
Cipriano et al. BMC Bioinformatics 2012, 13:314
http://www.biomedcentral.com/1471-2105/13/314

RESEARCH ARTICLE Open Access

Local functional descriptors for surface
comparison based binding prediction
Gregory M Cipriano1, George N Phillips Jr2 and Michael Gleicher1*

Abstract

Background: Molecular recognition in proteins occurs due to appropriate arrangements of physical, chemical, and
geometric properties of an atomic surface. Similar surface regions should create similar binding interfaces. Effective
methods for comparing surface regions can be used in identifying similar regions, and to predict interactions without
regard to the underlying structural scaffold that creates the surface.

Results: We present a new descriptor for protein functional surfaces and algorithms for using these descriptors to
compare protein surface regions to identify ligand binding interfaces. Our approach uses descriptors of local regions
of the surface, and assembles collections of matches to compare larger regions. Our approach uses a variety of
physical, chemical, and geometric properties, adaptively weighting these properties as appropriate for different
regions of the interface. Our approach builds a classifier based on a training corpus of examples of binding sites of the
target ligand. The constructed classifiers can be applied to a query protein providing a probability for each position on
the protein that the position is part of a binding interface. We demonstrate the effectiveness of the approach on a
number of benchmarks, demonstrating performance that is comparable to the state-of-the-art, with an approach with
more generality than these prior methods.

Conclusions: Local functional descriptors offer a new method for protein surface comparison that is sufficiently
flexible to serve in a variety of applications.

Keywords: Protein surface shape, Molecular surface, Protein functional surface, Shape descriptors, Protein-ligand
docking

Background
Molecular recognition in proteins takes place when por-
tions of each partner’s surface are appropriately com-
plementary such that binding can occur. Therefore, the
ability to compare regions of surfaces is an invaluable tool
for understanding molecular interactions. In this paper,
we introduce a novel approach to surface comparison, and
show how this approach may be applied to identifying
small-molecular binding sites on proteins by comparing
the surface of a query protein with those of other proteins
known to bind that ligand. Our techniques provide bind-
ing prediction probabilities for all positions on the surface
of the query protein, as shown in Figures 1 and 2.
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The ability to compare functional surfaces directly is
important: while similar phsyio- chemico- interfaces are
often created by similar structural scaffolds, we are also
very interested in the cases where they are not. For exam-
ple, in order to predict the function of a protein with
little homology to known examples, or compare different
mechanisms for similar interactions, comparison mecha-
nisms must be created that operate directly on the physi-
cal, chemical, and geometric properties of the interface.

For a specific binding partner, the range of potential
interfaces can be quite broad [1]. For example, a ligand
may bind in many different ways to different partners.
A single descriptor is unlikely to be sufficiently flexible
to represent a surface region large enough to encode an
entire interface. Therefore, our approach to surface com-
parison achieves all of these features by representing a
protein as a mesh of feature points that sample various
physio-chemical properties across the molecular surface.

© 2012 Cipriano et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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1SAC (ROC area = .96) 1ANX (ROC area = .92) 1AYP (ROC area = .56)

Figure 1 Shown are the results for three of the calcium ion binding predictions discussed in the results section. The three examples depict
a successful result, a moderate success, and a failure case. In red are areas that the classifier chose as highly likely (> 95% estimated probability) to
bind to calcium. In lighter orange are areas that have between 40% and 95% probability of binding, with the shade of orange indicating
approximately where in that range the estimate fell. In white are areas that were deemed unlikely to bind to calcium. The binding locations of the
crystal structures are shown as blue spheres with a green point at the center.

Each sample stores a feature vector that represents a num-
ber of properties of a small local region. Larger regions
(such as binding interfaces) are compared by combining
these smaller regions in a flexible way.

The idea of using a collection of local descriptors has
become a standard tool in the Computer Vision commu-
nity (see [2] for a survey). Small descriptors can be made
invariant to irrelevant changes, and combined flexibly to
capture larger regions. For images, effective descriptors
have been somewhat standardized and evaluated [3], lead-
ing to common descriptors such as SIFT [4,5] and SURF
[6,7]. A wide variety of approaches for combining these
features have been developed, including bag-of-words
methods that ignore geometric relationships between fea-
tures [8-11], flexible template methods that enforce spatial
relationships [12-14], and hierarchical methods that com-
bine the advantages of both [15-18].

Recently, others have begun to use the combination
of local shape descriptors for protein surface analysis.
Notably, Sael and Kihara [19] represent binding sites as
collections of points each represented with a Zernike
descriptor, and Wallach and Lilien [20] represent binding
pockets by representing the shape of subcavities. These
methods are most similar to ours, although they both only
consider pocket-shaped cavities, and consider only shape,
not other physio-chemical properties.

Many different chemical and physical properties affect
binding, and any of these properties may effect molec-
ular recognition. Shapea complementarity, electrostatic
potential, available hydrogen bond donors and acceptors,
hydrophobicity, stereoelectronic effects and other proper-
ties can determine binding specificity. For any interface,
some properties are critical to recognition - but differ-
ent properties are essential in different interactions [1]. A
comprehensive approach to surface comparison must not
only consider a range of features, but also must be able
to flexibly consider only the appropriate ones in any par-
ticular situation. Our approach achieves this by weighting

features based on the diversity of examples observed for
individual micro-environments.

Beyond shape, electrostatic potential is the most com-
monly considered physical property (see [21] for a sur-
vey of reasons why), and are often considered as part
of descriptors. Other properties such as availability of
potential hydrogen bond sites are also considered in sev-
eral methods. Our approach is flexible and able to use
any property that can be determined for points on the
molecular surface. The method is agnostic to how the
properties are computed, allowing standard tools to be
used in creating the information encoded in the descrip-
tors and compared. A key element in our approach is that
these properties are used independently: the structure of
the protein is used to compute the surface properties,
however once these properties are computed, the internal
structure of the protein is not considered by our methods.

Properties of descriptor-based methods
Surface comparison is a valuable tool for a number of
uses including docking (both protein-protein and protein-
ligand), function prediction (annotation), prediction of
interactions, classification, and detailed mechanistic anal-
ysis of known interactions. In order to create a compar-
ison technique that may serve all of these applications,
we sought to create a surface descriptor and compari-
son technique that has the following properties which, to
our knowledge, no single prior method completely sat-
isfy. We note at the outset that we have only incorporated
our comparison approach and descriptor in a limited
range of applications, and have not yet demonstrated the
advantages of all of these features in our method.

Capable of matching despite flexibility
The range of interfaces that might serve for an interac-
tion is both specific, yet flexible. Many different inter-
faces may serve to recognize a partner, and a particular
molecule may move so that the interface it shows in
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a) 1JWA (ATP binding success - area under P/R = .77) b) 1XEX(ATP binding failure - area under P/R = .05)

c) 3AGC (GLC binding best - area under P/R = .34) d) 1ACO (GLC binding failure - area under P/R = .01)

e) 3L3X (DHT binding success - area under P/R = .85)
(protein is semi-transparent to show internal pocket)

f) 1DHT (DHT binding worst - area under P/R = .28)
(protein is “sliced” to show internal pocket)

g) 1CC5 (HEM binding success - area under P/R = .9) h) 2Z6F (HEM binding worst - area under P/R = ..54)

Figure 2 This image shows representative examples from the multiple-ligand binding test discussed in the results section. The best and
worst examples for each test ligand in the experiment are shown visually. Binding prediciton probability is shown by color on the protein surface: red
are areas that the classifier chose as highly likely (> 95% estimated probability), orange are areas with between 40% and 95% probability of binding.

an example structure may not be identical to the one
it presents in a complex with a partner. The key chal-
lenge of comparison-based approaches is to be able to find
functionally equivalent interfaces despite these flexibili-
ties. Techniques attempt to address this challenge using a
variety of strategies that fall into two broad categories: cre-
ating complex descriptors that are flexible and (therefore,
hopefully) invariant to these differences, or describing
interfaces as collections of simpler, invariant elements

and incorporating flexibility into the matching process.
Our work falls into the latter category as we believe this
approach is more likely to provide the advantages we seek.

