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Abstract

Endoplasmic reticulum (ER) stress results from imbalances in unfolded/misfolded proteins,

contributing to a wide variety of human diseases. To better understand the mechanisms

involved in the cellular response to ER stress in cardiomyocytes, we previously conducted

a genome-wide screening in an in vitro ER stress model of rat cardiomyocytes, which

highlighted amino acid transporter heavy chain, member 2 (SLC3A2) as an important factor

in ER stress. In the present study, we characterized the role of SLC3A2 during the unfolded

protein response (UPR), as one of the primary pathways activated during ER stress. First,

we confirmed the induction of Slc3a2 mRNA expression following treatment with various ER

stress inducers in rat cardiomyocytes (H9C2) and neural cells (PC12). Knockdown of

Slc3a2 expression with small interfering RNA (siRNA) revealed that the encoded protein

functions upstream of three important UPR proteins: ATF4, ATF6, and XBP1. siRNA-medi-

ated knockdown of both SLC3A2 and mammalian target of rapamycin 1 (mTOR1) revealed

that mTOR1 acts as a mediator between SLC3A2 and the UPR. RNA sequencing was then

performed to gain a more thorough understanding of the function of SLC3A2, which identi-

fied 23 highly differentially regulated genes between the control and knockdown cell lines,

which were related to the UPR and amino acid transport. Notably, flow cytometry further

showed that SLC3A2 inhibition also enhanced the apoptosis of rat cardiomyocytes. Taken

together, these results highlight SLC3A2 as a complex, multifunctional signaling protein that

acts upstream of well-known UPR proteins with anti-apoptotic properties, suggesting its

potential as a therapeutic target for ER stress-related diseases.

Introduction

Endoplasmic reticulum (ER) stress is involved in the development and pathology of various

human diseases, including neurodegeneration, type 2 diabetes mellitus, Alzheimer’s disease,

and cardiovascular disease. In eukaryotic cells, the ER is the primary site of protein

PLOS ONE | https://doi.org/10.1371/journal.pone.0208993 December 28, 2018 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Liu C, Li X, Li C, Zhang Z, Gao X, Jia Z, et

al. (2018) SLC3A2 is a novel endoplasmic

reticulum stress-related signaling protein that

regulates the unfolded protein response and

apoptosis. PLoS ONE 13(12): e0208993. https://

doi.org/10.1371/journal.pone.0208993

Editor: Salvatore V Pizzo, Duke University School

of Medicine, UNITED STATES

Received: January 11, 2018

Accepted: November 28, 2018

Published: December 28, 2018

Copyright: © 2018 Liu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The deep sequencing

data has been uploaded to NCBI GenBank

Sequence Read Archive (SRA) and the accession

numbers are: SRR7586413 and SRR7586415.

Funding: This study was supported by Chinese

PLA General Hospital Medical Large Data Project

(No. 2016MBD-002), Chinese PLA General

Hospital Translational Medicine Project (No. 2016-

TM-013), Major International Science and

Technology Cooperation Projects (No.

2013DFA31170) and National Key Technologies

http://orcid.org/0000-0002-0260-8074
https://doi.org/10.1371/journal.pone.0208993
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208993&domain=pdf&date_stamp=2018-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208993&domain=pdf&date_stamp=2018-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208993&domain=pdf&date_stamp=2018-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208993&domain=pdf&date_stamp=2018-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208993&domain=pdf&date_stamp=2018-12-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0208993&domain=pdf&date_stamp=2018-12-28
https://doi.org/10.1371/journal.pone.0208993
https://doi.org/10.1371/journal.pone.0208993
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


biosynthesis as well as the early maturation steps for various proteins in the secretory pathway.

This includes the folding of newly synthesized polypeptide chains and the addition of post-

translational modifications that are essential for protein function. In fact, most nascent poly-

peptides are translocated in an unfolded state to the ER lumen, where they are then processed

for folding. The balance between this inflow of unfolded proteins and the folding capacity of

the ER is critical for cellular health [1, 2]. However, when ER function is disrupted and the

inflow of unfolded proteins exceeds its processing capabilities, ER stress occurs. This stress in

turn leads to the activation of a series of adaptive pathways known as the unfolded protein

response (UPR), which is an attempt to maintain ER homeostasis. The molecular pathways

defining UPR induction have been well characterized, mainly involving the activation of sev-

eral key transcription factors, including activating transcription factor (ATF)4, ATF6, and X

box-binding protein 1 (XBP1) [3,4]. These transcription factors subsequently enhance the syn-

thesis of proteins involved in protein stabilization, ER-associated degradation, and other path-

ways that reduce the ER load. Unfortunately, ER dysfunction also affects many other aspects of

cell physiology and secretion, and accumulation of unfolded or misfolded proteins resistant to

proteasomal degradation in the ER can completely disrupt cellular function, resulting in apo-

ptosis. Despite extensive research on these processes, several aspects of the mechanism under-

lying the cellular response to ER stress and the UPR remain unknown. Although the precise

mechanisms remain poorly understood, several studies have shown that many of the genes

highly expressed during ER stress are related to amino acid transporter heavy chain, member 2

