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ABSTRACT Mosquito larvae encounter diverse assemblages of bacteria (i.e., “micro-
biota”) and fungi in the aquatic environments that they develop in. However, while
a number of studies have addressed the diversity and function of microbiota in mos-
quito life history, relatively little is known about mosquito-fungus interactions out-
side several key fungal entomopathogens. In this study, we used high-throughput
sequencing of internal transcribed spacer 2 (ITS2) metabarcode markers to provide
the first simultaneous characterization of the fungal communities in field-collected
Aedes albopictus larvae and their associated aquatic environments. Our results reveal
unprecedented variation in fungal communities among adjacent but discrete larval
breeding habitats. Our results also reveal a distinct fungal community assembly in
the mosquito gut versus other tissues, with gut-associated fungal communities being
most similar to those present in the environment where larvae feed. Altogether, our
results identify the environment as the dominant factor shaping the fungal commu-
nity associated with mosquito larvae, with no evidence of environmental filtering by
the gut. These results also identify mosquito feeding behavior and fungal mode of
nutrition as potential drivers of tissue-specific fungal community assembly after envi-
ronmental acquisition.

IMPORTANCE The Asian tiger mosquito, Aedes albopictus, is the dominant mosquito
species in the United States and an important vector of arboviruses of major public
health concern. One aspect of mosquito control to curb mosquito-borne diseases
has been the use of biological control agents such as fungal entomopathogens.
Recent studies also demonstrate the impact of mosquito-associated microbial com-
munities on various mosquito traits, including vector competence. However, while
much research attention has been dedicated to understanding the diversity and
function of mosquito-associated bacterial communities, relatively little is known
about mosquito-associated fungal communities. A better understanding of the fac-
tors that drive fungal community diversity and assembly in mosquitoes will be
essential for future efforts to target mosquito-associated bacteria and fungi for mos-
quito and mosquito-borne disease control.

KEYWORDS fungal community, microbiota, Aedes albopictus, insect, gut, diversity,
mycobiota

Mosquito larvae and adults continuously encounter diverse microorganisms in their
aquatic and terrestrial environments (1–3). These microorganisms include bacteria

and fungi, which assemble into bacterial and fungal communities (defined as collections
of species occurring together in the same place at the same time [4, 5]) that can be recov-
ered from the gut using culture-dependent and culture-independent methods. The bac-
terial communities associated with mosquito larvae are environmentally acquired from
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the larval breeding water through feeding (6–9) and form largely transient associations
with mosquito larvae (10, 11). Nevertheless, the mosquito gut bacterial communities play
a profound role in the growth and development of larvae as well as adult survival, fecun-
dity, and mosquito-borne transmission of disease-causing pathogens (9, 12–18). In con-
trast, studies of fungus-mosquito interactions have largely focused on the identification
of fungal entomopathogens and their use as bioinsecticides to control mosquito larvae
and adults (19–23). Of the 158 fungal species observed in or isolated across mosquito
species, nearly two-thirds are entomopathogens (2). These entomopathogenic fungi
infect mosquitoes mostly through the cuticle and rarely through ingestion (2). However,
not all fungus-mosquito interactions have a negative outcome on mosquitoes. Fungi
such as yeasts can be sufficient for mosquito development as a nutritional source and
because they induce gut hypoxia, which serves as a cue for larval development (10, 18,
24). Taken together, these studies strongly suggest that fungi have the potential to pro-
foundly impact mosquito biology, yet very few studies have examined the factors shaping
fungal communities in larvae and the larval environments where they naturally develop.

Studies that have focused on the characterization of microbial diversity in mosqui-
toes collectively indicate that bacterial communities can vary substantially across dif-
ferent larval environments and between individuals that co-occur in the same environ-
ment, even at small local scales (6, 8, 9). Studies also indicate that the majority of
bacteria present in mosquitoes are restricted to the gut (25–27). The few available pub-
lished studies of fungal communities suggest that environment may also be a domi-
nant factor shaping fungal diversity in mosquitoes (28). However, to date, no study has
simultaneously characterized the fungal communities in mosquito larvae and the
aquatic environment that they inhabit. In addition, studies thus far have largely
focused on the characterization of fungal communities in only either whole adult mos-
quitoes or their dissected guts (29–32). Fungi also form associations with their mos-
quito hosts as a function of their mode of nutrition: some taxa enter the mosquito
through the body surface (cuticle), whereas others enter via ingestion through the gut.
However, no study to date has examined whether fungal communities differ between
mosquito host tissues.

