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Obtaining accurate drug response data in large cohorts of cancer patients is very challenging; thus, most cancer pharma-

cogenomics discovery is conducted in preclinical studies, typically using cell lines and mouse models. However, these plat-

forms suffer from serious limitations, including small sample sizes. Here, we have developed a novel computational method

that allows us to impute drug response in very large clinical cancer genomics data sets, such as The Cancer Genome Atlas

(TCGA). The approach works by creating statistical models relating gene expression to drug response in large panels of

cancer cell lines and applying these models to tumor gene expression data in the clinical data sets (e.g., TCGA). This yields

an imputed drug response for every drug in each patient. These imputed drug response data are then associated with

somatic genetic variants measured in the clinical cohort, such as copy number changes or mutations in protein coding genes.

These analyses recapitulated drug associations for known clinically actionable somatic genetic alterations and identified new

predictive biomarkers for existing drugs.

[Supplemental material is available for this article.]

Precision cancer medicine has yielded some spectacular successes.
For example, the use of tyrosine kinase inhibitors in BCR-ABL1–
positive chronic myeloid leukemia (CML) has transformed
the treatment of a previously lethal disease. However, such suc-
cesses have been isolated, for example, according to OncoKB
(Chakravarty et al. 2016), as of April 2017 there are only 12 cancer
genes with FDA-approved drug treatments (Relling and Evans
2015). Thus, there is an urgent need to develop new methods
and expand this list.

High-throughput sequencing technologies are now being ap-
plied to every field of biology. Many studies have applied these
technologies to cancer; one of the largest to date is The Cancer
Genome Atlas (TCGA) (The Cancer Genome Atlas Research
Network et al. 2013), which has characterized more than 10,000
primary tumors. TCGA and similar studies have elucidated many
previously unknown aspects of tumor biology, particularly by un-
covering driver mutations (Tamborero et al. 2013) and reclassify-
ing and creating subtypes of cancers using molecular data
(Hoadley et al. 2014). However, because of the difficulty in collect-
ing drug response data in large patient cohorts, these data have not
been used extensively for discovering new drug biomarkers or in
supporting precision medicine. Drug screening against patients
raises serious logistical and ethical issues. Altering chemotherapeu-
tic regimes can result in patients no longer receiving optimal ther-
apy. Hence, precisely measuring drug response using randomized
trials in clinical cohorts is not typically possible on a very large
scale. This limits the ability to identify predictors of drug response
when many potential markers are screened (e.g., a genome-wide
screen) (Geeleher et al. 2014b, 2016a; Gray andMills 2015), and se-

verely limits our ability to discover novel drug biomarkers directly
in cancer patients.

Alternatively, collecting drug response information in pre-
clinical disease models such as cancer cell lines is much more
straightforward. Similar to TCGA, the molecular characteristics
of cancer cell lines have been cataloged using high-throughput se-
quencing technologies. The largest studies have been the Geno-
mics of Drug Sensitivity in Cancer (GDSC) (Garnett et al. 2012),
the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al. 2012),
and the Cancer Therapeutics Response Portal (CTRP) (Seashore-
Ludlow et al. 2015). These have assayed nearly 1000 cancer cell
lines with multiple genomics technologies. Crucially, they also
screened these cell lines with hundreds of anti-cancer agents,
thus collecting drug response information. However, the sample
sizes available in these types of preclinical studies still lag far be-
hind clinical studies such as TCGA.

Here, we propose a conceptually novel methodology that al-
lows us to use clinical cancer sequencing data sets (e.g., TCGA) for
pharmacogenomics discovery, without having to collect drug re-
sponse information in patients. Our new approach implements a
machine learning–based approach, similar to the method de-
scribed by Geeleher et al. (2014b), where gene expression–based
predictive models of drug response were constructed from nearly
1000 cancer cell lines fromGDSC; these models were then applied
to gene expression values from over 10,000 TCGA tumor samples,
yielding an imputed drug response value in each TCGA sample, for
each of 138 drugs. This allowed us to use TCGA to directly study
pharmacogenomics on an unprecedented scale and to uncover
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new genomic variants that predict che-
motherapeutic response. This approach
overcomes both the difficulty in collect-
ing drug response in large clinical co-
horts and of limited sample sizes in
preclinical studies. We refer to this ap-
proach as an “imputed drug-wide associ-
ation study” (IDWAS). Importantly,
IDWAS is not limited to TCGA and can
be applied to any cancer patient sequenc-
ing study where gene expression data has
been collected, which will broaden the
utility of such data sets.

Results

Gene expression–based models from cell

lines to predict an in vivo phenotype

Despite growing evidence (Geeleher et al. 2014a,b; Falgreen et al.
2015; Azuaje 2016), it is not widely accepted that it is possible to
predict in vivo drug response using gene expression–based predic-
tivemodels derived from cell lines—where expression and drug re-
sponsehavebeenmeasured. This lingeringuncertaintymaybedue
to the very controversial history of this type of analysis (Coombes
et al. 2007) and ongoing debates surrounding the reliability of
drug screens in cell lines (Haibe-Kains et al. 2013; Stransky et al.
2015;Geeleher et al. 2016b). One initial objective is to produce fur-
ther evidence that such prediction is indeed possible.