(SLC3A2) signaling [5–8]. Indeed, our previous study using a tunicamycin (TM)-induced rat

cardiomyocyte model of ER stress showed a time-dependent increase in the expression of 11

ER stress-related genes, including Slc3a2 as the most highly expressed overall [9]. SLC3A2 is a

transmembrane cell-surface protein of the solute carrier family, which plays a role in the trans-

port of L-type amino acids and in the regulation of intracellular calcium [10,11]. However, the

localization and underlying mechanism of action of this protein during ER stress have not

been fully elucidated.

Thus, in the present study, we further explored the role of SLC3A2 in this response by

determining its change in expression under stimulation of ER stress factors in rat cardiomyo-

cytes and neural cells. We investigated the specific roles of SLC3A2, ATF4, and XBP1 in ER

stress and the UPR by inhibiting their expression in rat cardiomyocytes through transfection

of specific small interfering RNA (siRNA). We further examined the influence of SLC3A2

inhibition on apoptosis and the expression of UPR-related genes. In addition, LAPTM4b was

reported to recruit LAT1-4F2hc (SLC7A5-SLAC3A2) to the lysosomes, leading to the uptake

of Leu, and is required for mammalian target of rapamycin (mTOR1) activation [12]. Thus, to

further characterize how SLC3A2 regulates the ER stress response, we examined the potential

involvement of mTOR1. Finally, RNA-sequencing (RNA-seq) analysis was performed to

determine the gene profile under SLC3A2 inhibition to further identify its general function.

These results are expected to provide further insight into the molecular mechanism regulating

the ER stress response, which can highlight targets for the diagnosis, treatment, and prevention

of related diseases.

Materials and methods

Cell culture and treatments

H9C2 cells (rat cardiomyocytes) were purchased from the cell bank of Peking Union Medical

College Hospital (Beijing, China) and were grown in Dulbecco’s modified Eagle’s Medium

(DMEM) (Gibco) supplemented with 10% fetal bovine serum (FBS). PC12 cells (rat neuronal

cells) were grown in DMEM supplemented with 10% FBS and 5% horse serum. The cells were
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transfected with the following rat-specific siRNAs (Sangon Biotech) using Lipofectamine

RNAi MAX reagent (Invitrogen) according to the manufacturer’s protocol: Slc3a2 sense

GGACCUCACUCCCAACUAUTT, antisense AUAGUUGGGGAGUGAGGUCCTT; Atf4 sense

GCUGCUUUAUAUUUUACUUCUAATT, antisense UUAGAGUAAUAUAAGCAGCTT; Atf6 sense

GCAGUCGAUUAUCAUAUATT, antisense UAUACUGAUAAUCGACUGCTT; and Xbp1 sense

CAAGCUGGAAGCCAUUAAUTT, antisense AUUAAUGGCUUCCAGCUUGTT. ER stress and the

consequent UPR was induced in H9C2 cardiomyocytes and PC12 neuronal cells with 10 μM

TM (an N-linked glycosylation inhibitor), 5 μM thapsigargin (TG; a sarco-endoplasmic

Ca2+-ATPase inhibitor), and 1 mM dithiothreitol (DTT; reduces disulfide linkages). Apoptosis

was induced with 5 μM TG for 24 h.

Immunofluorescence

For SLC3A2 and ATF4 immunostaining, cells were grown on glass coverslips, fixed with for-

malin, and treated with primary antibodies against SLC3A2 (Santa Cruz Biotechnology, sc-

390154) and ATF4 (Abcam, ab194909) diluted in phosphate-buffered saline; 5% bovine serum

albumin was added to block non-specific reactions. Following washing and incubation with

the corresponding secondary antibody, nuclei were counterstained with 40,6-diamidino-2-phe-

nylindole. Immunofluorescence was visualized using a Leica fluorescence microscope.

