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Editorial on the Research Topic

Fabrication of in - vitro 3D human tissue models - from cell processing

to advanced manufacturing

Over the years, the field of toxicology testing has pivoted from the use of animal

models to 2D human cell cultures and finally the adaptation of in-vitro 3D human

testing models. It is important that these in-vitro 3D human testing models predicts

the human responses in an accurate and reliable manner (Nam et al., 2015; Ng and

Yeong, 2019). This is largely driven by the significant discrepancies between adverse

effects of chemicals in humans and animals (Lilienblum et al., 2008). The use of

animal models has several caveats which include the differences in the absorption or

distribution of the chemicals/substances; the way the substances are metabolized and

the short duration of animal lifespan to accurately monitor disease development.

Similarly, conventional 2D cell culture is unable to adequately recapitulate the in vivo

cell-cell and cell-matrix interactions found in native three-dimensional (3D) tissues

and it has been reported that numerous types of cells have expressed different

phenotypes and genomic profiles in 2D versus 3D cell culture (Duval et al., 2017;

Jensen and Teng, 2020).

Hence, in-vitro 3D human tissue models would bring about the necessary

complexity that may improve the reliability and accuracy of test outcomes. Some

of the fabricated in-vitro 3D human tissue models for various testing applications

include skin tissue models (Ng et al., 2018; Liu et al., 2020; Zhang et al., 2021), alveolar

lung tissue models (Klein et al., 2013; Costa et al., 2019; Ng et al., 2021) and liver tissue
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models (Lee et al., 2015; Skardal et al., 2015; Hiller et al., 2018).

However, there are some challenges faced in translating this to

widespread use. Successful production of in-vitro tissue

models is dependent on two critical aspects–ability to carry

out large-scale manufacturing of cells (growing cells in vast

quantities within a homogeneous physical and chemical

environment) (Jordan et al., 2018; He et al., 2019; Chen

et al., 2022) and advanced manufacturing platforms

(highly-automated fabrication of in-vitro tissue models with

high throughput rates and repeatability) (Ozbolat and

Hospodiuk, 2016; Ng et al., 2019; Zhuang et al., 2019; Ng

et al., 2020a; Ng et al., 2020b; Li et al., 2020; Ng et al., 2022;

Suntornnond et al., 2022).

The goal of this Research Topic is to focus on the recent

developments in cell processing techniques and advanced

manufacturing approaches which include the current state-of-

the-arts, recent developments and major accomplishments,

future challenges, and directions towards fabrication of 3D in-

vitro human tissue models, specifically in large-scale cell

manufacturing and advanced manufacturing platforms.

There is a total of 6 published articles in this Research

Topic: 2 review papers and 4 original research papers. One of

the review papers is on large-scale cell manufacturing and it

introduced a new multiple-use aseptic connector that can act as

potential replacement for two main types of commonly-used

devices for small volume fluid transfers (single-use sterile

connectors and tube welders) in cell therapy manufacturing.

The review paper highlighted that multiple-use aseptic

connector can fulfil the unmet need for a sterile connector

suitable for small volume fluid transfers and reduce the

footprint, complexity and cost of culture systems (Wu et al.).

The next review paper is on advanced manufacturing platforms and

it discussed how the emergence and development of smart

metamaterial, advanced optimization algorithm and advanced

manufacturing technique have resulted in a paradigm shift in the

design, fabrication and characterization of bone scaffolds (Huo et al.

). The review paper provided detailed information on the design of

microstructure of the bone scaffold, application of metamaterial in

the design of bone scaffolds and optimization of the microstructure

in bone scaffolds, the advancedmanufacturing of bone scaffolds and

lastly the various techniques used for evaluating the performance of

bone scaffolds.

Next, the 4 original research papers are related to the advanced

manufacturing platforms. One of the original research papers

reported a versatile cell-friendly photopolymerization approach

that facilitated single-step fabrication of hollow-core and solid-

core hydrogel fibres loaded with living cells (Savelyev et al.). The

approach was implemented by extruding cell-laden hyaluronic

acid glycidyl methacrylate hydrogel directly into an aqueous

solution containing free radicals generated by continuous blue

light photo-excitation of the flavin mononucleotide/

triethanolamine photo-initiator to induce diffusion-limited

photo-fabrication. The next original research paper reported the

fabrication of affordable, flexible and highly-reproducible 3D

bioprinted colorectal cancer model (Sbirkov et al.). The

fabricated 3D colorectal cancer models exhibited greater

pathomorphological resemblance to tumours and increased

overall resistance to commonly used chemotherapeutics as

compared to 2D cell cultures. Hence, the study has reported a

novel accessible 3D tissue model platform for disease modelling

and drug testing. Another original research paper demonstrated

the potential of micro-vascularized skin-on-a-chip tissue

equivalents for systematic delivery of therapeutics (Jones et al.).

The novel vascularized skin-on-a-chip model consisted of human-

derived primary and immortalized cells (pericyte co-cultures); the

results indicated that vascularization enhanced the stratification

and differentiation of the epidermis to form matured skin

equivalents in microfluidic chips. The last original research

paper demonstrated the fabrication of personalized 3D-printed

bioresorbable airway external splint for sever tracheomalacia (Yu

et al.). The study evaluated the performance of 3D-printed

bioresorbable airway external splint on nine different young

patients with severe tracheomalacia and the results showed that

the 3D printed splint not only limited the external compression

and prevented airway collapse but also ensured the growth

potential of the airway, making it a safe, reliable, and effective

treatment for congenital heart disease patients with

tracheomalacia.

Numerous studies have shown that the use of conventional

2D cell culture is unable to adequately recapitulate important in-

vivo cell-cell and cell-matrix interactions and numerous cell types

have expressed different phenotypes and genomic profiles in 2D

versus 3D cell culture (Breslin and O’Driscoll, 2013; Ng et al.,

2016; Laschke and Menger, 2017). The combination of advanced

cell processing approaches and 3D bioprinting technology is

critical for highly-reproducible automated fabrication of 3D

human tissue models for various testing applications. We

anticipate that insights and perspectives from this Research

Topic would encourage the use of biomimetic 3D human

tissue models for various drug/chemical testing applications to

improve the prediction of human responses in an accurate and

reliable manner.
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