Thus, we hypothesized that if it is possible to predict in vivo
drug response using cell line–derived gene expression–based mod-
els, it should be possible to accurately classify tumor tissue of ori-
gin using similar models. To test this, we fit a logistic ridge
regression model (see Methods) on a subset of cell lines from the
GDSC cohort. We restricted our analysis to tissues represented by
at least 30 cell lines that could be unambiguouslymapped to a can-
cer type annotated by TCGA. This yielded a cell line derived classi-
fier for cancers of the breast, blood, lung, skin and central nervous
system (CNS).We then applied this classifier to “remove unwanted
variation” (RUV) (Risso et al. 2014) batch-corrected (see Methods)
RNA-seq data from TCGA. By using this approach, we classified
these clinical tumors with a far higher level of accuracy than ex-
pected by chance (3136 of 3761 samples correctly classified, P <
2.2 × 10−16) (Supplemental Fig. S1). This level of accuracy clearly
demonstrates that the transcriptome in cell lines can be informa-
tive of an in vivo phenotype. Notably, our batch correction of
the TCGA data improved the number of correctly classified sam-
ples from 3029 to 3136 (P = 1.5 × 10−3 from Fisher’s exact test)
(Supplemental Fig. S1).

Drug sensitivity can be accurately imputed in a TCGA breast

cancer cohort

To demonstrate that our proposed IDWAS strategy (Fig. 1) is pos-
sible, we must first demonstrate that drug response can be accu-
rately imputed in clinical samples. One of the biggest successes
of precision cancer medicine are drugs targeting ERBB2 (also fre-
quently called HER2)-overexpressing breast cancers (e.g., trastuzu-
mab and lapatinib). One of these drugs, lapatinib, was screened
against the GDSC cell lines. Given the large number of breast can-
cer samples in TCGA, we were interested in establishing whether
applying gene expression–based models—predictive of lapatinib

response—to TCGA could yield predictions that were consistent
with over a decade of clinical observation. In TCGA, ERBB2 status
was reported using immunohistochemistry, as is typical in the
clinical setting. Hence, we applied the GDSC-derived models of
lapatinib response to the RNA-seq data (see Methods) from
TCGA breast cancer samples and compared imputed response be-
tween the ERBB2+ and ERBB2− groups. Remarkably, lapatinib was
predicted to be more sensitive in the ERBB2+ group (P = 6.7 ×
10−13), suggesting that drug response is being accurately imputed
(Fig. 2A). These data also contained a ERBB2 “equivocal” group,
which could not be accurately classified by immunohistochemis-
try; strikingly, these samples were predicted to be at an intermedi-
ate level of lapatinib response to the ERBB2+ and ERBB2− groups.
Unsurprisingly, patients annotated as having received a ERBB2-
targeted therapy (lapatinib or trastuzumab) were predicted to be
more sensitive to lapatinib, compared with the other TCGA breast
cancer samples (P = 3.3 × 10−7) (Supplemental Table S1). These re-
sults led to the obvious question of whether these predictions
were drug specific, which would be necessary if this approach
was to be viable for the discovery of novel associations. Thus, we
compared imputed drug response for all 138 drugs screened in
the GDSC cell line cohort between the ERBB2+ and ERBB2−
groups in TCGA. Indeed, the strongest association was achieved
by lapatinib (Fig 2B; Supplemental Table S2), suggesting that
this approach could be viable for the discovery of novel clinically
relevant associations.

IDWAS can be used to identify genomic aberrations that cause

drug response

In the clinic, ERBB2 status is typically establishedby immunohisto-
chemistry or by fluorescent in situ hybridization (FISH) (Vergara-
Lluri et al. 2012). However, overexpression of ERBB2 typically oc-
curs because of copy number amplification (CNA) of a large region
of Chromosome 17 known as the ERBB2 amplicon (Kallioniemi
et al. 1992). Thus, we were interested in whether this region could
be identified as a biomarker using IDWAS in TCGA, which would
suggest that this approach may be suitable for finding somatic ge-
nomic alterations associated with drug response. Thus, we tested
the association of CNA of all genes with imputed lapatinib re-
sponse. Indeed, genes in the ERBB2 amplicon were most strongly
associated with imputed lapatinib response (P = 4.3 × 10−11 for
ERBB2). Furthermore, imputed response increases steadily with

