample size for 61/67 was held at 81 during the
bootstrap. Both resampling procedures lower effective
sample size, and so reduce matrix information and
hence effective rank. The exact values for integration
statistics are reported in Table 3, along with the bootstrap
means and standard deviations. Figure 5 plots the n=81
bootstrap values for effective rank.

Smilodon and Canis dirus jaws are similar in that
covariance matrices for both are highly overdetermined
with respect to their effective rank, although the effective
rank of Smilodon is significantly greater. The permuted

ranks of both taxa are much closer to 24 at a sample
size of 81 compared to Canis dirus Pit 13, at a sample
size of 36. This implies that the permuted rank of
the matrices should converge toward the expected
mathematical rank of 24 at large n (probably over
100, in accord with sample size requirements of other
integration metrics as shown by Grabowski and Porto
2017). The relative dispersion is comparable among
data sets of different sample sizes, as demonstrated
by the full and jackknifed 61/67 sample; the De of
the 61/67 n=36 jackknife sample is 0.0058, while that
of the full n=83 data set is 0.0052; the Dr of both
partitions is equivalent, at 0.0238). This, and the values
in Table 3, demonstrates that the relative dispersion
functions as intended; it is robust to difference in sample
size, and successfully captures the modularity evolution
between dire wolf populations. The comparison for
Dr is marginally significant, while that for sample-size
controlled De was strongly significant (Table 2). Lastly,
the Dr metric shows that the Smilodon jaw is much more
tightly integrated than that of Canis dirus. We note that
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TABLE 3. Whole jaw integration measures for the Canis dirus jaw samples, and for the Smilodon data

Data partition ��24, ± SGV24 SGVRe De Dr

Canis dirus 13 n=36 0.277 0.363 4.131e−5 0.0064 0.0263
BS estimate 0.316 — 5.029e−5 0.00690 0.0283
BS sd 0.015 — 2.283e−5 0.00162 0.0066
Canis dirus 6167 n=83 0.278 0.500 2.71e−5 0.0052 0.0238
BS estimate 0.296 0.421 3.373e−5 0.00567 0.0260
BS sd 0.025 0.030 1.311e−5 0.00112 0.0051
Smilodon n = 81 0.250 0.575 7.20e−5 0.0085 0.0391
BS estimate 0.270 0.480 9.098e−5 0.00940 0.0432
BS sd 0.010 0.024 3.055e−5 0.00161 0.0074

The relative dispersion difference between Pit 13 and Pit 61/67 wolves is not quite significant (Welch’s T =1.863, P=0.068); Those between
Smilodon and the two wolf data sets are highly significant (13, T =−10.85, P<0.0001; 6167, T =−17.29, P<0.0001). The Smilodon jaw is much more
tightly integrated than that of Canis dirus. Note that the SGV24 also correctly captures the integration difference between Smilodon and Canis
dirus while the eigenvalue standard deviation still fails. Quantities listed are eigenvalue standard deviation (correlation matrix, 24 eigenvalues),
(� �); standardized generalized variance 24 (SGV24); standardized generalized variance effective rank (SGVRe); effective dispersion (De); and
relative dispersion (Dr).

FIGURE 5. Scree plot comparison for Canis dirus and Smilodon data sets, 14 landmarks on jaws, at n=81. Plotting conventions are the
same as those used in Figure 2. Canis dirus 61/67 is shown in black, Smilodon in red. Both data sets have been bootstrapped for a confidence
interval (10,000 replicates), hence the values shown here are less than the precise values of Re for C. dirus (11.36) and Smilodon (12.32; Table 3).
Because bootstrapping lowers the effective sample size, this drop in effective rank illustrates the strong sensitivity of effective rank to sample
size. The plotted means and standard deviations are: Canis dirus 61/67, Re = 10.33 ± 0.677; �Re =20.614±0.503. Smilodon Re =11.184±0.438;
�Re =21.91±0.503.

the SGV24 successfully recovers this difference, while the
eigenvalue standard deviation is still incorrect.