Reverse-transcription-quantitative polymerase chain reaction (RT-qPCR)

RNA was isolated using RNeasy columns (Qiagen) per the manufacturer instructions. In brief,

the cells (1 × 107) were lysed with Qiazol Lysis Reagent (Qiagen). The tube was then placed at

room temperature for 5 min, and the sample was vortexed with 140 μL chloroform for 15 s,

followed by centrifugation for 15 min at 12,000 ×g at 4˚C. The upper fraction was transferred

to a new tube, and a 1.5-volume of ethanol was added. After mixing, 700 μL of the sample was

transferred to an RNeasy Mini spin column and centrifuged for 1 min at 8,000 ×g. The sample

was transferred to a new 1.5-mL collection tube and 30 μL RNase-free water was added, fol-

lowed by centrifugation for 1 min at 8,000 ×g to obtain the RNA as the pellet. The RNA quality

was assessed using an Agilent Bioanalyzer Nano RNA Chip based on a 260/280 nm absorbance

ratio of 1.8–2.0. High-quality RNA was then reverse-transcribed to cDNA with SuperScript III

(Invitrogen), and the mRNA expression levels were assessed using the cDNA as a template

using SYBR Green with the following primers: β-actin (forward: TAAAGACCTCTATGCCAAC
ACAGT, reverse: CACGATGGAGGGGCCGGACTCATC); Slc3a2 (forward: ACTTGGCTGAGTGGC
AGAAT, reverse: AGATCGCTGGTGGATTCAAG); ATF4 (forward: CATTCCTCGATTCCAGCAA
AGCAC, reverse: TTCTCCAACATCCAATCTGTCCCG); Atf6 (forward: AGAGAAGCCTGTCACT
GGTC, reverse: TAATCGACTGCTGCTTTGCC); and spliced Xbp1 (forward: CCGCAGCAGGT
GCAGG, reverse: GAGTCAATACCGCCAGAATCCA). The relative mRNA expression level of

each target gene was normalized to that of β-actin, and calculated using the 2–ΔΔCt method.

Flow cytometry analysis of apoptosis

Apoptotic cells were identified using an Annexin V-fluorescein isothiocyanate (FITC)/propi-

dium iodide (PI) apoptosis detection kit (BD Biosciences Pharmingen) according to the manu-

facturer’s protocol. In brief, the cells were suspended in 100 μL of binding buffer and stained

with 5 μL of FITC-conjugated Annexin V and 5 μL PI for 15 min at room temperature in the

dark. Samples were analyzed with a C6 flow cytometer (BD Biosciences), and the data were

analyzed quantitatively with FlowJo software (Version 7.6.5).

SLC3A2 in ER stress-induced UPR and apoptosis
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RNA-seq and data analysis

We used RNA-seq to identify other downstream targets of SLC3A2, using three treatment

groups: non-treated control cells, cells transfected with scrambled siRNA and exposed to TG

to induce ER stress, and cells transfected with Slc3a2 siRNA and exposed to TG. Samples with

an RNA integrity number >8 were considered to be of suitably high quality for RNA-seq.

Sequencing libraries were prepared using an Illumina TruSeq Stranded Total RNA kit with

Ribo-Zero Gold rRNA depletion and were sequenced on an Illumina HiSeq 2000 (paired-end,

100 base pairs, >50 M reads per sample; Rapid Run v2 flow cell).

Raw read data in fastq format were first processed using in-house Perl scripts. Adaptor

sequences and low-quality reads were removed. The raw sequences were further processed to

obtain clean reads, which were mapped to the reference genome sequence. Only reads with

one or fewer mismatches were further analyzed and were annotated based on the reference

genome. Prior to differential gene expression analysis, the read counts for each sequence

library were adjusted with the edgeR program package using a scaling factor. Differential

expression was analyzed using the DEG seq R package according to false discovery rate-

adjusted p-values (q-values) were used: a gene was considered to be differentially expressed

when q< 0.005 and |log2(fold change)|� 1. Heatmaps were generated using the HemI 1.0—

Heatmap illustrator. Samples were clustered using complete linkage and Pearson’s correlation.

The DAVID (https://david.ncifcrf.gov) tool was used for gene ontology (GO) enrichment anal-

ysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation [13,14] of

the identified differentially expressed genes.

Statistical analysis

All data, except for the RNA-seq data, are expressed as the mean ± standard deviation. One-

way analysis of variance was used for multiple comparisons. Differences were considered sig-

nificant at a p< 0.05. All experiments were replicated at least three times.

Results

ER stress activators induce SLC3A2 expression

After induction of ER stress in H9C2 cardiomyocytes and PC12 neuronal cells with TM, TG,

and DTT [15]. RT-qPCR and western blotting confirmed that SLC3A2 gene and protein

expression was robustly induced (Fig 1A). Similar expression trends were observed for GRP78,

a UPR marker, confirming the induction of ER stress and the UPR (Fig 1B). These data indi-

cated that SLC3A2 is a novel member of the ER stress response.