Figure 1. Discovering new drug biomarkers directly in clinical cancer genomics data sets (e.g., TCGA)
using IDWAS. Data flow diagram describing the proposed novel methodology (IDWAS) for discovering
novel pharmacogenomic variants. Boxes represent data, and circles represent processes. Predictive mod-
els of drug response are fit in preclinical data (in this case GDSC cancer cell lines) and applied to tumor
gene expression in a clinical cancer data set (in this case TCGA). These imputed drug response data are
then associatedwithmeasured somatic variants in the clinical data set in order to discover novel biomark-
ers of drug response.
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copy number of ERBB2 (Fig. 3A). As expected, many genes in the
ERBB2 amplicon were strongly associated with imputed lapatinib
response (Supplemental Table S3), making it difficult to identify
the causative gene by interrogating a ranked list of P-values. The
numbers of samples in which a CNA is called also varies from
gene to gene,meaning that the power to find an association differs
between genes in the locus (Supplemental Table S3). However,
plotting the effect size (for the association of amplification and im-
puted drug response) in the region revealed a smooth increase and
decrease in the magnitude of the association around ERBB2, the
known causative gene (Fig 3B). Thus, the precise causative gene
couldbe identifiedby interrogating these effect sizes. This is impor-
tant because itwouldnothavebeenpossible to identify this gene in
such an unsupervised way from the cell line data on which the
modelswere fit, due to the smaller sample size (Fig. 3C,D). This sug-
gests not only that genomic predictors of drug response can be
identified using this approach but also that there is added value
in imputing drug response in this much larger clinical cohort,
over only searching for these associations in the smaller set of cell
line data. Strikingly, when we performed this same association
analysis between gene amplification and also conditioned on
ERBB2 amplification, EGFR—the known secondary target of lapati-
nib—was identified as the most strongly associated gene
(Supplemental Table S4). This suggests that IDWAS has the ability
to find multiple biomarkers for a drug. Thus, IDWAS may provide
suitable power to derive polygenicmodels of drug response, which
are likely necessary to achieve clinically relevant predictions for
most drugs (Geeleher et al. 2015).

IDWAS can be used to identify novel predictors

of drug response

Next, we examined the association between all CNA and imputed
response to all 138 drugs (Supplemental Table S5) in the TCGA
breast cancer cohort. In addition to ERBB2 and lapatinib, we

identified a number of top associations with a strong biological ra-
tionale, for example, imputed response to Nutlin-3a and amplifi-
cation of mir-21. Nutlin-3a targets TP53, and there are multiple
studies showing that mir-21, which is a known oncogene
(Asangani et al. 2008), also targets TP53 (Ma et al. 2013), thus giv-
ing a clear mechanism for this observed association. Compound
CGP.082996 is associated with the MYC locus; this compound is
a CDK4 inhibitor (Hanaford et al. 2016), and CDK4 is a target of
MYC (Hermeking et al. 2000). The second strongest association
with any CNA is between a locus onChromosome 8 and resistance
to vinorelbine. Vinorelbine is used in the treatment of refractory
breast cancer (Degardin et al. 1994), and this locus is amplified
in ∼15% of breast cancers (Supplemental Fig. S2). Interrogating
the effect sizes within the locus (Fig. 4A) suggests that ERLIN2 is
the causative gene. The magnitude of the association also in-
creased with increasing CNA (Fig. 4B) While amplification of
this gene has not previously been linked to vinorelbine resistance,
it has recently been shown that ERLIN2 plays a role in stabilizing
microtubules (Zhang et al. 2015) and that vinorelbine functions
by destabilizing microtubules (Klotz et al. 2012). ERLIN2 CNA in
vivo is also associated with change in ERLIN2 expression
(Supplemental Fig. S3) and with breast cancer patient survival (P
= 8.9 × 10−3) (Supplemental Fig. S4). Given the potential clinical
relevance of this novel association and a clear mechanistic basis,
we overexpressed ERLIN2 in a CAMA-1 breast cancer cell line
(Supplemental Fig. S5; see Methods) and, indeed, observed a
strong association between ERLIN2 overexpression and vinorel-
bine resistance (P = 1 × 10−4 from ANOVA) (Fig. 4C). Of note,
ERLIN2 amplification and vinorelbine resistance were only mar-
ginally associated in the GDSC breast cancer cell lines (P = 0.07)
(Supplemental Fig. S6), and similar to ERBB2, it would not have
been possible to identify ERLIN2 as the causative gene in the locus
using a conventional analysis of the cell line data alone
(Supplemental Fig. S7). This suggests that IDWAS can also be
used to discover new pharmacogenomics biomarkers.