The overall goal of this study was to determine the factors that shape fungus-mos-
quito interactions in larvae of the Asian tiger mosquito (Aedes albopictus), an abundant
mosquito species of public health concern because adult females transmit the causa-
tive agents of dengue fever, chikungunya, and Zika (33–36). A. albopictus is ubiquitous
in urban and periurban areas throughout most of the world, where larvae inhabit
diverse natural and man-made containers (37–39) and feed on living and decaying or-
ganic matter using diverse filtering, grazing, and shredding behaviors (40, 41). Here,
we sampled water and late-stage (L4) A. albopictus larvae from several types of man-
made container breeding sites on a fine geographic scale. We then used internal tran-
scribed spacer 2 (ITS2) metabarcoding to determine the fungal community composi-
tion and diversity in mosquito larvae and their larval breeding water. Using these data,
we determined that the aquatic environment is the major driver of mosquito fungal
community composition. We also identified additional drivers, including mosquito
feeding behavior and fungal mode of nutrition, that contribute to fungal community
assembly and diversity in different mosquito tissues.

RESULTS
Fungal communities based on ITS2 metabarcoding. We analyzed the fungal

communities associated with A. albopictus larvae and water sampled from 10 aquatic
breeding sites located within an 11.6-km2 area in Manhattan, KS (Fig. 1). From each
site, we sampled ;50 ml of water and 10 individual larvae. The larvae were aseptically
dissected to produce paired gut and carcass samples prior to sequencing fungal ITS2
metabarcode amplicons on an Illumina MiSeq platform. The final data set consisted of
a total of 4,259,124 quality-filtered sequences, assigned to a total of 3,415 operational
taxonomic units (OTUs) at a sequence similarity cutoff threshold of 97%. Rarefaction
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curves saturated or nearly saturated at 5,000 sequences for most samples, indicating
that the vast majority of fungal diversity was captured in our sampling (see Fig. S1 in
the supplemental material). This is consistent with the high Good’s coverage estimates
that we observed across all samples (0.999 6 0.001 standard deviation). Six fungal
phyla were identified across all samples and accounted for 91.1% of the total quality-
filtered reads: Ascomycota (59.5%), Basidiomycota (30.8%), Chytridiomycota (0.316%),
Glomeromycota (0.057%), Mucoromycota (0.465%), and Rozellomycota (0.019%)
(Fig. 2). The remaining 8.86% of reads could not be classified past the kingdom Fungi
but were included in all downstream analyses.

Within the phylum Ascomycota, OTUs in the fungal orders Pleosporales, Hypocreales,
and Eurotiales were shared across all water and mosquito samples and represented
;38.1%, 10.2%, and 9.5% of the total reads assigned to this phylum, respectively (Fig. 2).
Within the phylum Basidiomycota, the majority of reads (;21.8%) were associated with
the order Agaricales, and reads assigned to this order were detected in all of the water
and mosquito samples (Fig. 2). In contrast, fungi of the orders Cystofilobasidiales and
Phallales were abundant in the water and mosquito gut and carcass samples from only
sites 3 and 4 (20.9% and 31.5%, respectively) but rare (1.87% on average) in samples
from other sites (Fig. 2). The majority of reads (45.0% on average) within the remaining
four phyla belonged to the orders Rhizophlyctidales (phylum Chytridiomycota) and
Mortierellales (phylum Mucoromycota) (Fig. 2).

Local environment is the dominant factor that shapes the fungal community
associated with mosquito larvae. To identify whether environment is a major driver
of fungal diversity associated with mosquito larvae, we visualized Bray-Curtis dissim-
ilarities among all our water, gut, and carcass samples using principal-coordinate
analysis (PCoA) (Fig. 3 and Fig. S2). To determine whether samples were distinct
between breeding sites, we analyzed the distance matrices using permutational
multivariate analysis of variance (PERMANOVA). The results revealed significant differ-
ences in fungal diversity between samples from different sites (Fig. 3 and Fig. S2). We
then ran multivariate analysis of variance (MANOVA) on the distance matrices of the
first three PCoA vectors to determine whether the fungal communities between

FIG 1 Collection sites for the ITS2 libraries prepared from water and Aedes albopictus mosquito larvae.
The location of each collection site in Manhattan, KS, is depicted. Sites 1 and 2 are natural A. albopictus
breeding sites, while the remaining sites were artificially constructed using plastic mosquito oviposition
cups lined with germination paper. The square surrounding site 3 indicates that this site was eliminated
from downstream community analyses due to a low number of sequencing reads.
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breeding sites and/or mosquito tissue types (gut versus carcass) were significantly
different. Univariate analyses of variance (ANOVAs) were performed on significant
MANOVA factors to examine which axis or axes drove any patterns observed in the
PCoA plots. The MANOVA and univariate ANOVAs further indicated that differences
along all three PCoA axes were significant for site and the interaction of site and mos-
quito tissue type, but samples were separated only by tissue along the third axis (Tables 1
and 2 and Table S1).