Not based on sequence
There are many ways that a protein can “implement” the
required interface for a particular interaction. Analagous
interfaces often result from homologous sequences,
so that sequence-based matching methods are often
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successful. There is a vast literature of sequence-based
tools. However the search for functionally equivalent but
less related proteins is important and under utilized. Our
work is a member of a growing category of structural
bioinformatics work that does not consider sequence.

Not based on residue positions and sets
Because it is ultimately the physical and chemical proper-
ties of the interface that drive recognition, our approach
considers these properties directly, not the structural fea-
tures that cause them. In contrast, many structual bioin-
formatics techniques consider the residues that make the
interface, abstracting interfaces as sets of residues (e.g.
[22-24]) or characterizing them as the position of the Cα

carbons of the residues. Such approaches may be prob-
lematic as they do not consider the details of residue
configurations, and may not account for different con-
figurations of residues that achieve analogous interfaces.
Some methods (e.g. [25]) use equivalence rules or tables to
combat the latter problem, by noting which residues often
serve similar functions.

Not based on a single large descriptor
Binding interfaces are sufficiently complex and diverse
so sufficient detail must be encoded. Creating a single
descriptor for an entire interface requires developing a
descriptor that can capture this range, and be invariant
to the various forms of diversity that equivalent interfaces
can have. While there are numerous attempts to create
descriptors with such flexibility (such as [1,19,23,26-29]),
we instead choose a different strategy: describing inter-
faces as collections of more local descriptors.

Not only for pocket shaped regions
While most small molecule interactions involve pocket-
shaped voids [30], methods limited to comparing such
pockets are inappropriate for protein-protein interac-
tions, for ligands that “stick” to the exterior of proteins, or
for the relatively common case where the binding pocket
is much larger than the actual binding interface [29].
Many prior shape descriptors used for surface compari-
son, including moments [31], distance profiles [23,26], and
Spherical Harmonics [29,32], can only represent globular
(roughly spherical) shapes or enclosed volumes. [27] con-
sider many properties of cavities in determining if they are
likely binding sites.

Not requiring pre-identified pockets
While geometric pockets can often be reliably identi-
fied, a method restricted to comparing identified pockets
is limited to pocket interfaces, and subject to issues in
pocket localization [29]. Many methods include pocket
identification as their first step, such as [19,20,22,23,29].

Not requiring precise determination of dense or critical points
Approaches using surface representations may use a dense
sampling of the surface [33,34], or sparser point sets.
Dense samples can be problematic as they capture very
local information and therefore require large groupings
to be considered, which becomes challenging if the sur-
faces to be compared are not sampled equivalently. They
also rely on the sampling density being aligned with the
scale of the features to be matched. Sparse points may
be selected by geometric criteria [35-38] or as chemically
significant points [39-42]. Sparse points afford more effi-
cient and flexible matching, although [34] dismiss sparse
points because the reduced information reduces the sen-
sitivity and selectivity of the methods, and makes them
more sensitive to changes in the points. Our work pro-
vides the benefit of both: we avoid the down sides of sparse
points by using neighborhood descriptors and flexible
matching.

Capable of considering interfaces of varying size and shape
Many methods, particularly approaches that create sin-
gle large descriptors for entire interfaces, are limited in
the range of interfaces they can match. For example, the
various variants of Feature (c.f. [43-45]) describe spheri-
cal regions, and therefore has primarily been used to find
interfaces for spherical partners (such as metal and cal-
cium ions). S-Blest [46] similarly characterizes a spherical
region around amino acids. Similar methods have mainly
served to recognize small ligands (e.g. [47] for glucose
molecules). Our approach can scale to a range of interface
sizes and shapes.

Capable of combining a range of physico-chemical features
Our approach can create rich descriptions of many differ-
ent chemical and physical properties across an interface.
While many descriptor-based approaches do consider
multiple properties, most of the ones that handle shape in
a detailed and flexible way do not. A range of local shape
descriptors have been developed by the geometric model-
ing community for applications including shape matching,
such as [48-52]. While some of these have been adapted
for use in molecular applications (e.g. [28]), none consider
properties in addition to shape.

Capable of selecting from many features
In combining many types of features leads to large fea-
ture sets. In order to achieve good performance, methods
must perform some form of feature selection (or use a
machine learning technique that performs feature selec-
tion implicitly). For example, [27,47] both use random
forest techniques on a large collection of features that
describe entire binding pockets. Our method weights fea-
tures for different parts of the interface, rather than doing
a single weighting for the entire interface.
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Methods
The key idea of our method is to describe the functional
surface of a protein as a set of descriptors, each posi-
tioned at a point on the solvent accessible surface. For
each surface sample, we compute a descriptor vector that
describes the local shape and physio-chemico-properties.
These descriptors can be precomputed for proteins of
interest.

While our descriptors and approach may be applicable
to a number of problems, we focus on a single one for
our initial validation study: identifying potential ligand-
specific binding sites. Specifically, for a particular target
ligand we create a classifier that finds locations on the sur-
face of a query protein that are similar enough to be likely
to bind the ligand. The classifier is constructed by using
a training set of example compounds containing bound
ligands that share moeities with the target ligand. Once
constructed, the classifier can be used on the surface of
a query protein, providing a probability for each point on
the query’s surface that the point is part of an interface
with the target ligand.

Our approach is comprised of three phases, which are
overviewed here and detailed in sections below:

Descriptor computation
For each protein used in our approach (either as part of
the training set or a query), we compute a set of functional
descriptors. That is, for a uniform collection of points
on the solvent accessible surface, we compute a vector
of physical and chemical properties. While the structural
information of the protein (e.g. the PDB file) is used to
compute the descriptors, this internal structure of the
protein is not used in any other phase.

Classifier construction
For a given target ligand, we construct a classifier compris-
ing a set of per-atom classifiers for each atom in the ligand,
and inter-atom distance information. Because we may not
be able to find a sufficient number of example complexes
containing the ligand, our approach breaks the target lig-
and into smaller moeities. For each moeity, our approach
creates a training set of complexes with a bound ligand
containing the moeity. For each atom in the moeity, the
training set is used to create a classifier for surface descrip-
tors likely to be near the atom when bound. The statistics
of the distances between moeity atoms in the examples are
also computed.

Classification
For a given query protein, the classification procedure
gives a field over the surface that measures the likelihood
that the target ligand may bind at each location. Classi-
fication operates in a fine-to-coarse fashion. First, each
per-atom classifier is applied to the protein surface giving

a probability field for each one. Second, these probabil-
ity fields are combined to find areas where the correct
combination of atoms are likely to bind at an appropriate
distance from each other, giving a prediction of where the
moeities are likely to bind. Finally, the moeity predictions
are combined to give the probabilities for target ligand.

Descriptor computation
Our method begins by computing the solvent accessible
surface as a mesh. Each vertex of the mesh serves as a sur-
face sample, and the connectivity of the mesh will be used
to approximate distances across the surface. While any
method could be used, our experiments use the MSMS
program [53] to create the meshes, and the corner cut-
ting approximate geodesic method of [54] to compute
distances between points.

As a convenient solution, we use the vertices formed
during tessellation with MSMS [53], with the sampling
density set at approximately 3 points per Å2. This means,
for instance, that a carbon atom, having a radius of 1.74 Å
and thus a surface area of about about 10.7 Å, will contain
around 30 samples. By visual inspection, this appears to
be enough to represent all geometric detail at the smallest
scale.

For each surface sample, we compute a descriptor vector
that encodes the local shape and physical and chemi-
cal properties. Shape is encoded using the multi-scale
shape descriptors of [54], that provide larger-scale analogs
of curvature, anisotropy, and curvature variability of the
surface neighborhood around the sample point. Electro-
static potential is computed as a volumetric property (our
implementation uses the APBS program [55]), and sam-
pled at the surface points. For the experiments described
in this paper, APBS is used with its default parameters
and a 1Å resolution. While there is evidence that detailed
physical computations are not essential for the kinds
of applications our approach targets [56], we have cho-
sen to use standard methods in our initial experiments.
Hydropathy is also computed and sampled at each sample
point using the method of [57].