Elucidating the factors influencing the reliability of gene–drug

associations

The associations we observed between imputed lapatinib response
and ERBB2 status in breast cancer represents a particularly strong
example for reasons that are important to highlight: First, mea-
sured response to this drug demonstrates a high level of predict-
ability in 10-fold cross-validation in GDSC (rs = 0.48; P < 2.2 ×
10−16). By using this metric, the level of “predictability” of drug re-
sponse varies markedly between drugs (Supplemental Table S6).
However, response to most drugs (125 of 138) can be predicted
with statistical significance in cross-validation (P < 0.05 from
Spearman’s correlation test; Spearman’s correlation is often under-
powered in this context due to lack of variability in drug response
for highly targeted drugs) (Geeleher et al. 2016b). For some drugs,
for example, sorafenib, response could not be predicted with stat-
istical significance in cross-validation; therefore, such models are
almost certainly not applicable to in vivo data. Importantly, a
good prediction in cross-validation does not guarantee accurate
predictions in vivo, and in vivo prediction strongly depends on
how well the preclinical data reflect in vivo biology, which can
be difficult to judge. The next important factor is that ERBB2 am-
plification is well represented in TCGA. There are 164 ERBB2+
breast cancer samples in TCGA, providing sufficient statistical
power. Also, ERBB2 amplification has a substantial effect on
gene expression, with breast cancer samples harboring this

Figure 2. Imputed lapatinib response in TCGA breast cancer patients.
(A) A boxplot showing the value for imputed lapatinib response in all
TCGA breast cancer patients, where ERBB2 status was measured by immu-
nohistochemistry. The imputed drug response data are consistent with
how this drug behaves clinically (P = 6.7 × 10−13). Note that lower values
on the y-axis imply greater drug sensitivity. (B) A histogram of P-values
achieved for all 138 drugs when imputed drug response is compared be-
tween ERBB2+ and ERBB2− breast cancer patients in TCGA. Lapatinib, the
only one of these drugs known to be differentially effective between these
cohorts in the clinic, achieves the strongest association, suggesting that
drug response is being accurately imputed.
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mutation associated with the fourth, fifth, and sixth principal
components derived from the corresponding gene expression
data (P = 5.4 × 10−27, P = 7.3 × 10−10, and P = 1.73 × 10−8, respec-
tively) (Supplemental Fig. S8). This will vary on a gene-by-gene
basis, but many somatic mutations are strongly associated with
changes in gene expression. However, were a somatic aberration
to have no effect on gene expression, a gene expression–based
model would not be useful for identifying drugs to target that ab-
erration. Finally, while IDWAS can be used to estimate differential
effectiveness between different groups of patients, this does not
guarantee that the level of effectiveness achieved in either group
will be sufficient for clinical utility. Directly comparing imputed
drug response values for different drugs within one or more pa-
tients is also notmeaningful; predictions should only be compared
for a drug across patients, not between different drugs within pa-
tient(s). Currently, we also recommend fitting models on solid tu-
mor cell lines when imputing in a solid tumor patient cohort,
hematological cell lines for a hematological cohort, and all cell
lines for a mixed cohort, for example, all of TCGA (Geeleher
et al. 2014a). Future work applying this approach should strongly
consider all of these potential pitfalls.

Expanding to nonsynonymous somatic

mutations and a pan-cancer analysis of

TCGA

Given that cancer research is typically
disease specific, it is likely that themajor-
ity of researchers will be most interested
in applying this approach to a specific
type of cancer, as we have demonstrated
for breast cancer. However, one appeal-
ing prospect of IDWAS is the possibility
of applying such imputation in a pan-
cancer analysis, for example, across all
of TCGA (more than 10,000 samples
from more than 30 cancer types). This
would mean leveraging an unprecedent-
ed quantity of data, thus potentially
identifying drug associationswith rare al-
terations. For example, if one could rea-
sonably expect to find an association
for a somatic mutation that is present in
about 50 TCGA patients, we could be
powered to detect potential biomarkers
that occur at a frequency of <0.3% across
all tumor types. However, naively apply-
ing the models across all of TCGA does
not yield meaningful predictions. This
could be caused by factors such as very
large systematic differences between the
transcriptome of cancers from different
tissues and possible technical effects
due to samples being collected at differ-
ent sites and processed by different
groups (e.g., Supplemental Fig. S9).
Several studies have also suggested that
the comparison of drug response data be-
tween cell lines from different tissues
does not typically produce results consis-
tent with clinical observation (Jaeger
et al. 2015; Yao et al. 2016). Given that
these are cell line–derived predictive

models, we would expect that the same problem exists in this im-
puted TCGA drug data.