Tissue-specific patterns of fungal community assembly. To test whether patterns
of fungal community assembly differ between the mosquito gut and other tissues, we
next compared the calculated indices for alpha diversity and community composition
within all water and individual mosquito gut and carcass samples that we collected.
Alpha diversity differed between mosquito tissues (gut versus carcass) as measured by
observed (W = 23,165; P , 0.0001) and extrapolative (W = 23,153; P , 0.0001) Chao1

FIG 2 Fungi at the levels of phylum and order in water and mosquito larvae from each collection
site. Gut and carcass samples from individual larvae collected from a given site were pooled for the
bar graphs presented. For a given phylum, bars present the proportion of sequencing reads assigned
to that phylum that were also classified to a specific fungal order. All orders that represented $10%
of the reads from a given sample are listed in the key; less abundant orders are grouped under the
“Other” categories.
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OTU richness as well as Shannon’s diversity (W = 21,722; P , 0.0001). Fungal species
richness and diversity were consistently higher in mosquito gut samples than in the
corresponding carcass samples (Table S1). Alpha diversity was also generally higher in
the water than in the mosquito samples (Table S1). Interestingly, the pairwise Bray-Curtis
dissimilarities were higher between water and carcass samples than between water and
gut samples (Fig. 4; Fig. S2), indicating that the water and mosquito gut fungal commun-
ities were on average more similar than those of the water and mosquito carcasses. We
also analyzed the distance matrices between individual gut and carcass samples by site
using PERMANOVA. The two mosquito tissues differed in the majority of sites, suggesting
distinct fungal communities in mosquito guts and carcasses (Fig. S3).

Mosquito feeding behavior and fungal mode of nutrition drive tissue-specific
patterns of fungal community assembly. To identify specific fungal OTUs that are dif-
ferentially associated with the mosquito gut and carcass, we performed indicator taxon
analyses using two different indices on the 149 OTUs that made up 80% of the total
reads in the individual mosquito gut and carcass samples across all sites. Using the in-
dicator value index (IndVal), we identified 41 indicator OTUs for mosquito guts across
all breeding sites (Fig. 5A; Table S2). In contrast to the mosquito guts, the IndVal analy-
sis identified no indicator OTUs of mosquito carcasses. The 41 mosquito gut indicator
OTUs were assigned to six ecological guilds: saprophyte (34%), plant pathogen (25%),
endophyte (8.9%), animal pathogen (5.3%), epiphyte (1.7%), and ectomycorrhiza
(1.7%). The remaining 23% could not be assigned to ecological guilds.

We then used the point-biserial correlation index (rpb) to determine the impact of fun-
gal niche preference on differential fungal community assembly between mosquito guts
and carcasses (Fig. 5B; Table S3). We found that 29 OTUs, all of which were also gut indi-
cator OTUs, were significantly associated with mosquito guts (Table S3). The OTUs with

FIG 3 Principal-coordinate analysis based on pairwise Bray-Curtis distances. The keys at the top left of each plot
designate collection site by color, while the keys at the bottom left of each plot designate sample type (water versus
mosquito gut or carcass) by symbol shape. Samples cluster significantly by collection site (F = 7.167; P , 0.001 [by
PERMANOVA]).

TABLE 1 Contribution of collection sites and mosquito tissues to the fungal community
associated with mosquito larvae determined by multivariate analysis of mosquito guts and
carcasses (mosquito tissues) across all collection sites

Source of variation
Pillai’s
trace

Hypothesis
df

Error
df F P

Collection sites 2.26 24.0 456 57.8 ,0.0001
Mosquito tissues 0.348 3.00 150 26.7 ,0.0001
Collection sites: mosquito tissues 1.04 24.0 456 10.0 ,0.0001
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mosquito gut preference were primarily assigned to the ecological guilds of saprophyte
(32.4%), plant pathogen (21.6%), and endophyte (8.1%), followed by animal pathogen
(2.7%) and ectomycorrhiza (2.7%). The remaining 32.4% of OTUs could not be assigned to
any ecological guild. The rpb analysis identified nine OTUs that were significantly associ-
ated with mosquito carcasses (Table S3). The majority of these OTUs belonged to four ec-
ological guilds: saprophyte (21.7%), endophyte (21.7%), animal pathogen (17.4%), and
plant pathogen (17.4%), followed by fungal parasite (4.3%) and epiphyte (4.3%). The
remaining 13% of OTUs could not be assigned to any ecological guild.