Subcellular localization of SLC3A2

SLC3A2 is a transmembrane glycoprotein that is primarily localized to the plasma membrane.

Immunostaining in H9C2 cells revealed that SLC3A2 is primarily localized in the cytosolic

compartment rather than the nucleus, similar to ATF4 (Fig 2). Next, we examined whether TG

treatment would affect SLC3A2 and ATF4 localization. While ATF4 was translocated to the

nucleus, SLC3A2 remained distributed in the cytosol upon TG treatment, indicating that the

location of SLC3A2 protein is not affected by ER stress.

SLC3A2 acts upstream of the UPR

To characterize the signal transduction pathways affected by SLC3A2 upregulation, we exam-

ined the effect of siRNA-mediated Slc3a2 knockdown on various UPR genes. Slc3a2 knock-

down inhibited the expression of the downstream genes Atf4, Atf6, and Xbp1 (Fig 3A),

SLC3A2 in ER stress-induced UPR and apoptosis
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indicating that the UPR is largely disrupted when SLC3A2 is inhibited. To validate the position

of Slc3a2 upstream of Atf4, Atf6, and Xbp1, the corresponding genes were individually

knocked down with siRNA. Xbp1 knockdown did not affect the response of Slc3a2 expression

following TG stimulation. As an activating transcription factor inhibiting the translocation of

Fig 1. SLC3A2 is induced by ER stressors. SLC3A2 and GRP78 (A) mRNA and (B) expression as assessed by RT-qPCR and

western blot analysis, respectively, in H9C2 and PC12 cells treated with DTT, TM, or TG for 4 h and in non-treated cells as controls.
���p< 0.001.

https://doi.org/10.1371/journal.pone.0208993.g001
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other factors, including ATF4, Atf6 knockdown prevented the increase in Slc3a2 expression

following TG stimulation (Fig 3B).

mTOR functions as a mediator between SLC3A2 and the UPR

siRNA-mediated Slc3a2 knockdown inhibited mTOR1 expression, whereas pharmacological

inhibition of mTOR1 with rapamycin elevated SLC3A2 expression (Fig 4A). These data sug-

gested that SLC3A2 activation does not depend on mTOR1, but that SLC3A2 instead acts

upstream of mTOR1.

Inhibition of mTOR1 led to a decrease in the UPR markers Atf4, Atf6, and Xbp1 expression.

Therefore, these genes were individually knocked down with specific siRNAs to determine the

effects on mTOR1 expression. Knockdown of Atf4, Atf6, and Xbp1 caused a decrease in

mTOR1 expression following TG stimulation (Fig 4B). These data suggested that mTOR1

plays a role in the UPR.

SLC3A2 inhibition promotes apoptosis

Given the link between UPR and apoptosis, the effect of SLC3A2 inhibition on ER stress-

induced apoptosis was evaluated. Microscopic analysis indicated that the number of live cells

was significantly decreased following treatment with TG, and a further decrease in live cells

was observed following treatment with both TG and Slc3a2 siRNA (Fig 5A). Flow cytometry

analysis corroborated that apoptosis was significantly induced in cells treated with TG for 24

h, and even more so when SLC3A2 was additionally knocked down (Fig 5B). These data

Fig 2. Subcellular localization of SLC3A2 in H9C2 cells is not affected by ER stress. Cells were immunostained with anti-SLC3A2

and anti-ATF4 antibodies, and nuclei were counterstained with DAPI. The fluorescence intensity was determined by confocal

microscopy after 4 h of exposure to dimethyl sulfoxide (DMSO; control) or TG. Staining with or without SLC3A2 primary

antibodies was performed as a positive or negative control.

https://doi.org/10.1371/journal.pone.0208993.g002
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Fig 3. SLC3A2 knockdown inhibits Atf4, Atf6, and Xbp1 mRNA expression following ER stress. (A) Atf4, Atf6, Xbp1, and Slc3a2 mRNA levels were

measured by RT-qPCR in TG-treated and non-treated H9C2 cells pretreated with Slc3a2-siRNA or scrambled control. Target mRNA levels were

normalized to β-actin expression. ���p< 0.001. (B) Slc3a2 mRNA levels were measured by RT-qPCR in TG-treated and non-treated H9C2 cells

pretreated with siRNAs targeting Atf4, Atf6, or Xbp1, or scrambled control. Slc3a2 mRNA expression was normalized to β-actin expression. ��p< 0.01,
�p< 0.05.