However, we found that simply including cancer type as a co-
variate in gene–drug association analysis markedly improved this
situation. Indeed,whencontrolling for cancer type, the association
of ERBB2 and imputed lapatinib response could be recovered with
about the same level of significance across all TCGA, as when as-
sessed in breast cancer samples alone (P = 4.7 × 10−10), and this re-
sult was drug specific (Supplemental Fig. S10). Given this, we
were interested whether any of the small numbers of additional
known gene–drug associations could be recovered when interro-
gating the entire TCGA data set in this way. Thus, we leveraged
the exome sequence data, available formany TCGA samples, to as-
sess whether mutated genes were associated with expected drugs.
We summarized these data at gene level and considered any gene
with a protein coding change to be “mutated”; consequently, we
were more likely to find genes whose inactivation is predictive of
drug response, rather than gain-of-function mutations, which are
rarer. Indeed, the results were consistent with expectation. The
top two associations, when controlling for cancer type, were for
Nutlin-3a and TP53 (P = 2.6 × 10−77) (Fig. 5A; Meijer et al. 2013)

Figure 3. Association between copy number amplification and lapatinib response for genes in ERBB2
amplicon. (A) Boxplot of association of ERBB2 amplification and imputed lapatinib sensitivity. (B) Each
gene was tested for its association between copy number amplification and imputed lapatinib response
in the TCGAbreast cancer cohort (n = 1089). The resulting effect size is plotted for each gene in the ERBB2
amplicon (on Chr17q12). The biggest effect size is for ERBB2, the known causative gene, suggesting that
IDWAS can be used to identify genomic predictors of drug response. Lower values on the y-axis imply
greater lapatinib response in copy number–amplified samples. (C) Scatterplot of the measured lapatinib
response in GDSC (P = 2.7 × 10−3 for the association of ERBB2 amplification and lapatinib IC50 in the
GDSC breast cancer cell lines; n = 13). (D) Similar to B, but for the ERBB2 amplicon in the GDSC cell lines.
ERBB2 is not easily identified as the causative gene; indeed, eight genes have a P-value as low as ERBB2,
and nine genes have an effect size that is as low or lower.
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and for PD-0332991 (a.k.a. Palbociclib) and RB1 (P = 5.3 × 10−40)
(Rocca et al. 2014). As expected, mutations in both of these genes
were strongly associated with resistance to these drugs, and these
associations arehighlygene specific (Fig. 5A,B).Although thenum-
ber of drugs in this data set with known actionable targets is small,
several other expected associations were also recovered using this
approach (Supplemental Table S7); for example, erlotinib and
KRAS (P = 7 × 10−4) (Eberhard et al. 2005), PD-0325901 and BRAF
(P = 1.1 × 10−8) (Henderson et al. 2010),KIT and tyrosine kinase in-
hibitors imatinib (P = 3.9 × 10−9; strongest association for this drug)
(Blanke et al. 2008), nilotinib (P = 4.2 × 10−6; strongest association
for this drug), and sunitinib (P = 0.03) (Demetri et al. 2006).

In addition to controlling for cancer type,we propose another
potentially more effective method for using imputed drug re-
sponse data across a pan-cancer data set. This is a type of correction
that we have previously proposed for effectively discovering clini-
cally relevant pharmacogenomic associations directly in cell line
data. The method relies on modeling the general response of
each sample (in this case, TCGA patients) to many drugs and
then including this estimate as a covariate in subsequent statistical
association analyses.We referred to this as controlling for “general
levels of drug sensitivity” (GLDS; see Methods) (Geeleher et al.

2016a). By use of this approach, most of the top results remain
largely consistent with those observedwhen controlling for cancer
type alone (Fig. 5D,E). There are some other notable changes, for
example, the associations of KRAS and imputed erlotinib response
has improved, as has the specificity of this association (Fig. 5F).
This is because KRAS mutation, a known clinical predictor for
this drug, was heavily confounded by cancer type, thus benefitting
from the GLDS approach, which obviates the need to include can-
cer type as a covariate. Other clinically relevant associations recov-
ered using GLDS (Supplemental Table S8), but not when
controlling for cancer type (with the correct directionality in all
cases) include PLX4720 (a RAF inhibitor) and BRAF (P = 3.1 ×
10−38) (Bollag et al. 2012), SB590885 and BRAF (P = 7.4 × 10−4)
(Barollo et al. 2014), PD-0325901 and BRAF (P = 4.5 × 10−5), and
gefitinib and EGFR (P = 8.6 × 10−3) (Lynch et al. 2004).

The numbers of significant associations identified by this
IDWAS analysis in TCGAwere larger than those that have been re-
ported in previous pharmacogenomics screens, which is not sur-
prising given over an order of magnitude increase in sample size.
The analysis controlling for cancer type and GLDS identified 142
and 263 significant gene–drug associations, respectively (FDR <
0.05; also corrected for the number of drug models). This was of
a total of 123,469 associations tested for 71 drugs exhibiting a
Spearman’s correlation of more than 0.3 in cross-validation and
1739 genes that were mutated in at least 50 TCGA samples.
Some already validated associations were identified with striking
specificity (e.g., Fig. 5), supporting the biological relevance of the
results. However, given the very small number of currently known
pharmacogenomic variants, the vast majority of the associations
identified were novel. This highlights the increase in power that
can be achieved using IDWAS compared with conventional ap-
proaches.While this list will likely contain false positives, these re-
sults provide a valuable starting point for functional validation—
in addition to the validation work we have included in this study.