Each of the sampled, spatially varying properties (curva-
ture, anisotropy, curvature variance, hydropathy, and elec-
trostatic charge) are sampled at several different scales.
A scale is specified as a geodesic disc around the sam-
ple point. For example, electrostatic charge at the 8Å scale
is the weighted average of all sample points within 8Å
geodesic distance of the sample point. Each property is
sampled at 5 scales: 1.6Å, 3.2Å, 4.8Å, 6.4Å and 8Å. These
also map to the scale of important biological features, the
first to the size of an atom, the next two to the size of a
residue, and the last two to the size of small pockets (see
Figure 3 for a depiction of these sizes).

The set of scales was chosen to balance the compact-
ness of the feature vector with the need to encode as
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Figure 3 Shown here are, for one sample point, the disc-shaped patches of each radii used in the functional surface descriptor: 1.6Å,
3.2Å, 4.8Å, 6.4Å and 8Å.

much information as possible. This set was determined
empirically by evaluating the covariance of curvature and
electrostatics over 20 scales across a corpus of molecules.
The smallest scale, 1.6Å, was chosen to be small enough to
account for atomic features, but large enough that every
patch of this size contained at least five vertices (not
counting the center point): the minimum number to avoid
an under-constrained fit. The largest size, 8Å was empiri-
cally chosen to capture pockets of approximately the size
of the largest moiety to be characterized. Remaining scales
were removed if their statistical correlation with any other
scale approached 1.0, which indicated that they conveyed
little new information.

An additional set of features are used to encode the
relationship of each sample point to certain chemical
features. Each descriptor vector includes the Euclidean
distance to the nearest of each of the following: non-polar
backbone atom, aromatic sidechain atom, nitrogen back-
bone atom, aliphatic sidechain atom, oxygen backbone
atom, sulphur sidechain atom, amide nitrogen sidechain
atom, amide oxygen sidechain atom, typtophan sidechain
atom, hydroxyl sidechain atom, charged oxygen sidechain
atom, charged nitrogen sidechain atom, potential exter-
nal hydrogen bond donor, and potential hydrogen bond
acceptor site. A final feature records the amount of the
“outside” world visible from the sample point (as used for
ambient occlusion lighting [58]). This feature is akin to
that used by [59].

Because each feature spans a different range of val-
ues, samples must be normalized so that the scale of
the distributions for each feature are similar. Normalizing

each protein independently leads to a per-protein bias
which made comparison between proteins inconsis-
tent (as features may have quite different statistics
from one protein to the next). Therefore, we normal-
ize feature distributions by computing a mean and
standard deviation over a set of proteins randomly
selected from the entire PDB (100 in all). Each feature,
then, is normalized against these values before being
used.

The result is that for each vertex of the mesh, we have
a vector of length 40. A detailed summary of this feature
vector is provided as Table 1. All of these properties in the
feature vector are invariant to position and orientation.
It is straightforward to add additional properties to the
feature vector, provided they can be computed for each
surface sample. For example, we might add properties
such as travel distance [60,61].

We note that by sampling the molecular surface densely,
for each vertex of the detailed solvent accessible sur-
face mesh, we have over-sampled the surface and have
considerable redundancy in the data. Grouping similar
samples is important for efficiency: however, at this point,
we do not know which of the properties are important.
The distance metric for grouping must be based on an
understanding of the sensitivity of a particular applica-
tion, so grouping is deferred until such sensitivities can be
determined.

We also note that once the various properties of the pro-
tein are computed, the actual structure of the protein is
not considered in any of the subseqent analyses. Only the
mesh and its associated descriptors are used.
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Table 1 A list of each feature contained within our surface descriptor

Feature # Name Description

1 % Visibility Percentage of outside world visible from point

2 Non-Polar Backbone Distance to the nearest Non-Polar Backbone Atom

3 Arom. Sidechain Distance to the nearest Aromatic Sidechain Atom

4 Aliph. Sidechain Distance to the nearest Aliphatic Sidechain Atom

5 N Backbone Distance to the nearest Nitrogen Backbone Atom

6 O Backbone Distance to the nearest Oxygen Backbone Atom

7 S Backbone Distance to the nearest Sulpher Sidechain Atom

8 Amide N Sidechain Distance to the nearest Amide Nitrogen Sidechain Atom

9 Amide O Sidechain Distance to the nearest Amide Oxygen Sidechain Atom

10 Trp Sidechain Distance to the nearest Trypophan Sidechain Atom

11 Hydroxyl Sidechain Distance to the nearest Hydroxyl Sidechain Atom

12 Charged O Sidechain Distance to the nearest Charged Oxygen Sidechain Atom

13 Charged N Sidechain Distance to the nearest Charged Nitrogen Sidechain Atom

14 Anisotropy (1.6 Å) Patch anisotropy, with radius: 1.6 Å

15 Anisotropy (3.2 Å) Patch anisotropy, with radius: 3.2 Å

16 Anisotropy (4.8 Å) Patch anisotropy, with radius: 4.8 Å

17 Anisotropy (6.4 Å) Patch anisotropy, with radius: 6.4 Å

18 Anisotropy (8 Å) Patch anisotropy, with radius: 8 Å

19 Curvature (1.6 Å) Patch curvature, with radius: 1.6 Å

20 Curvature (3.2 Å) Patch curvature, with radius: 3.2 Å

21 Curvature (4.8 Å) Patch curvature, with radius: 4.8 Å

22 Curvature (6.4 Å) Patch curvature, with radius: 6.4 Å

23 Curvature (8 Å) Patch curvature, with radius: 8 Å

24 Curvature Var. (1.6 Å) Variance of curvature within patch of radius: 1.6 Å

25 Curvature Var. (3.2 Å) Variance of curvature within patch of radius: 3.2 Å

26 Curvature Var. (4.8 Å) Variance of curvature within patch of radius: 4.8 Å

27 Curvature Var. (6.4 Å) Variance of curvature within patch of radius: 6.4 Å

28 Curvature Var. (8 Å) Variance of curvature within patch of radius: 8 Å

29 Hydropathy (1.6 Å) Weighted avg. hydropathy over patch of radius: 1.6 Å

30 Hydropathy (3.2 Å) Weighted avg. hydropathy over patch of radius: 3.2 Å

31 Hydropathy (4.8 Å) Weighted avg. hydropathy over patch of radius: 4.8 Å

32 Hydropathy (6.4 Å) Weighted avg. hydropathy over patch of radius: 6.4 Å

33 Hydropathy (8 Å) Weighted avg. hydropathy over patch of radius: 8 Å

34 Charge (1.6 Å) Weighted avg. charge over patch of radius: 1.6 Å

35 Charge (3.2 Å) Weighted avg. charge over patch of radius: 3.2 Å

36 Charge (4.8 Å) Weighted avg. charge over patch of radius: 4.8 Å

37 Charge (6.4 Å) Weighted avg. charge over patch of radius: 6.4 Å

38 Charge (8 Å) Weighted avg. charge over patch of radius: 8 Å

39 Hyd. Bond Donor Distance to nearest potential external hydrogen bond donor

40 Hyd. Bond Acceptor Distance to nearest potential external hydrogen bond acceptor

Note that features 14 - 38 are weighted according to distance (from center vertex) and point area (i.e. the sum of the areas of all adjacent triangles).
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Classifier construction
For a given target ligand, a classifier is constructed that
can be applied to query proteins. Construction has three
main steps: first, a set of training examples is drawn from
the Protein Data Bank (PDB) for each moeity of the lig-
and; second, these training examples are used to create
per-atom classifiers for each atom in the ligand; and third,
inter-atom distances are computed.

This learning process is broken down to the level of the
atoms themselves, rather than the entire ligand. We base
this decision on two fundamental assumptions, which are
drawn from experimental observations. First, we assume
that the preferred microenvironment for each atom in a lig-
and is different. This difference may be small, as in the case
of two neighboring atoms of similar size and polarity, or
large, as in, for instance, the difference between the pre-
dominantly negatively-charged phosphate chain in ATP
and the positive adenine moiety. Intuitively, this assump-
tion is justified by the lock-and-key principle: each atom
in a moiety has a particular property (polarity, shape, etc.)
which is different from all other atoms in the moiety. Thus
complementarity implies that the matching surface for
each of these atoms will also have different, complemen-
tary properties.