DISCUSSION

Sources of Rank Deficiency and Its Treatment
In this paper we demonstrate that a typical Procrustes-

superimposed landmark covariance matrix is highly
rank deficient with respect to its information content.
This is evident from the scree plots, which show many
small eigenvalues. Quantifying this information rank
deficiency requires use of the Shannon, or information,
entropy. We operationalize the Shannon entropy in a
geometric morphometric context and use it to calculate
that the information rank, or effective rank, of the
dire wolf covariance matrix is less than half of the

expected mathematical rank. Geometric morphometric
data sets have several characteristics that make effective
rank deficiency more severe than in matrices of linear
measures. The first is the GPA procedure, which utilizes
four degrees of freedom and hence removes four ranks
from the covariance matrices dealt with here. The
magnitude of this rank loss is known (Fig. 1) and
can be accommodated. By contrast, the magnitude
of effective rank deficiency due to lack of matrix
information is not known. We use a permutation
approach to estimate this magnitude, allowing us to
calculate the magnitudes of effective rank deficiency
due to phenotypic covariance versus the other sources.
Phenotypic covariance accounts for about 9.6 ranks
of deficiency in the dire wolf data set considered in
Part 1, while lack of matrix information accounts for
about 3 ranks, and the GPA accounts for 4 ranks. This
nonphenotypic rank deficiency is worrisome, because
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it misleads phenotypic integration metrics that are
calculated from the entire eigenvalue spectrum.

To demonstrate the impact of effective rank deficiency
on current integration metrics, we show that current
phenotypic integration metrics fail to identify the
modularity change between dire wolf populations.
Granted, this is a minor allometric change, from a
one-parameter model to a two-parameter model, and
the differences in magnitudes are not large. However,
eigenvalue standard deviation is statistically significant
in the wrong direction, while the SGV24 lacks sensitivity.
The SGV24 does successfully capture the modularity
difference between Smilodon and Canis dirus, where the
integration difference is large. Yet eigenvalue standard
deviation continues to fail. We also show that use of
the correlation matrix leads to effective rank inflation
in coordinate data; this rank inflation is noise, and the
correlation matrix should not be used on raw coordinate
data.

The failure of current integration metrics arises
from the inclusion of the long tail of small, nonzero
eigenvalues in the eigenvalue distribution. This tail of
small values will have low dispersion, and eigenvalue
standard deviation will be pushed lower as effective
rank deficiency increases. The geometric mean of
the eigenvalue distribution (the SGV24) will also be
pushed lower, again due to the inclusion of many
small eigenvalues. These facts are true on inspection
but should be demonstrated; one immediate line of
future research is a simulation study that quantifies the
sensitivity of current phenotypic integration metrics to
information rank deficiency. This article is meant as a
theoretical development and proof of concept, and we
do not attempt a simulation study here, although the
behavior of the effective and relative dispersion metrics
should also be explored by simulation. The seeming loss
of statistical power between De and Dr deserves specific
attention.

The use of the effective rank allows calculation of a
modified form of the geometric mean of the eigenvalues,
which is simply the mean of the nonredundant
eigenvalues. We demonstrate that this new metric,
De, successfully recovers the evolution of increased
modularity in Pit 61/67 wolves. However, matrix
effective rank is very sensitive to sample size (Table 3),
and we held sample size constant in Part 2. Therefore,
we introduce the concept of relative dispersion, Dr, to
account for differences in matrix information content
in Part 3. Relative dispersion accounts for dispersion in
dimensionality, as well as dispersion in variance, and it
accounts for differences in matrix size by standardizing
against the permuted information content. The metric
Dr should therefore be comparable among data sets,
as we demonstrate via comparison with Smilodon. This
comparison utilizes data sets with an equal number of
landmarks (14); the sensitivity of relative dispersion to
different landmark number requires quantification in a
manner similar to the analysis of classical integration
metrics by Grabowski and Porto (2017).

Dense Semilandmarks and Latent Dispersion
The relative dispersion metric accounts for

information rank deficiency, but it is still space-
specific. By this, we mean that it is calculated in a shape
space defined by the landmarks, not the entire shape,
and the relation between these two spaces is not clear.
For maximum utility, it is desirable that Dr should
be comparable among spaces defined by different,
arbitrary sets of landmarks. In the case of two spaces
defined by the same number of landmarks, as in the
Canis dirus and Smilodon data compared here, one might
suppose that relative dispersion is comparable even if
the landmarks are not homologous, because the full and
mathematical ranks are the same (11 of the 14 landmarks
are in fact homologous). However, the effective ranks
are not the same, and so the spaces are not comparable.
A landmark-defined space with covariance matrix KV
and an effective rank based on the Shannon entropy
only captures the variance of the landmarks, not of the
entire shape upon which those landmarks occur. One
way to represent the total covariance of the entire shape,
KT, would be to sample the shape with an arbitrarily
large number of landmarks, so that as the magnitude
of V increases KV would approach KT. Thought of in
this way, a typical set of geometric morphometric data
would comprise

KT =KV +KR

where KR is the residual covariance in the shape
not captured by the landmarks in KV. The residual
matrix KR is of unknown magnitude in all mainstream
applications of geometric morphometrics, and there is
no guarantee that it is negligible, nor that the proportion
KR/KT is of constant magnitude among spaces, even
if KVs are of equivalent effective rank. Therefore, the
relative dispersion metric defined above remains space-
specific.