In addition to these indicator analyses, we also mined the data set for taxa with
known entomopathogenic potential. We identified one OTU (OTU68) assigned to the
genus Beauveria, which contains several known entomopathogens, and another
(OTU9) assigned to Clonostachys rosea f. catenulata, which was significantly associated
with mosquito carcasses in the rpb analysis. Sequences assigned to a member of the ge-

TABLE 2 Contribution of collection sites and mosquito tissues to the fungal community associated with mosquito larvae determined by
univariate analyses of PCoA axes

Source of variation in univariate analysis
Sum of
squares

Residual sum
of squares df F P

PCoA axes driving variation between mosquito tissues
Axis 1 0.001 5.55 1.00 0.039 0.844
Axis 2 0.018 4.52 1.00 0.686 0.409
Axis 3 0.616 4.34 1.00 27.8 ,0.0001

PCoA axes driving variation between collection sites
Axis 1 4.38 5.55 8.00 75.4 ,0.0001
Axis 2 3.38 4.52 8.00 59.8 ,0.0001
Axis 3 1.83 4.34 8.00 14.6 ,0.0001

PCoA axes driving interaction between collection sites and tissues
Axis 1 0.390 1.17 8.00 9.52 ,0.0001
Axis 2 0.453 1.12 8.00 12.9 ,0.0001
Axis 3 0.591 1.89 8.00 8.60 ,0.0001

FIG 4 Bray-Curtis distances between fungal communities detected in water and either the guts or
carcasses of mosquito larvae collected from the same site. Connected lines depict matching mosquito
gut and carcass samples for a given collection site. Statistical significance was determined using a
Wilcoxon signed-rank test.
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nus Beauveria were present in mosquito samples from 50% of sampled breeding sites.
Within these sites, Beauveria sp. was found only sporadically (in 15 guts and 7 carcasses
from 48 mosquito larvae in total), and only five larvae had OTU reads assigned to
Beauveria in both guts and carcasses. The distribution of reads across these two tissue
types in those five larvae did not show a clear trend, ranging from 10-fold-higher num-
bers of reads in guts than in carcasses and vice versa. Sequences assigned to
Clonostachys rosea f. catenulata were present in only three of the nine sampled breed-
ing sites. Within these sites, C. rosea f. catenulata was found in 24 gut and 23 carcass
samples. In the 21 larvae where C. rosea f. catenulata was found in both guts and car-
casses, the number of reads was on average 19-fold higher in the carcass than in the
gut samples.

DISCUSSION

This study reports the composition and diversity of fungal communities associated
with A. albopictus larvae and their natural habitats on a small geographic scale. The
larval habitat water and mosquito guts and carcasses sampled in our study harbored a
diverse, uneven, and rich fungal community. Similar patterns of fungal diversity were
reported in natural and artificial mosquito breeding sites sampled from different
regions in Taiwan and in mosquito adults collected intercontinentally (28, 30). In our
study, the fungal communities identified in breeding water and mosquito guts and car-
casses were dominated by fungi of the phyla Ascomycota and Basidiomycota. This par-
allels previously reported fungal communities in water and organic substrates col-
lected from tree holes and man-made containers (28, 42). Our results are not surprising
and can be explained by the ubiquity of Ascomycota and Basidiomycota in freshwater
ecosystems, including larval habitats, compared to the remaining fungal phyla (28, 43–
46). The ITS2 primers (fITS7 and ITS4) that we used for amplification are commonly
used in fungal community surveys (47–51) and readily detect members of the fungal

FIG 5 Indicator species and tissue preference of fungal OTUs between mosquito guts and carcasses across all larval breeding sites. (A) Characteristic
fungal OTUs of mosquito guts across all breeding sites were identified using the indicator value index (IndVal) at a P value of 0.05 and with 9,999
permutations. (B) OTU tissue preferences between mosquito guts and carcasses across breeding sites were identified using the point-biserial correlation
index (rpb) at a P value of 0.05 and with 9,999 permutations. Ecological guilds inferred by FUNGuild are organized from the most abundant to the least
abundant guild.
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phyla Ascomycota, Basidiomycota, Chytridiomycota, and Mucoromycota, as demon-
strated by our mock fungal community. However, ITS2 primers show low species iden-
tification and discrimination in early-diverging fungal lineages (52, 53). Additionally, a
considerable percentage (9%) of the OTUs assigned to unclassified fungi had to be
manually reclassified upon closer inspection, most commonly to algae, which is con-
sistent with previous studies reporting the amplification of algae by the primer pair
fITS7 and ITS4 (54). Future studies using these primers should therefore also carefully
inspect OTUs assigned to nonclassified fungi.