The second assumption is that, for a given atom, the
microenvironment surrounding that atom is consistent
across all proteins to which it binds. For this to be true, in
the samples in close proximity to a given binding atom, the
feature vectors for each sample must form one or more
clusters in feature space (i.e. its ‘signature’). This implies
that samples binding a given atom may be distinguished
from samples that don’t, given a classifier trained on a
corpus large enough to encompass all of the possible bind-
ing microenvironments of an atom. This assumption is
key to the success of our work: if this were not true, then
our binding prediction algorithm would be impossible, as
separating positive and negative examples would itself be
impossible.

The flexibility in our approach comes not only from
accounting for the range of micro-environments in which
a particular atom may bind, but also by allowing for
relative movement and re-arrangement between atoms.

Selecting training examples
For each atom in the ligand, we build a classifier that can
identify its preferred micro-environment. To create a clas-
sifier that is sufficiently general, we need sufficient exam-
ples that capture the diversity of binding interfaces for
the particular atom in the ligand. Unfortunately, for many
ligands, the Protein Data Bank does not have a diverse
enough set of example complexes. Therefore, rather than
simply using examples of the ligand, our method breaks
the ligand into smaller moeties, and builds a training cor-
pus for examples containing this moeity. For example,

rather than building a classifier for a particular carbon of
ATP, our method builds a classifier for the C1 carbon of
the adenine moeity that is part of ATP. This allows build-
ing the classifier from a training set of all proteins binding
all ligands that contain the adenine moeity, rather than
the smaller potential training set of those proteins bind-
ing ATP. Moeities are manually identified when the target
ligand is specified.

For each moeity in the target ligand, we select a training
corpus from the PDB using Algorithm 1. In order to avoid
redundancy, the algorithm selects at most one exam-
ple from each cluster of homologous proteins. We use
the clusterings produced by BLASTCLUST (using data
available at ftp://resources.rcsb.org/sequence/clusters/).
Proteins are considered homologous if they contain
greater than 95% sequence identity. For our exper-
iments, this leaves 27551 clusters (out of 66961
proteins).

Algorithm 1. The corpus-building algorithm
Input: All proteins in the PDB (clustered by sequence
identity), an exemplar moiety M
Output: A non-homologous training set of functional sur-
faces, each with a binding ligand that contains M
foreach Protein P in the PDB do

if The cluster C containing P has not been used yet
then

if P contains a ligand L that matches M,
whose atoms bind to surface S then

Add S and L to returned set
Remove cluster C from
consideration

end
end

end

Descriptors for all proteins used as examples are com-
puted as discussed above.

The training algorithm
In this step, a classifier is trained for each atom in a moiety.
At a high level, the algorithm proceeds as follows: first, for
every atom in the moiety to be trained, for each example
protein surface in the training set, all samples are found
that come within 1.6 Å of the atom. These are classified as
positive examples. Negative samples are randomly chosen
from the remainder of the surface. Though there are many
more negative samples on a surface than positive, adding
more negative examples does not necessarily improve pre-
dictive accuracy [62]. Further, classification time increases
with the number of samples. The negative set is therefore
chosen to be the same size as the positive set. Both sets are
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then used to train a classifier to recognize that atom. This
process is repeated for every atom in the moiety.

Given the positive and negative sets, we train a SVM
classifier with a radial basis kernel [63,64]. We used the
Weka program [65] for creating the classifiers. Work-
ing with the Weka framework allowed us to try other
classifiers, however the radial basis SVMs were found
to have the best combination of classification speed and
accuracy.

Refer to Algorithm 2 for a detailed description of this
process, and to Figure 4 for a visual depiction.

Algorithm 2. The algorithm for training a set of clas-
sifiers CA on a specific moiety M given a test corpus
containing M
Input: The training set, along with a moiety M
Output: A set of classifiers CA , one per atom A in M
foreach Surface S in the training set do

Sample the entire surface: one sample per vertex in S
Construct the feature vector for each sample

end
foreach Atom A in M do

Construct a classifier CA
foreach Surface S in the training set do

Find the set of samples Ppos nearest to A in S
Randomly pick an equal number of points
Pneg on the rest of S
Classify Ppos as positive examples, Pneg as
negative
Add both sets to CA

end

end

Atomic distance measurement
As discussed below, our algorithm uses structural knowl-
edge about the moiety as a guide for combining atomic
surface predictions. Specifically, to combine a prediction
for atom A with a prediction for atom B, it needs to know
the allowable range of distances that A and B can be from
one another with respect to the moiety that contains them
both; it would make no sense to combine predicted loca-
tions for both atoms that were either too close or too far
from one another to be physically plausible.

Thus the final aspect of training for a moiety, separate
from building the per-atom classifiers themselves, is the
computation of all-pair distances between atoms in that
moiety. Our algorithm does this by finding the minimum
and maximum bound for the distance between each pair
of atoms in all ligands encountered during training.

For rigid structures, the bounds for these distances will
be quite tight, as any two atoms will appear at similar
distances from one another across the corpus. But for flex-
ible moieties, this process accounts for their structural
flexibility (see Figure 5).

The computational time taken in this step is negligible.

Performing classification
To predict where a target ligand might bind a query
protein surface, the per-atom classifiers created in the
previous section are combined. The process works in a
fine-to-coarse fashion: For each sample of the query sur-
face, each of the atom classifiers are applied to determine
the potential binding locations for each atom in the moe-
ity. These predictions are then combined to find places
where the atoms of the moeity may bind in an appropri-
ate relative position. Refer to Algorithm 3 for a description
and Figure 6 for a visual depiction of this process. The
approach is detailed in the subsections below.

A

A

Begin with training corpus of 
proteins that bind moiety M 

For Each 
Atom A in M

Step 1: Identify all points near 
 atom A in all training examples 

Step 2: Using all samples, learn 
 the microenvironment of A 

A A
A

Feature Space

Classifier for A

Training a Classifier for Atom A

Figure 4 A visual depiction of Algorithm 2, for training a classifier to recognize the environment surrounding a specific atom, given a
corpus of examples of that atom’s binding.
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D1

D2

Figure 5 Shown here are two possible conformations for Adenosine Triphosphate (ATP). Note that the distances between atoms within the
rigid adenine moiety do not change. Distances between non-rigid components, such as those between the ‘C8’ and ‘O3A’ atoms, may change
dramatically. As these will be used later to combine atomic predictions, the observed minimum and maximum distances between each pair of
atoms are stored during the training phase.

Algorithm 3. Overview of the moiety-prediction
process: using trained classifiers to predict the pres-
ence and location of a moiety on the surface of a
molecule
Input: Trained classifiers for a moiety M, and a test sur-
face X
Output: For each sample on X, the probability that M
binds to that sample

Sample the entire surface
Build out feature vector for each sample
foreach Atom A in M do

Cull samples according to the statistics of A to speed
up prediction foreach Sample S in culled set do

Using CA , predict the probability of A
binding at S

end

end
Combine atom-binding probabilities PA(X) into moiety-
binding prediction PM(X)

Reducing sample count
As was noted above, a full set of samples is used in
the training phase. This is done because during training,
nothing is yet known about the statistics of the surface
features, so there is not yet enough information to deter-
mine which features are important for discrimination and
which are not. Therefore, the learning algorithm cannot
identify ‘redundant’ points — those which are both physi-
cally adjacent on the surface and also close in feature space
along the features which matter. This redundancy slows
the training process, as more points must be considered.

To improve the speed of moeity prediction, we reduce
the number of sample points considered by grouping them
into clusters. We have developed a fast sample-grouping
algorithm to perform this reduction, which is described in
Algorithm 4, and depicted in Figure 7.