Using TCGA to study pharmacogenomics and drug response

One final consequence of our work is that TCGA can now be used
to study mechanisms of drug response, similar to drug screening
data sets such as GDSC and CCLE. We have provided imputed
drug response estimates for all TCGA samples, corrected for both
cancer type (Supplemental Table S9) and GLDS (Supplemental
Table S10). Leveraging TCGA as a pharmacogenomics data set
could prove to be a useful resource in several avenues of cancer re-
search. Indeed, following the example of studies like TCGA and
GDSC, we havemade all analyses, code, and results publicly acces-
sible (see Software Availability). This is particularly important in
providing a clear understanding of the merits and limitations of
this complexmethodology, as well as facilitating other researchers
who wish to improve upon or apply these ideas. We also provide
an R package, “idwas,” aimed at facilitating the application of
this approach to data sets other than TCGA.

Discussion

Recent reviews have concluded that computational models built
on cell line–derived data are applicable to the prediction of clinical
response in cancer patient cohorts (Azuaje 2016). It is also now
clear that for drug response and disease prognosis, gene expression
data provide the best predictive potential of any kind of high-
throughput genomics data (Costello et al. 2014; Yuan et al.
2014; Zhao et al. 2015) but are difficult to apply in the clinic

Figure 4. Copy number amplification of ERLIN2 causes vinorelbine resis-
tance. (A) Each genewas tested for its association between CNA and vinor-
elbine response in the TCGA breast cancer cohort (n = 1089). The resulting
effect size is plotted for each gene in Chr8p11.2. The biggest effect is for
ERLIN2, suggesting that amplification of this gene may be causing resis-
tance to vinorelbine. Higher values on the y-axis imply greater vinorelbine
resistance in copy number–amplified samples. (B) Boxplot of association of
ERLIN2 amplification and imputed vinorelbine response in TCGA. Note
that the last box (n > 3) contains only two patients. (C) Percentage of via-
ble CAMA-1 breast cancer cells treated with vinorelbine (solid lines) or un-
treated (broken lines). Viability is compared for ERLIN2-overexpressing cells
(red), cells transfected with an empty plasmid (black), or untransfected
cells (green). As predicted by IDWAS in the TCGA breast cancer patients,
ERLIN2 overexpression causes vinorelbine resistance.
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because of the instability of RNA. By leveraging these observations,
we have developed IDWAS, an analytical method that overcomes
several obstacles currently facing cancer pharmacogenomics re-
search. IDWAS involves creating predictive models of drug re-
sponse in a preclinical setting, where drug response data are
easily obtained, and then using gene expression–based models to
impute drug response in clinical samples—where drug response in-
formation is difficult to obtain. These imputed drug response data
can then be used for discovery of novel pharmacogenomics vari-
ants. The reasonswhy this offers advantages over studying drug re-
sponse in the preclinical setting alone include (1) improved power
due to increased samples sizes, especially when applied to a large
data set like TCGA; (2) the possibility of studying pharmacogeno-
mics in cancers where the number of cell lines (or any preclinical
model) is limited; and (3) ability to leverage classes of data that
are not available in the preclinical setting. Overall, our results
have shown that IDWAS can be used to both recapitulate known
associations and to find new biomarkers of potential clinical rele-
vance. The approachmeans data sets like TCGAcannowbeused to
directly study pharmacogenomics, andwe have identified new po-
tential drug biomarkers that can be used as the basis for functional
validation studies. Furthermore, there are manymore clinical can-
cer genomics data sets upon which this method can be applied,
and the number of these is growing constantly.

Importantly, the methods we have applied for imputing clin-
ical drug response represent the minimum changes over some of
our previously published methods (Geeleher et al. 2014b). The
methods we previously developed were also carefully developed
based on the results of previous benchmarking studies. Here, we
have explicitly avoided fitting multiple models to the data and se-
lecting that which performed best, a practice that leads to irrepro-
ducible results (Head et al. 2015). Thus, there is likely scope to
improve on our proposed implementation of IDWAS, in particular,
the drug imputation models: for example, accounting for the
skewed drug response data that results fromhighly targeted agents
(Geeleher et al. 2014b, 2016b). Further development of imputa-
tion models could be well suited to community challenges, where
competing models are tested on hold-out data sets (Skocik et al.
2016).

The data we present here were gen-
erated using the initial release of the
GDSC cell line data set, which is suitable
to develop and present this methodolo-
gy. However, there are other cell line
data sets (e.g., CCLE, CTRP) that contain
additional drugs, which could be interro-
gated using this methodology. Further-
more, an IDWAS need not be restricted
to building models in cell lines. We are
investigating fitting similar models on
data gathered from mouse patient-de-
rived xenografts (Gao et al. 2015). Anoth-
er exciting new preclinical model is
tumor organoids, although large drug-
screening data sets are yet to be released
(Walsh et al. 2016). Given suitable pre-
clinical data, this means that IDWAS
can be extended to drugs where, for
example, cell lines are not a suitable
model (e.g., an angiogenesis inhibitor)
or where the microenvironment plays a
strong role.