All previous studies that assessed the fungal community composition of mosquito
larvae have used culture-dependent methods to isolate filamentous fungi and yeasts
from whole larvae of several mosquito species (2, 18, 55, 56). A significant proportion
of these isolated culturable fungi and yeasts were also identified in our OTU data set
(17% at the species level and 44% at the genus level). The majority of these belong to
the filamentous ascomycete genera Aspergillus, Beauveria, Cladosporium, Penicillium,
and Trichoderma or the ascomycete yeast genus Candida and the basidiomycetous
yeast genera Cryptococcus, Rhodosporidium, Rhodotorula, and Trichosporon. Similarly,
83% of the ascomycetous fungi thus far isolated from other aquatic insects, including
caddisfly larvae, European nonbiting midge larvae, blackfly larvae, and adult aquatic
beetles, are also present in our data set (57–59). As mentioned above, the overlap of
fungal community composition within larval stages of various mosquito species and
across other aquatic insects may be explained by the high prevalence of these taxa in
freshwater habitats (28, 43–46).

We did not detect OTUs assigned to the genus Smittium, an early-diverging fungal
lineage in the subphylum Kickxellomycotina, which contains several species of gut
symbionts and pathogens of mosquito larvae (60–64). Despite its broad host range, to
our knowledge, the genus Smittium has not been reported in A. albopictus larvae. It is
thus possible that members of this genus are unable to colonize the gut of A. albopic-
tus larvae. It is also possible that Smittium spp. do not persist in mosquito breeding
grounds in Kansas and therefore remained undetected in our data set. However, an
equally parsimonious explanation is a lack of detection due to the choice of primers
that poorly capture early-diverging and basal fungal phyla (65). In future studies, we
will therefore employ taxon-specific primers and microscopy techniques to assess the
presence of Smittium spp. in A. albopictus larvae as described previously (66–68).

Our overall goal was to determine the drivers of fungal diversity associated with
field-collected A. albopictus larvae. Our results show that the fungal communities in
the larvae of this mosquito species largely reflect those of their breeding environ-
ments. To our knowledge, this is the first fungal data set with sampling at a local scale
and sequences obtained from individual larvae from which the guts were dissected.
Our results corroborate data identifying factors that shape the bacterial diversity in lar-
vae of various mosquito species. Gimonneau et al. (6) showed that the bacterial com-
munities of field-collected Anopheles gambiae and Anopheles coluzzii mosquito larvae
largely overlapped those of the aquatic habitat, suggesting that the larval habitat is
the major source of the microbiota assembly in mosquito larvae. Similar findings were
also reported for the larval microbiota of several Aedes, Anopheles, and Culex species,
including Aedes japonicus, Aedes triseriatus, Aedes aegypti, A. albopictus, Anopheles dar-
lingi, Anopheles nuneztovari, Culex quinquefasciatus, and Culex restuans, collected from
several man-made container breeding sites (7–9). We recognize that our study
assessed the fungal community composition in only a single mosquito species. Hence,
we cannot exclude the host as a significant factor shaping the fungal community in A.
albopictus mosquito larvae. However, our results provide little evidence for filtering or
enrichment of specific taxa that are shared across larval habitats, further supporting
the dominant role of the larval aquatic habitat in the assembly of fungal communities
associated with mosquito larvae.

Our results further show that the fungal communities in the mosquito larval gut
and carcass differ. Although not identical to the larval breeding water, the gut fungal
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community was more similar to the environment than it was to the fungal community
in the carcass. The similarity of the gut fungal community to the environment can be
explained by the filter-feeding habit of mosquito larvae in general, which presumably
captures a large portion of fungal taxa from the breeding water (41). A. albopictus lar-
vae also display other feeding habits, including grazing and shredding on decaying
leaf matter (69–71), which further contributes to the gut fungal diversity. This is sup-
ported by the results of the indicator species analysis where the gut indicator OTUs
predominantly are saprophytes, endophytes, and pathogens that typically occur in
plant tissues. To exemplify, one of the indicator OTUs belongs to the family
Ustilaginaceae, which is composed of more than 1,200 obligately biotrophic fungal
species that can infect more than 4,000 plant species (72). Members of this family can
infect forage grasses and crops such as corn, barley, and wheat (72, 73). Several other
plant-associated fungi that were abundant and frequent in the gut samples include
Gibberella zeae, Phaeoacremonium tuscanum, and Phaeobotryon cupressi, taxa that
likely represent putative pathogens of diverse plant crops, including wheat and grape-
vine, and trees (74–78). This further supports that the fungal diversity observed in the
larval gut of mosquitoes is a consequence of feeding on plant material.