Algorithm 4. A greedy algorithm for grouping sam-
ples on the surface according to feature distance
Input: A set of samples Sin on surface X
output: A non-redundant set of discs Dout

Set initial disc size to R = 4 Å, distance threshold T = .5
while R ≥ .5 Å do

DiscSet = []
foreach Sample S in Sin do

Build disc D of radius R centered at S
If All samples in D are in Sin then

Compute the average Feature
Distance (AvgFD) between samples
in D
if AvgFD < T then

Add [D, AvgFD] to DiscSet
end

end
end
Sort DiscSet by AvgFD (increasing)
foreach [D, AvgFD] in DiscSet do

if All samples in D are in Sin then
Add D to Dout
Remove all samples in D from Sin

end
end

end
repeat

foreach Sample S in Sin do
foreach Disc D in Dout

if S neighbors D and AvgFD between
S and D < T then

Add S to D
end

end
end

until A sample S has been added to a disc D;
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Figure 6 Prediction Phase: combining atom surface functions to predict a ligand.

The algorithm is designed to repeatedly find the largest
possible disc (less than 4 Å in radius) such that all sam-
ples in this disc have an average feature distance less than
some threshold T (in this case .5, or equivalent to half of
the standard deviation over the corpus) from one another.
When no more discs of a particular size can be found, the
search begins again with a smaller disc, and repeats down
to a radius of .5 Å. Finally, since some samples were not
assigned, those are merged into any neighboring discs if
the feature distance between that sample and the sample
in the center of the disc is less than T.

Note that because each atom in a moiety has a slightly
different microenvironment, each atom has a different set
of ‘important’ features. We define important features to be

those that, over the training set, have less variance than
background, which, because each feature is normalized,
equals 1. It is only these features that are used in the dis-
tance computation. Thus, this algorithm is run for every
atom, and every atom gets its own set of non-redundant
samples.

By grouping similar samples and culling all but one
representative sample for each group, this algorithm sig-
nificantly reduces the number of samples on the surface,
usually anywhere from 5x to 20x, depending on overall
sample similarity. This has a significant impact on predic-
tion speed, as described below. Note that grouping sam-
ples in this way could result in an overestimation of the
distance between samples. Our algorithm compensates
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Figure 7 An illustration (in 2D) of how our method for grouping samples on the 3D surface works. In this illustration, each circle represents a
sample; samples having similar values in feature space are given the same color. The algorithm proceeds as follows: starting with a radius R, identify
discs of radius R that have minimum average distance (in feature space) between elements in the disc. Replace the best non-overlapping discs with
the sample in the center of each disc. Repeat, each time reducing the size of the disc. When complete, there will still be samples not contained in a
disc. Merge those into neighboring discs if their distance from the center sample is less than a threshold T. The resulting center samples are used for
surface prediction. In all results, R = 4Å and T = .25.

for this effect during each range search by relaxing the
inter-atom distance constraints by the radius of the patch.

Predicting for an atom
In our algorithm, predicting the location of a moiety
begins with predicting the location of each atom in that
moiety. In this phase, each atom classifier is run over the
non-redundant samples produced for that atom on the
test surface. For each sample, the classifier produces a
probability that the atom on which it was trained binds to
that sample.

For a surface X, the end result is a function over the sam-
ples on X, PA(X), indicating the likelihood that an atom A
would bind at each sample. This is Step 1 in Figure 6.

Predicting moeties:combining atom predictions
Once a set of probability functions PA(X) have been com-
puted over the set of samples, with one function for each
atom A in moiety M, the next step is to combine these
predictions into a single function predicting the likeli-
hood that M binds at each sample, which will be called
PM(X). Note that since the culled set of samples is differ-
ent for each atom, PM(X) will be over the complete (i.e.
non-culled) set of samples.

As shown in Step 2 of Figure 6, as an intermediate step
toward this goal, the algorithm first computes for each
atom A, PCA(X) : the probability that A binds to each sam-
ple S in X, given the probabilities computed for all other
atoms in M. In this step, the distance information that was

computed above is used when combining the probability
functions for two atoms.

To recap: in a given ligand, any two atoms A and B
only appear within a specific range of distances from
one another. Therefore, if A has a high probability of
binding to surface X at a point S, then we can fur-
ther confirm the legitimacy of that prediction by seeing
if there is a similarly high probability of B binding to X
within the correct distance. Thus, PCA(X) refers to the
probability of A binding at each sample confirmed by all
other probability functions. This is described in detail in
Algorithm 5.

Algorithm 5. Algorithm for combining a set of prob-
ability functions PA(X), which indicate the likelihood
of an atom A binding at samples on surface X, into
set of probability functions PCA(X), which indicate the
likelihood of A binding at each sample confirmed by all
other probability functions
Input:Probability functions PA(X), one for each atom A in
moiety M
Output:Combined probability function PCA(X), one per
atom
Let D =[ min(A, B)...max(A, B)] represent the range of
allowable distance from atoms A to B
foreach Atom A in M do

PCA(X) = PA(X) foreach Sample S in PA(X) do
foreach PB(X) where B �= A do
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Find all samples SB in PB(X) within
D of S
Add average probability over these
samples to PCA(X)[ S]

end
end
PCA(X)/ = |M|

end

Note that in merging individual probabilities PA(X) into
conditional probabilities PCA(X), neighboring probability
functions are averaged within the allowed distance win-
dow. This was chosen instead of using the ‘maximum’
neighboring probability so that spurious high probability
scores do not have undue influence on the final condi-
tional result.

Finally, as shown in Step 3 in Figure 6, all PCA(X) are
merged into a final PM(X) by taking the maximum prob-
ability over all PCA(X). The intuition here is that false
positives have already been accounted for by the previous
step, so each PCA(X) should contain a good prediction
of the binding location of A within moiety M. Therefore,
merging these predictions will produce a final prediction
of the locations where M will bind.

Predicting ligands: merging moiety predictions
For those ligands that have been broken into multiple moi-
eties, we now have multiple predictions PM(X) over the
surface for the locations of moieties. In many proteins,
only a subset of the moieties may bind to the surface of
the protein, with the rest floating off the surface. Fur-
ther that subset is not consistent: ATP, for instance, has
three moieties, and within its training corpus, all possi-
ble combinations of these three moieties are bound to the
surface.

The prediction that any one moiety binds, therefore,
may be enough to predict ligand binding. We adopt a
heuristic for merging moieties that simply returns back
the highest probability over all moiety predictions as
the final probability. In other words, for each sample
S, P(X)[ S] = maxM∈L PM(X)[ S]. This method is robust
against partial matches, as described above, but as a con-
sequence is likely to confuse ligands that share many
similar moieties (ADP and ATP, for instance). We consider
this limitation in the discussion.

Results and discussion
Results
In this section, we describe a series of experiments
designed to show the viability of our approach. All exper-
iments involve predicting binding sites given a query pro-
tein and a target ligand for which the method has been
trained. Our method considers the entire surface of the

query protein: it identifies regions on which there is a
high enough probability that they may be a binding site.
After the surface mesh and descriptors are computed, our
method does not consider the atomic coordinates inside
the mesh: it relies solely on the geometric and physical
properties encoded by the descriptor mesh.

The results of our methods are a probability for each
surface point on the query protein. These results are most
effectively used by visual inspection, to identify interesting
regions of the query molecule, such as shown in Figures 1
and 2. However, in order to validate the quality of these
results, we have performed a series of experiments that
provide quantitative results for benchmark problems.

To evaluate predictive performance quantitatively, our
tests consider proteins with known binding pockets
where the PDB structure includes the ligand. Quantitative
assessment of performance requires determining the per-
centage of the surface points correctly identified as being
part of the binding interface. As our method produces
a probability, such a binary grading requires the choice
of a threshold to balance false negatives and false pos-
itives. Rather than selecting arbitrary values, we assess
performance by analyzing precision-recall and receiver
operating characteristic (ROC) curves.

Quantitative assessment also requires a definition of
which points are considered as part of the interface. We
consider a point to be part of an interface (e.g. a true pos-
itive) if it is within 1.6Å of the surface of any atom in
the ligand of interest which binds to that surface. This
probably under-states our results, as the actual interface
is most likely larger in area because the crystal structure
only shows one possible position of the ligand. A success-
ful result not only requires that the trained ligand binds
the query protein, but that the interface region is correctly
localized.