One additional potential application of IDWAS is in predict-
ing drugs that may be effective against new molecular subtypes
of cancer that have been defined by studies like TCGA; we have
not extensively discussed this application here because there are
not yet many validated drug treatment options for these newly
proposed cancer subtypes. We have also reported limitations of
IDWAS, which are important to consider when applying these
types of analyses in the future. Important considerations include
the level of predictability of the drug being studied and how well
the preclinical model is likely to reflect in vivo biology—in terms
of the behavior of both the disease and the drug being studied.
Clinical data sets such as TCGA often have ascertainment biases,
such as favoring large or late-stage tumors. The quality of the
drug screening and preclinical and clinical genomics data are
also clearly key, as no method will overcome poor data; however,
our results support the utility and quality of both the GDSC and
TCGA data sets. Nonetheless, the IDWAS approach should be con-
sidered hypothesis generating, and it should not be assumed that
new associations necessarily represent true positives. While we
have shown that some known clinically actionable gene–drug as-
sociationswere recoveredwith strong specificity, new IDWAS find-
ings still require prospective experimental and clinical work.

This study will likely spawn new avenues of research, such as
optimizing the statistical models used for imputing drug response
and the application of these methods to the many other clinical
cancer sequencing efforts. Overall, IDWAS is a promising novel
methodology that can be used to broaden the utility of existing
cancer genomics data sets, generate new hypotheses, and speed
up pharmacogenomics discovery.

Methods

Batch correcting the TCGA gene expression data set

TCGA gene expression data (The Cancer Genome Atlas Research
Network et al. 2013) were obtained from firebrowse.org. We ob-
tained the Illumina HiSeq RNA-seq v2 data (2015/08/21 release),
which had been summarized at gene level using the RSEM soft-
ware. These TCGA gene expression data were generated at many

Figure 5. Top gene–drug associations recovered across all of TCGA. Histograms showing the associa-
tion between all genes with a somatic protein-coding change in at least 50 samples (n = 1739 genes) in
TCGA and imputed drug response. (A–C) Associations when we control for cancer types; (D–F) associa-
tions when we control for GLDS, rather than cancer type. The canonical clinical target is highlighted in
red; in all cases, the correct target is identified with a very high level of significance and specificity.
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different sequencing centers and thus were processed in many dif-
ferent batches. Hence, to make meaningful comparisons between
these samples, batch correction was performed. Batch IDs are in-
cluded in TCGA, but in some cases, these are perfectly confounded
by cancer type (i.e., all samples from a single tissue have been run
in a single batch), thus correcting for batch ID would render some
of the data useless. Hence, we have implemented a method based
on the “remove unwanted variation” (RUV) principles described
by Risso et al. (2014). This approach models unwanted variation
(e.g., batch effects) using a set of genes referred to as “negative con-
trols,” whose expression is not expected to vary across samples. In
our case, we have identified a set of 250 negative control genes em-
pirically by the set of constitutively expressed genes that exhibit
the lowest variability across all TCGA samples. These genes would
be expected to be affected primarily by technical variability, which
we wish to remove, rather than by both technical and biological
variability, as would be the case for genes showing a higher level
of variability. As suggested by Risso et al. (2014), we calculated
the first 10 principal components of these negative control genes
to capture the unwanted technical variability. To determine a
batch-corrected expression matrix, we then use the residuals of a
generalized linear model (GLM) with Poisson link function, where
these 10 principle components have been (iteratively) regressed
against the expression of every gene. One additional stepwe added
for these data was to calculate the 10 principal components on an
expression matrix that had been standardized (i.e., set mean and
variance of each gene to zero and one, respectively) by cancer
type. This was necessary so as not to remove variability associated
with cancer type, which is substantial and clearly biologically rel-
evant. Code to reproduce this analysis is available in our supple-
mental R code (see Software Availability).

Predictive models of cancer type and imputing drug response

The models used for predicting drug response and cancer type are
ridge regression models based on those that we have previously
described (Geeleher et al. 2014b). Here, the only change that
was necessary was to slightly alter the approach to allow models
fit on microarray data (in cell lines) to be applied to RNA-seq
data (in TCGA). In order to assess which of several plausible ap-
proaches produced the best predictions, we applied a number of
different approaches to a set of breast cancer TCGA samples for
which bothmicroarray and RNA-seq data were available. We com-
pared the microarray-derived prediction using the approach de-
scribed in Geeleher et al. (2014b) to the prediction from the
proposed RNA-seq–based approach, using the microarray-derived
predictions as a gold standard. Only a minor modification of the
method described in Geeleher et al. (2014b) was required to pro-
duce highly comparable results. Specifically, instead of standardiz-
ing the mean and variance of each gene using an empirical
Bayesian approach (designed for microarray data), we standard-
ized the mean and variance of each gene to zero and one, respec-
tively. This modification was included in an updated version of an
R package, pRRophetic (Geeleher et al. 2014a), which we have re-
leased with this paper. A predictive model of cancer type was con-
structed using logistic ridge regression on the GDSC cell lines, and
predictive models used to impute drug response were constructed
using linear ridge regression on the GDSC cell lines (Garnett et al.
2012).