A recent approach to estimating residual shape
variance is the employment of dense semilandmarks,
where a curve or surface is first landmarked, and
then densely sampled with an increasing number of
semilandmarks until the coefficient of interest stabilizes
(Marshall et al. 2019). This procedure can be employed
here. Given a shape with variance KT and landmark
variance KV, the residual covariance KR will decrease
as V increases, so that

KT ≈KV , and KR ≈0

as the number of semilandmarks becomes large. The
number of semilandmarks can be arbitrarily large, down
to the pixel or voxel resolution of the image being
digitized, but in practice semilandmarks need only be
added until the coefficient stabilizes. Because the relative
dispersion metric relies on information entropy, it will
scale with the information added by each landmark,
not with landmark number. Using this procedure allows
characterization of the true, or latent, dispersion of the
shape;

Dl = lim
v→∞Dr
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where the latent dispersion of the shape space,
Dl, is the relative dispersion of a matrix that is
semilandmarked densely enough to asymptotically
stabilize Dr. Classical phenotypic integration measures
are not amenable to this procedure, because they
consider all eigenvalues, and as the number of
landmarks increases the mathematical rank of K will
increase without bound. We contend that the effective
rank will converge as landmark number increases;
developing and implementing methods to test this
hypothesis is a topic of current research.

If it does converge, the latent dispersion metric
should be useful for comparing shapes across arbitrary
landmark spaces, and for assessing the fidelity with
which the original landmark data capture phenotypic
shape change. It is a general statement of the information
content of a shape. Calculation of this metric would
allow us to state definitively that the Smilodon data are
tighter in shape dispersion than Canis dirus, assuming
the observed pattern from 14 landmarks holds up. Yet
given the effective rank deficiency in K demonstrated
by the permuted matrices, we doubt there is sufficient
residual variation not being captured by the landmarks
to substantially change this result. Smilodon is a highly
specialized hypercarnivore, and intuitively it should be
more tightly adapted—and less complex—than a more
generalized canid like Canis dirus, whose jaw should be
more information rich.

CONCLUSIONS

This article reviews two current measures of
phenotypic integration, and how they interface with
modularity measures. VanValen’s realization that
dimensionality dispersion is a critical property is
highlighted, and the Shannon, or information, entropy
is employed to measure it as effective rank. Phenotypic
covariance matrices for dire wolf jaws from two
populations are then introduced: Pit 13, deposited circa
19 kya, and Pit 61/67, deposited circa 14 kya. Both
data matrices comprise coordinate data for 14 identical
landmarks, after Procrustes superimposition. Use of the
concept of information entropy allows identification of
the magnitude and sources of rank deficiency in the Pit
61/67 sample. Effective rank deficiency is found to be
high, with almost half not due to phenotypic covariance.
Modularity model tests show that the only significant
module is that of the cheek teeth relative to the jaw
corpus. This module is only significant in Pit 61/67
wolves; its absence in Pit 13 means that Pit 13 wolves
are more integrated (best fit by a one parameter model),
while 61/67 wolves are more modular (best fit by a
two parameter model). Classical metrics of phenotypic
integration fail to recover the evolutionary increase in
modularity in Pit 61/67 wolves. They fail because i) they
rely on the correlation matrix, which inflates variance
in geometric morphometric data; and ii) they measure
only variance dispersion, while ignoring dimensionality
dispersion.

New metrics based on the Shannon entropy-modified
SGV are defined to quantify the dispersion of phenotypic
shape spaces. The relative dispersion (Dr) is a sample-
size corrected version of the effective dispersion (De);
the latent dispersion is an asymptotic extension of Dr to
a dense semilandmark context. The relative dispersion is
the core result of this paper. It is a phenotypic integration
measure that has been normalized to the information
content of the eigenvalue spectrum, and we restate it
from Equation 7:

Dr =
2Re
√∏

�Re√
1

�Re

.

New whole phenotypic shape integration measures
incorporating effective rank are successful at recovering
the evolution of increased modularity in 61/67 wolves
and show promise for the characterization of phenotypic
spaces among taxa.
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