As discussed in the Background, there are many suc-
cessful approaches for protein-ligand binding prediction.
Our approach is different in that it attempts not only
to predict that the query protein will bind the ligand of
interest, but also to determine the surface region where
this interaction is likely to occur. Also, we reiterate that
most of the prior successful approaches have restrictions
(described in the Background) that our approach does
not. For example, our approach does not require topolog-
ically spherical pockets. For these reasons, it is difficult
to compare our approach with the prior art. The previ-
ous methods are effectively specialized to the problems
they address, and we would expect them to provide better
performance than an approach such as ours that does not
have their restrictions and uses more limited information.

In this section, we describe a series of experiments
where we apply our approach to the problems addressed
by prior methods. We have chosen problems for which
prior approaches to binding prediction perform well, so
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that we know the test cases are tractable. While we would
not expect our method to be competitive with more spe-
cialized approaches, our goal is to show that it is possible
to identify and localize binding regions using our meth-
ods, despite the fact that they use more limited informa-
tion and accept less restrictive inputs and are expected to
precisely localize the interface. First, we identify calcium
ion binding sites to confirm our per-atom classification
technique. Second, we explore the impact of training set
size in this application. Third, we identify glucose binding
sites as glucose is a small and common enough ligand that
it can be treated as a single moeity in our method. Finally,
we conduct an experiment that considers four ligands to
assess the specificity achieved by our approach.

For experiments where we created the training sets,
we post-process the training sets found by our algo-
rithm by removing examples deemed homologous with
the testing set. For each experiment, we remove mem-
bers of the training set that were found to have more
than 30% sequence identity with the testing set. This post-
processing potentially damages the diversity achieved by
our sampling process as removing an example effec-
tively removes the representation of the entire cluster.
However, it may also improve performance by reducing
over-fitting.

Per-atom predictor test: calcium ion binding
The performance of the full algorithm is highly depen-
dent of the performance of individual atomic predictors.
Therefore, evaluating these predictors forms an impor-
tant first step toward validating the algorithm as a whole.
In this section, the atomic predictor is tested in isolation
on calcium ion binding. This choice was not arbitrary:
because this type of binding was used as a test subject for
FEATURE [45], it serves as a basis of comparison with the
predictor described here.

Atom prediction was tested on the 11 proteins that
formed FEATURE’s test corpus, listed in Table 2. Train-
ing was done using a corpus of proteins which bind to
calcium, selected by our algorithm. The training set was
post-processed to remove any example that was more then
30% homologous to any member of the testing set. We
randomly selected 100 proteins from the post-processed
set for training.

Our approach achieved 94% sensitivity at 85% speci-
ficity, or 85% sensitivity at 90% specificity. FEATURE
reported 91% sensitivity at 100% specificity, however,

these numbers may not be directly comparable because
we account for the precision of localization differently.
Our full results are given in Table 2, which provides the
area under the ROC curve for each test case. To help inter-
pret these numbers, three of the results are depicted in
Figure 1. Interpretation of these results is provided in the
discussion.

Testing the impact of training corpus size
In supervised learning tasks, proper training is essential
to achieving maximal prediction performance. Having too
many examples can result in a predictor that is at best
needlessly complicated, and at worst over-fit, thus sacri-
ficing generality. Having too few may also result in poor
performance: since we can only identify binding configu-
rations that look like something we have already seen, it
is essential that those areas of feature space be adequately
sampled.

To understand this tradeoff, we re-trained the calcium
predictor with variably sized subsets of the 100 protein
training corpus, with the subsets created by random selec-
tion. Results are shown in Figure 8. The results suggest
that after enough training examples are seen to prop-
erly account for binding variability, a point of diminishing
returns is reached quickly, and in fact too many examples
may lead to reduced performance (indicative of over-
fitting).

Small molecule test: glucose
We used our approach to identify glucose binding sites,
using the corpus of Nassif, et al. [47]. For this test, glucose
was not divided into moeities. We used their training set
for this experiment, not the results of our method. The
training set consisted of 29 proteins, and their testing set
comprised 14. Our methods averaged 86% sensitivity at
93% specificity. This is competitive with their approach,
which reported an average of 89% sensitivity with a 93%
specificity. Note that our method does not have a separate
feature selection step. When Nassif ’s does not use feature
selection, their performance drops to 76% sensitivity and
84% specificity.

We note that our approach had uneven performance
across the testing set. In particular, our approach showed
poor sensitivity on two of the examples (1Z8D and 2F2E,
at 17% and 26% respectively). As Nassif, et al. do not
provide per-example performance, we cannot compare
specific cases.

Table 2 Results from tests of the atomic predictor on finding the binding location of calcium ions

PDB Code 1ANX 1AYP 1CGV 1CLM 1OMD 3CLN 1SAC 2SCP 3ICB 3PAL 5CPV

ROC Area 0.92 0.57 1.00 0.94 0.95 0.97 0.96 0.97 0.96 0.98 0.97

Shown are the 11 proteins used as test cases by Altman et. al [45]. To test these, we first trained a predictor on 100 examples of calcium binding, then evaluated each
of the above protein surfaces using this predictor to generate an ROC curve for each test. The number below each PDB code is the area under its respective ROC curve.
1.0 indicates a perfect score, with all true positives found and no false positives. See Figure 1 for illustrations to help interpret these numbers.
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Figure 8 Shown here is the performance over all test cases of calcium binding (Table 2) as a function of the size of the training corpus.
Performance is measured by the area under the ROC graph produced by each example. On the top, each test case is shown as a separate line, each
with a different color. Note that while with only a few training examples, the correct pocket is found in most tests, a few harder test cases require more
training before they can be reliably predicted. On the bottom is the same data, but averaged, with error bars indicating 95% confidence intervals.

Ligand prediction test
To test the entire approach, we selected four ligands (ATP,
glucose, DHT and Heme), and created a test set with 10
proteins bound to each.

Here, the complete algorithm is tested, including the
moiety prediction steps described above. For this test,
four sets of 10 proteins were curated, chosen so that
each protein in a set binds to the same ligand, but dif-
ferently (as much as is possible) from all other proteins
in the set. Difference, in this case, was determined by

visually assessing the shape and electrostatic distribution
on the surface. The PDB codes for proteins in each
of these four sets are listed in Table 3. Training cor-
pora were gathered using Algorithm 1 described above.
A summary of the training corpora is given in Table 4,
which shows how each ligand was broken moieties,
the other ligands used to find these moieties, and the
number of training examples found for each moiety.
These sets were post-processed to cull proteins that with
more than 30% sequence identity to any member of the
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Table 3 Test Ligands and their training sets

Ligand Test Cases (PDB codes)

ATP 1A0I 1A82 1ASZ 1E8X 1FMW 1G5T 1GN8 1JWA 1XEX 2BUP

GLC 1AC0 3ACG 1FAE 1GWM 1H5V 1J0K 1JLX 1K9I 2J0Y 2ZX3

DHT 1AFS 1DHT 1I37 1I38 1KDK 2PIO 2PIP 3KLM 3L3X 3L3Z

HEM 1AOQ 1B0B 1CC5 1D0C 1DLY 1EW0 1SOX 1MZ4 2HBG 2Z6F

testing set, leading to training sets with between 22 and
318 proteins.

Figure 9 shows a confusion matrix over all test sets.
Here, all 40 test proteins are tested against the four predic-
tors; the value in each cell is the area under the resulting
precision/recall (PR) curve. Note that, unlike the above
tests, we do not use ROC area. The reason: because
the ratio of positive (binding) samples to negative (non-
binding) samples varied widely with both the size of the
ligand and the size of the protein (and was generally quite
low), ROC area did not allow for intuitive comparison

between test cases. Precision/recall curves better account
for this disparity. Select examples are shown in Figure 2
that convey a sense of how the numbers relate to the
detailed results.