Finding associations between imputed drug response and copy

number/nonsynonymous somatic mutations

The associations between imputed drug response in TCGA and
CNA or somatic mutations were calculated using linear models us-

ing R. CNAs were calculated from TCGA copy number data (Zack
et al. 2013) obtained from firebrowse.org. These data were generat-
ed using Affymetrix SNP 6.0 arrays (2015/08/21 release). We sum-
marized the data at gene level and gave a gene amissing value if the
entire gene was not contained unambiguously within a single
copy number region. These analyses were performed using the
GenomicRanges (Lawrence et al. 2013) package in R. Genes with a
normalized copy number greater than one were considered ampli-
fied. We obtained somatic mutation calls from firebrowse.org
(2016/01/28 release). We summarized these data at gene level
and considered a gene to be mutated in a patient if it contained
any mutation that affects the protein amino acid sequence.
When the gene–drug association analysis was applied across all
of TCGA,we controlled for cancer type by including this as a covar-
iate (encoded as a factor) in the linearmodels.Whenwe controlled
for GLDS, this was calculated as previously described (Geeleher
et al. 2016a) and included as a covariate in the linear models.

Figures and data analysis

Most of the computational analyses were performed using the
Bionimbus Protected Data Cloud (Heath et al. 2014). All basic stat-
istical analyses (linear regression models, correlation tests,
Wilcoxon rank-sum tests) were performedusing the base functions
in R version 3.2.2 (R Core Team 2016). False-discovery rates were
estimated using the Benjamini and Hochberg method. Figures
were created using the base graphics functions or the ggplot2 pack-
age in R and cBioPortal (Gao et al. 2013). Furthermore, given the
complexity of these methods, transparency and reproducibility
of the analysis are essential. Thus, wehave documented all analysis
using R Markdown, which has allowed us to construct a set of
HTML documents using the knitr package (https://www.rforge.
net/doc/packages/knitr/knitr-package.html). For easy reproduc-
tion of results, we have also included a script to automate the
downloading of the same data that we used in our analysis.

ERLIN2 overexpression experiments

Functional validation of the association of ERLIN2 amplification
with vinorelbine resistance was conducted in a human CAMA-1
breast cell line, obtained from the American Type Culture
Collection (ATCC, Manassas). CAMA-1 cells were cultured in
MEM culture medium supplemented with 20% FBS and kept in a
37°C humidified incubator with 5% CO2. Gene overexpression
was performed by independently transfecting ERLIN2 constructed
plasmid pCMV6-AC-GFP-ERLIN2 (catalog no. RG221700) and
control vector pCMV6-AC-GFP (catalog no. PS100010) purchased
from OriGene Technologies. Transfection of the plasmid was
achieved using Lipofectamine 3000 (Invitrogen). Stably transfect-
ed cells were selected by resistance to neomycin (G418) at 200 µg/
mL (Research Products International) for 4wk after a 48-h transfec-
tion. Neomycin-resistant cells were passaged at several different di-
lutions and seeded on 96-well cell culture plate (Corning)
containing 200 µg/mL of neomycin. Cells growing from GFP-pos-
itive single colonies (cloned and stable transfected) were isolated
and expanded. RNA andDNAwere collected to confirm up-regula-
tion of ERLIN2 levels by quantitative RT-PCR (qRT-PCR) using
TaqMan gene expression assay (catalog no. Hs 00200360_m1,
Applied Biosystems) and TaqMan copy number assay (catalog
no. Hs02147573_cn, Applied Biosystems). Cell viability was mea-
sured after 20 nMvinorelbine treatment using theCellTiter-Glo lu-
minescent cell viability assay (Promega). Two-way ANOVA was
performed to compare cell viabilities obtained post vinorelbine
treatment in transfected cells and control cells.
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Software availability

The R scripts to reproduce our analysis are included in our
Supplemental Material. A file “index.html” explains how to run
the scripts, what each of the scripts does, and what order they
should be run. Additionally, all scripts and tools (including updat-
ed R packages) required to reproduce our results and analysis are
available onOpen Science Framework.We have released an updat-
ed version of our R package pRRophetic, available from https://osf.
io/yatu3/ (DOI: 10.17605/OSF.IO/YATU3). A new R package,
idwas, which can be used to apply our method to new data sets,
is available at https://osf.io/5xvsg/ (DOI: 10.17605/OSF.IO/
5XVSG). The scripts to reproduce this analysis are also available
from https://osf.io/pwm4z/ (DOI: 10.17605/OSF.IO/PWM4Z).
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