In contrast, the fungal diversity observed in mosquito carcasses, from which we had
removed the heads to exclude any fungi captured on the mouth brushes during feed-
ing, was lower and contained communities distinct from those in the larval guts and
breeding water. Approximately one-half of the OTUs with a preference for carcass com-
pared to gut were putative animal pathogens, suggesting that these OTUs either inter-
act with the carcass by attaching to the cuticle or infect the carcass through the gut af-
ter ingestion (79–85). These included OTUs assigned to the species C. rosea, a fungal
entomopathogen of several insect hosts, including leafhoppers, whiteflies, and alfalfa
weevils (86–88), and Alternaria porri, which causes mortality in green apple aphids and
delays hatch rates in egg masses of the European corn borer (89, 90). These two OTUs
were also detected in gut samples, suggesting that ingestion might have led to sys-
temic infection by these fungi. Overall, our data strongly suggest that in addition to
mosquito feeding behavior, fungal ecology and niche preference further separate fun-
gal communities in A. albopictus larval tissues.

Overall, our analyses found little additional evidence of A. albopictus infections with
known fungal entomopathogens of mosquitoes. Of the 67 fungal species considered
entomopathogenic and/or entomotoxigenic to mosquitoes (2), Beauveria sp. was the
only previously described mosquito entomopathogen that we detected. This observa-
tion is consistent with a previous study describing the fungal community of field-col-
lected A. albopictus adult females (30). However, the distribution of sequences in our
data set provides little support for active mosquito infection by Beauveria in our collec-
tion sites. The sequences assigned to Beauveria sp. were rare and sporadic across the
mosquito guts and even less commonly found in the carcass samples. Nevertheless,
we were able to isolate a local strain of Beauveria bassiana from a single A. albopictus
larva collected at site 5. Future studies with this isolate will test the efficacy of this
strain to infect A. albopictus larvae.

In conclusion, this study provides fundamental insights into the broad range of
encounters between mosquito larvae and fungi in the larval breeding water. Our
results show that mosquito breeding water harbors a highly rich and diverse fungal
community on a fine geographic scale, which drives the assembly of fungal commun-
ities that are associated with mosquito larvae. We further show the contribution of
mosquito feeding behavior and fungal ecology to tissue-specific patterns of fungal
community assembly. Future studies will have to assess whether these observed pat-
terns can be generalized across different mosquito species and whether ontogeny fur-
ther contributes to the assembly of fungal communities associated with mosquitoes.

MATERIALS ANDMETHODS
Sample collections. A. albopictus L4 larvae and the corresponding water were sampled from a total

of 10 breeding sites in Manhattan, KS, during 2017 and 2018: 2 naturally occurring mosquito breeding
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sites and 8 artificial (man-made) breeding sites consisting of plastic mosquito oviposition cups lined
with heavyweight seed germination paper (Anchor Paper Co., MN, USA) (Fig. 1; see also Table S1 in the
supplemental material). For the 2017 larval collections, mosquito larvae were kept in their respective
environments, transported to the laboratory in labeled plastic containers (Bare Eco-Forward Rpet deli
containers), and incubated at 27°C with 75% relative humidity (RH) for 24 h before larval gut dissections.
For the 2018 larval collections, mosquito larvae were transported to the laboratory as described above
for the 2017 collections but were dissected immediately upon arrival. Water samples were immediately
stored at280°C until nucleic acid extraction and sequencing.

Mosquito dissections. Mosquito larvae were surface washed six times with sterile MilliQ water to
exclude any carryover from the breeding water not associated with the mosquito larvae. Larvae were
then decapitated to exclude any transiently attached fungi from the environment on the mouth brushes
and then dissected. Dissection of the larval gut from the body, referred to here as the mosquito carcass,
was accomplished using flame-sterilized forceps and dissecting pins. Dissected gut and carcass samples
were immediately frozen with liquid nitrogen and stored at 280°C until further processing. Finely cut,
bleached nets were used as negative controls to screen for contamination during the dissection process.
These negative controls were processed simultaneously with mosquito larva dissections.