Figure 9a shows the results of our method. DHT and
HEM are predicted well, although they are often confused.
ATP shows more mixed results: though the actual binding
site did appear in areas of the highest probabilities on the
surface, so did other sites that should not have. The test
performed poorly on glucose, although the experiment of
the previous section showed good performance on differ-
ent training and testing sets. These results are considered
in the discussion.

Descriptor components
To understand the utility of different aspects of the
descriptor, two additional experiments used the structure
of the previous four ligand test. The first used only the
smallest scales in order to show the importance of the
“multi-scale” aspect of our descriptor. The second used

Table 4 Listed are the ligands to be used as test cases, the moieties they contain, the ligands found during training which
match each moiety, and the total number of proteins used as training examples after post-process culling

Ligand Moiety Training Examples #

ATP Phosphate Chain ATP, 5FA, CH1, CSG, CTP, D3T, 36

(PA O1A O2A O3A PB O1B DCT, DGT, DTP, GTP, TTP

O2B O3B PG O2G O1G O3G) . . .

Ribose ATP, 5GP, ACP, ADN, ADP, AMP, 299

(C1’ C2’ C3’ C4’ O2’ O3’ O4’) ANP, AP0, APC, ATG, C5P, FAD,

GDP, GNP, GTP, NAD, NAP, NDP,

RIB, SAH, SAM, SSA, UDP, ADP,

. . .

Adenine ATP, ACO, ACP, ADP, AMP, ANP, 265

(C2 C4 C5 C6 C8 N1 N3 N6 N7 N9) ATG, CMP, COA, FAD, NAD, NAP,

NDP, SAH, SAM, . . .

Glucose Glucose GLC 85

HEM oxygenated end HEM, DHE, FDE, FDD, HAS, HCO, 316

(O1A O2A CGA CBA CAA C2A HDD, HEA, HEB, HEC, HEV, HFM,

CMA C3A C1A CHA C4A NA CHB) HIF, VEA, VER, . . .

non-oxygenated end (1) HEM, HDD, HDM, HEA, HEB, 318

(CHB C1B NB CMB C2B C4B HEC, HFM, HKL, . . .

CHC C3B CAB CBB)

non-oxygenated end (2) HEM, HDD, HDM, HEA, HEB, 318

(CHD C4C NC CAC C3C C1C HEC, HFM, HKL, . . .

CHC C2C CBC CMC)

DHT (O3 C1-10 C19) DHT, AE2, AND, C0R, CLR, CPQ, 40

DXC, FFA, HC2, HCY, STR, TES . . .

(O17 C8 C9 C11-18) DHT, AE2, AND, ASD, EST, FFA, 22

TES, WZA . . .
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Figure 9 Shown here are three confusion matrices, thetop (a) tested using the full feature vector description (listed in Table 1), the middle
(b) using only the most local features, and the bottom (c) using only geometric features. Each row represents the tests for a ligand classifier
run on all test cases. Each column represents an individual testing example, grouped by the ligand the protein is known to bind to. The value in the
cell is the area underneath the precision/recall curve produced from that test. A higher value indicates a better match. Green cells indicate true
positive results: the predictor found the ligand it was trained for. Purple cells indicate false negatives: the ligand failed to find the ligand it was trained
for. Red cells indicate false positives: the predictor found the site of a different ligand. See Figure 2 for illustrations to help interpret these numbers.

only the geometric features of our descriptor, to show the
importance of considering other types of features. The
results as included in Figure 9.

Figure 9b shows the results of only using the smallest
scale features. The absence of more global information
makes distinguishing DHT and HEM more challenging,
but actually improves performance on some cases with
small ligands as the larger scale features are simply too big.
Improvements suggested by these results will be consid-
ered in the discussion.

Figure 9c shows the results using only geometric fea-
tures, such as curvature and anisotropy. In all cases the
results are poor: for DHT and HEM the predictor can-
not distinguish between different ligands, and for ATP and
GLC the predictor does not identify anything as a prob-
able binding site. This result confirms the need for using
features beyond local geometry in surface comparison.

Run-times
The time needed to build samples is dominated by three
steps: surface tessellation (MSMS), computing electro-

static potential (APBS), and multi-scale shape descrip-
tion. On a 2.8Ghz Core I5 computer with 4gb of RAM,
the total time needed to build samples was found to take
from 15 seconds for a small protein (1B7V - 70 residues)
to 3 minutes for a large protein (1N1H - 1260 residues).
The APBS step often dominated, taking well over half the
total time. Simpler electrostatics methods may produce
adequate results at lower runtime cost, but this was not
tested.

Samples, once built, are cached for future use. Each clas-
sifier is also serialized and saved to disc, allowing it to be
reused. This task, however, is well suited for a distributed
approach: surfaces can be independently computed, so
each one (or a bundle of them) could be sent out to a
separate computer.

Classification performance is highly dependent on both
the number of atoms in the training moiety, as well as the
size of the protein. Sampling density stays fixed as size is
increased; therefore, the number of samples grows linearly
with the overall surface area of the geometrical surface of
a protein.
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Having a large number of surface samples becomes
especially problematic during the surface-combination
phase, shown in step 2 of Figure 6. This step requires n2

surface function combinations, where n is the number of
atoms in the moiety. Each combination requires iterating
over every point on one surface and comparing it to a
small set of points on another. It is easy to show that the
size of this set is a function of both the areal sampling den-
sity and the radius of the search. The former is fixed, and
the latter is constrained by the physical size of the moiety.

For performance reasons, the surfaces for two atoms
that are more than 15Å apart are not combined. Thus the
overall time to to combine two surfaces is proportional
to the number of samples times the search time. Our
implementation uses the Approximate Nearest Neighbor
library [66], to accelerate this search process: finding k
points out of n samples with this library takes O(k ·log(n)).
Therefore, combining two surfaces is an O(n·log(n)) oper-
ation (because k is fixed), and combining all surfaces is
O(n2 · log(n)).

Surface grouping, therefore, is essential to making the
algorithm run fast; with an average 10-fold reduction in
the number of samples comes an over 100-fold reduction
in run-time. On the system described above, this reduces
the time to classify a mid-sized protein from over an hour
to less than a minute. In the final algorithm, grouping usu-
ally accounts for about one-third of the total classification
time; thus, the resulting speedup more than compensates
for its cost. Besides the cost of classifying large numbers
of samples, the time it takes to classify a given sample
using Weka’s LibSVM classifier increases as the number of
samples in the training corpus grows.

Discussion
We feel that the results described in the prior section show
the promise of our descriptor-based approach. While the
ligand localization experiments may not require the gen-
erality of our method, they indicate that the premise of
the approach is correct: it is possible to perform function
prediction based on functional surface region matching
alone; internal structure and global geometry may not
be required for matching. The experiments also suggest
future improvements to the methods that should improve
performance, and make the method viable for a range of
applications where generality is useful.

The quantitative metrics we have used to evaluate
our approach are problematic. They do not distinguish
between the ability to identify that a protein binds a ligand
from localizing the interface. They also consider the local-
ization of the interface in a naı̈ve manner that assumes
the ligand is stuck in the position frozen in the crystal
structure, rather than acknowledging that it more likely
moves around within its binding pocket. The quantitative
results described in this paper most likely under-state the

quality of the results. Even with that caveat, the quanti-
tative results on the ligand localization show encouraging
success, but also failures that indicate room for future
development.

The results of the calcium ion binding experiment are
generally successful. In all but one test, our approach is
able to localize the binding site well. Interestingly, as many
of these sites are on the “outside” of the protein, it is
unclear whether pocket-based methods would be as suc-
cessful. The one failure case in the test (1AYP, shown in
the right of Figure 1 and the lowest line in Figure 8a) is a
protein unlike any of the 100 others in the training set as it
has a positive electrostatic charge over most of its surface
(Figure 10). This failure underscores the importance of
finding a training set that adequately covers the potential
interfaces. Our sampling procedure was designed to find
such sets, but relevant examples may have been removed
when we randomly reduced the training set size. Also,
the sampling process relies on the availability of examples
in the PDB and on clustering obtained by BLASTCLUST
that considers sequence homology, not functional surface
diversity.

The results of the training set size experiment show the
tradeoffs in training set size. Enough examples are neces-
sary to cover the different ways the surface may bind, but
too many examples can be counterproductive as they cre-
ate over-fitting. We suspect that better ways of controlling
training set size while insuring coverage, for example by
using fewer clusters to sample from in the set-selection
algorithm, would achieve such behavior.

For the glucose binding experiment, our approach
achieves similar results to the method of Nassif, et al.
[47]. Curiously, we did not achieve such good results on

Figure 10 This image shows the charge (indicated by color,
range from dark red (very negative) to dark blue (very positive)
of protein 1AYP as computed by APBS. This charge pattern is quite
different than any of the others seen in the training set.
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glucose as part of our larger experiment. The poor perfor-
mance on glucose seems to stem from its small size. The
atomic-predictors are not expected to reliably discrimi-
nate between the putative binding of a single atom and
its binding with respect to the ligand. Thus, when looking
at the probability of a single atom’s binding, there appear
to be many false positives. Combining these predictions
using the structural information contained in the moiety
removes these false positives. But small ligands, like glu-
cose, offer fewer atoms to combine. With larger ligands,
the combination approach appears more successful.

The small size of glucose may also contribute to the
(relatively) poor performance of the individual atom pre-
dictors. The small size of the molecule makes larger scale
features inappropriate as they may extend beyond the
interface to irrelevant parts of the surface. More gener-
ally, our approach relies on being able to adapt to apply
the subset of features that are important for specific sit-
uations. If the user has some prior knowledge about the
features that might be appropriate, that can be used to
guide the method. Examples may include limiting the
scales for smaller ligands or using experimental knowl-
edge that electrostatics may be particularly important in
binding a charged ligand to suggest emphasizing charge
features. However, we believe that a better solution would
be to employ explicit feature selection, such as used by
Nassif et al. [47], that could potentially adapt the feature
set based on which ones are likely to be relevant in a given
application.

At present, we consider our implementation to be too
slow for practical application. Scalability is a concern.
However, we believe that these may be addressed by an
improved implementation, more intelligent sampling of
the surfaces, and applying grouping more widely.

Comparison with prior approaches
Functional surface descriptor matching offers the poten-
tial to provide a mechanism for function prediction that
offers many advantages as described in the Background of
this paper. This generality is not necessary for many small
molecule binding prediction problems. Existing meth-
ods have shown good performance for predicting small
molecule binding sites in cases where the pockets are
enclosed and the ligands are relatively rigid. We assess
our approach on such cases because the prior art provides
benchmarks.

Our approach can find regions of the functional sur-
face that can serve as a potential binding site because
it has the appropriate physical and chemical properties.
This can serve a similar role as a method that deter-
mines if an identifiable enclosed pocket is likely to be
a binding site for a ligand. Methods specialized to ana-
lyzing identified pockets can achieve good performance.
While we would not expect our approach to perform as

well as more specialized approaches, we look at the fact
our approach achieves comparable results as evidence that
function prediction is possible based on functional surface
region matching alone: that internal structure and global
geometry may not be required for matching.

We also stress that our quantitative results are not
directly comparable to prior methods as they measure
different properties. Our method does not group surface
regions into pockets, and our quantification of results
includes localization of the binding surface regions. With
that caveat, we make some coarse comparisons here to
relate our results to those achieved by more specialized,
prior methods. While there are many approaches for char-
acterizing and predicting small ligand binding sites, we
choose a few representative recent examples here.

Our calcium and glucose binding experiments use the
same testing sets as the works of Wei and Altman [45] and
Nassif et al. [47] respectively. In both cases, the authors
show that they can achieve excellent performance with
specialized methods (the former requires spherical shells,
while the latter requires small enough targets that a sin-
gle descriptor can capture the entire binding pocket). Our
approach is successful on almost of all their examples,
though with a much more general approach.

Kahraman and Thorton [29] describe a method for
assessing the similarity of binding pockets based on a
comparison of the spherical-harmonics decomposition of
each pocket. The authors use this descriptor to test a
diverse set of binding pockets, including those for ATP,
Androgen (similar to DHT), HEM and glucose.

Their primary conclusion is that the shape of the bind-
ing pockets for a given ligand varies more than the shape
of the ligand itself. This means that the shape variation of a
pocket is greater than can be accounted for by ligand flex-
ibility, and thus complementarity is neither necessary nor
sufficient for predicting ligand binding.

To support this conclusion, they show that, using a
spherical-harmonic description of the pocket, the shape
of ATP, AMP and steroid pockets are easily confused
with one another. Glucose pockets, on the other hand,
are not often confused with anything but phosphate, thus
indicating that size does matter for pocket comparison.
In contrast, our method does not use global measure-
ments or descriptors of the pocket, making it applicable in
applications where the target interface is not an enclosed
region. However, in cases where global descriptions of
shape are available and adequate, our approach does not
perform as well. For example, our method confuses DHT
and HEM, though their method suggests that the shape of
HEM pockets is unlike that of any other pocket.

The method recently introduced by Chikhi and Kihara
[67] is designed to allow for extremely quick lookup of
protein structures, using a query structure as a tem-
plate. Their method requires a few minutes per protein of
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preparation time to build the surface, identify pockets and
compute 3D Zernike moments. But after preprocessing,
they claim that their database can return back the results
of a query against hundreds of proteins in a few seconds.
So while the preprocessing cost for a single protein in their
method is comparable to ours, theirs is several orders of
magnitude faster for search.

The matching process of Chikhi and Kihara [67] com-
bines the Zernike moments with other global measure-
ments of pocket shape to achieve excellent performance
at identifying pockets for ligands when these sites are
amenable to such global description. They evaluate the
percentage of queries in which the searched-for pocket is
returned back as the top result or is in the top 3 results.
They test on several datasets, including the Kahraman set
[29], which contains three of the same ligands as ours:
ATP, GLC and HEM. For these, on average, their method
(using both pocket shape/size and electrostatic poten-
tial) finds the correct pocket on the first try 57%, 40%
and 50% of the time, respectively. When expanding to
the top three picks, their method improves to 92%, 100%
and 86%.

Unfortunately, the statistics they provide for their
results are not easily comparable to those presented here.
Because our method is not pocket-centric, it is not pos-
sible to account for results in the same way. For example,
in Figure 2 f and h, our approach correctly identifies the
pocket, but get low scores because they fail to confidently
and precisely localize the binding interface within this
pocket. To make a crude comparison with pocket centric
metrics, we can consider their “top-1” cases to be highly
confident success, and the “top-3” cases to be confident
success at identifying the ligand pocket. Similarly we can
say our method successfully finds a pocket when there are
true positives found at the given confidence level. For a
high confidence (85%), the identified region contains the
target ligand 82%, 71% and 97% of the time (for ATP, GLC,
and HEM respectively) For an extremely high confidence
value (95%), the identified region contains the ligand 60%,
55% and 83% of the time.

Again, we would not expect our method to provide
the performance of more specialized methods. However,
our method’s performance on problems for which bench-
marks are available suggest that it is a viable approach.
With the performance improvements suggested above,
including feature selection and improved training set
generation, we expect that the local functional descrip-
tor approach will be valuable in applications where the
specialized approaches are not appropriate. We are par-
ticularly interested in exploring the application of our
approach to interfaces between proteins, or between pro-
teins and other macromolecules. In such applications, the
interfaces are not enclosed pockets, so pocket specialized
approaches cannot be readily applied.

Conclusions
In this paper, we have introduced a new descriptor for
protein functional surfaces, and demonstrated it in iden-
tifying ligand binding interfaces. The descriptor captures
the local geometric, chemical, and physical properties
of the functional surface, independently of the internal
configurations of the atoms that create these fields. Our
initial applications of these descriptors show that they
can serve in binding prediction tasks, despite only cap-
turing functional surface properties. In the future, we
expect to develop more sophisticated algorithms that will
employ these descriptors to provide better performance
on a range of recognition prediction applications.

Endnote
aBy shape, we take the standard meaning of the space
from which other molecules are excluded from the pro-
tein. Abstractly, the spatial arrangements of other physical
properties are also “shape,” however, we reserve the term
for its common usage.
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