Sample preparation and Illumina MiSeq. Total DNA was extracted using the DNeasy PowerSoil kit
(MoBio Laboratory, Carlsbad, CA, USA) according to the manufacturer’s instructions, with minor modifi-
cations, from a total of 100 mosquito gut and carcass samples, 10 water samples filtered through 1-mm
Nuclepore membranes (Whatman), and 7 dissection control samples. DNA samples were stored at
220°C until PCR amplification. Extracted DNA was quantitated using NanoDrop 2000/2000c spectropho-
tometers (Thermo Scientific, Waltham, MA, USA) and standardized to a concentration of 2 ng/ml. The
fungal amplicon library was generated by triplicate PCR amplification using barcoded forward primer
fITS7 (59-GTGARTCATCGAATCTTTG-39) and barcoded reverse primer ITS4 (59-TCCTCCGCTTATTGATATGC-
39) according to a protocol described previously (91), with minor modifications. PCR with 20 ng of tem-
plate DNA included an initial denaturation step for 30 s at 98°C and 35 cycles of denaturing, annealing,
and extension at 98°C for 10 s, 54°C for 30 s, and 72°C for 1 min, followed by a final 72°C extension step
for 9 min. The PCR negative control was certified nuclease-free sterile water. A mock fungal community
was created with DNA from 10 fungal species belonging to different phyla to determine sequencing
quality and the range of fungal taxon identifications (Table S4).

Successful PCR amplification was determined by visualizing 5 ml of the PCR products on 1% agarose
gels. The remaining 45 ml from each triplicate PCR was pooled and purified using Mag-Bind RXNPure
plus (Omega Bio-Tek, Norcross, GA, USA). The clean amplicons from each sample were pooled at equal
concentrations. Illumina MiSeq adaptors were ligated to the amplicon library using a Kapa library quanti-
fication kit for Illumina platforms (Kapa Biosystems, Wilmington, MA, USA), and sequences were gener-
ated using a MiSeq instrument (2 by 300 cycles; Illumina, San Diego, CA, USA) at the Kansas State
University Integrated Genomics Facility (Manhattan, KS, USA).

Sequence processing. Paired-end sequences were processed using mothur (v.1.38.1) (92).
Sequences with ambiguous bases, mismatches to primers, and homopolymers longer than 10 bp were
removed. A total of 229,195 chimeric sequences were identified using the VSEARCH algorithm (93) and
removed from the data set. Fungal sequences were assigned to taxa using the naive Bayesian classifier
against the UNITE-curated International Nucleotide Sequence Database reference database (94, 95).
During data processing through mothur, 191,081 sequences were either unassigned or assigned to
unclassified plantae and the protozoan phyla Cercozoa and Ciliophora and removed from the data set.
Fungal sequences were pairwise aligned to generate a distance matrix, which was clustered into OTUs
using the average neighbor algorithm (unweighted pair group method using average linkages
[UPGMA]) at a 97% similarity threshold. Low-abundance fungal OTUs represented by fewer than 10
sequences were removed from the data set. Finally, the National Center for Biotechnology Information
(NCBI) Basic Local Alignment Search Tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to
identify any OTUs assigned to unclassified fungi. BLAST revealed 335 nonfungal OTU assignments con-
taining 1,111,222 sequence reads, which were subsequently removed from the data set prior to down-
stream analyses. These OTUs belonged to the kingdoms Animalia, Eubacteria, Plantae, and Protista. The
majority of the OTUs (41.2%) were assigned as algae, followed by plants (20.5%), protozoa (13.4%),
insects (13.1%), uncultured eukaryotes and fish (8.95%), and bacteria (2.68%). Fungal OTUs present in
the negative PCR or dissection controls (157 OTUs accounting for 349,100 sequences) were also
removed from the data set, resulting in a final filtered fungal OTU data set consisting of 3,415 OTUs and
4,259,127 sequences.

OTU data analysis. To account for unequal sequencing depth while retaining rare taxa, we per-
formed all downstream analyses on a modified filtered fungal data set (described above) that was not
rarefied but excluded all paired mosquito samples for which we obtained ,1,500 sequences from either
the gut and/or carcass (96). This resulted in the elimination of all mosquito gut and carcass samples
from site 3, two gut and carcass pairs from site 6, and a single gut and carcass pair from sites 2, 4, and 7
(Table S5). Fungal diversity and community composition analyses were conducted using mothur
(v.1.38.1) (92). Nonparametric Wilcoxon signed-rank tests were then used to compare alpha diversity
indices (OTU richness, Chao1, and Shannon’s H diversity indices) in the water and mosquito gut and car-
cass samples.

To compare the fungal community compositions in the paired samples, we computed pairwise Bray-
Curtis dissimilarity matrices and visualized them by principal-coordinate analyses (PCoAs) using mothur
(v.1.38.1) (92). The compositional differences were inferred via PERMANOVA and MANOVA to determine
whether fungal communities clustered based on site or mosquito tissue type (gut versus carcass).
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Additional ANOVAs were performed on significant MANOVA factors to determine which axis or axes
were responsible for the clustering observed on the PCoA plots. To determine whether the guts or the
carcasses were more similar to the breeding water, we performed Wilcoxon matched-pairs signed-rank
tests comparing the Bray-Curtis distances between the breeding water and larval gut versus those of
the breeding water and larval carcasses for each larva from a given site. To determine which OTUs may
underlie the inferred community differences, we identified indicator OTUs that were disproportionately
abundant in either mosquito guts or carcasses using the indicator value (IndVal) method (97). In addi-
tion, we determined the degree of preference of OTUs for mosquito guts or carcasses using the point-
biserial correlation coefficient (rpb) (98). IndVal and rpb analyses were performed using the Indicspecies
package implemented in R (99). For both IndVal and rpb analyses, 9,999 iterations were used to deter-
mine whether the OTUs were significantly associated with mosquito guts or carcasses. The FUNGuild
database (100) was used to determine the ecological role of the fungal OTUs present in the heat map.
Fungal OTUs were assigned to six ecological roles: animal pathogenic, ectomycorrhizal, endophytic, epi-
phytic, fungal parasitic, plant pathogenic, and saprophytic. Although the saprophytic OTUs were divided
into dung saprophytic, litter saprophytic, plant saprophytic, soil saprophytic, and wood saprophytic, we
assigned all saprophytic OTUs as saprophytes in our analyses. Wilcoxon signed-rank tests were per-
formed using GraphPad Prism version 8.4.3 for Windows (GraphPad Software, San Diego, CA, USA),
whereas MANOVAs and ANOVAs were performed using R (http://www.r-project.org/).

ASV data analysis and comparison with OTU data analysis results. Paired-end sequences were
processed using mothur (v.1.44.3) (92). After pairwise alignment, sequences were preclustered into
amplicon sequence variants (ASVs) at a threshold of a 2-nucleotide difference. A total of 229,195 chi-
meric sequences were identified using the VSEARCH algorithm (93) and removed from the data set. The
resulting data set contained 117,162 ASVs and 7,833,850 sequence reads. The additional nonfungal ASVs
(30,925 ASVs accounting for 3,498,860 sequences) associated with the 335 nonfungal OTUs identified
previously with BLAST were removed from the data set using mothur (v.1.44.3). These ASVs belonged to
the kingdoms Animalia, Eubacteria, Plantae, and Protista. The majority of nonfungal ASVs (48.8%) were
assigned as algae, followed by bacteria (23.4%), protozoa (10.07%), insects (5.76%), uncultured eukar-
yotes and fish (4.89%), and plants (4.60%). Fungal ASVs present in the negative PCR or dissection con-
trols (4,048 ASVs accounting for 407,902 sequences) were also removed from the data set. In addition,
low-abundance fungal ASVs represented by fewer than 10 sequences were removed from the data set,
resulting in a final filtered fungal data set consisting of 7,798 ASVs and 4,180,758 sequences. Similar to
the OTU data set, rarefaction curves saturated or nearly saturated at 5,000 sequences for most samples,
indicating that the fungal diversity was captured in our sampling regardless of the methodology used to
infer community composition (Text S1). This is consistent with the high Good’s coverage estimates that
we observed across all samples (0.9996 0.001 standard deviation).

Consistent with some of the previous reports that had compared ASV and OTU analyses of bacterial
16S or fungal ITS data sets (101, 102), the overall ecological patterns that we observed did not differ
between these two methods. We chose to present the results of the OTU data set in the text, as all previ-
ous ITS data sets extracted from mosquito samples have used OTUs to define mosquito-associated fun-
gal communities. The parallel analyses using ASVs as well as a detailed comparison of the results
obtained with both data sets can be found in the supplemental material.

Data availability. Paired sequence data (.fastq files) are available in the NCBI Sequence Read
Archive under BioProject accession number PRJNA634912.
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