https://doi.org/10.1371/journal.pone.0208993.g003

SLC3A2 in ER stress-induced UPR and apoptosis
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Fig 4. SLC3A2 knockdown inhibits mTOR1, and mTOR1 interacts with the UPR. Atf4, Atf6, Xbp1, and Slc3a2 mRNA levels were measured by RT-qPCR in TG-treated

and non-treated H9C2 cells pretreated with rapamycin, Slc3a2-siRNA, or scrambled control siRNA. Target mRNA levels were normalized to β-actin expression.
���p< 0.001. mTOR1 mRNA levels were measured by RT-qPCR in TG-treated and non-treated H9C2 cells that were pretreated with siRNAs targeting Slc3a2, Atf4, Atf6,

or Xbp1, or scrambled control. Target mRNA levels were normalized to β-actin expression. �p< 0.05.

https://doi.org/10.1371/journal.pone.0208993.g004

SLC3A2 in ER stress-induced UPR and apoptosis
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Fig 5. SLC3A2 knockdown increases TG-induced cardiomyocyte apoptosis. (A) Microscopic analysis of live cells following

treatment with Slc3a2 siRNA or scrambled control. (B) Flow cytometry analysis of apoptosis in TG-treated and non-treated H9C2

cells pretreated with Slc3a2 siRNA or scrambled control. The cell population in the Q4 quadrant (Annexin V–/PI–) represents live

cells, whereas the populations in the Q3 quadrant (Annexin V+/PI–) and the Q2 quadrant (Annexin V+/PI+) represent early- and

late-apoptotic cells, respectively. The cell population in the Q1 quadrant (Annexin V–/PI+) represents necrotic cells. The sum of

early- and late-apoptotic cells from three independent experiments is shown. ���p< 0.001 vs. control; ###p< 0.001 vs. TG treatment.

https://doi.org/10.1371/journal.pone.0208993.g005

SLC3A2 in ER stress-induced UPR and apoptosis
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suggest a critical function of SLC3A2 as an anti-apoptotic factor during ER stress-induced

apoptosis.

Downstream targets of SLC3A2

In siRNA control cells, there was a robust increase in the expression of well-characterized

components of the UPR following TG treatment. Comparison of gene expression profiles

between cells with and without SLC3A2 knockdown, 23 genes were found to be differentially

expressed under TG-induced ER stress. This gene list included fatty acid-binding protein 3

(Fabp3), proline-serine-threonine phosphatase-interacting protein 2 (Pstpip2), transmem-

brane protein 56 (Tmem56), decorin (Dcn), oxidative stress-induced growth inhibitor 1

(Osgin1), platelet-activating factor receptor (Ptafr), histone cluster 1 H1 family member d

(Hist1h1d), exostosin-like glycosyltransferase 1 (Extl1), mesothelin (Msln), Slc3a2, endoplas-

mic reticulum protein 29 (Erp29), histone cluster 1, H2bq (Hist1h2bq), DNA damage-induc-

ible transcript 3 (Ddit3, also known as Chop), grainyhead-like transcription factor 1 (Grhl1),

DNAJ heat shock protein family (Hsp40) member B9 (Dnajb9), Hsp40 member C3 (Dnajc3),

solute carrier family 6 member 9 (Slc6a9), interaction protein for cytohesin exchange factors 1

(Ipcef1), SH3 domain and tetratricopeptide repeats 2 (Sh3tc2), maestro heat-like repeat family

member 1 (Mroh1), nuclear receptor-interacting protein 2 (Nrip2), gamma-glutamyltranspep-

tidase 1 (Ggtl), and fasciculation and elongation protein zeta 1 (Fez1) (Fig 6A). GO analysis of

this set of genes revealed strong enrichment for ER lumen, misfolded protein binding, and

amino acid transport (Fig 6B). We next analyzed this gene set using Ingenuity Pathway Analy-

sis [16,17] to identify signaling networks that are specifically blocked by SLC3A2 (Fig 6C).

These unbiased functional analyses revealed that the set of differentially expressed genes was

largely involved in signaling pathways involved in ER protein processing.

Discussion

ER stress plays a significant role in numerous diseases; however, the role of various proteins in

the cellular response to ER stress is largely unknown. In the present study, we characterized

the regulation and function of SLC3A2 in this process, based on our previous finding of its

upregulation in rat cardiomyocytes during ER stress. Our data clearly indicated that SLC3A2

is an ER stress-induced protein, possibly acting upstream of ATF4, ATF6, and XBP1 in the

UPR, and has anti-apoptotic effects. The role of SLC3A2 in the UPR was further highlighted

by its ability to activate ATF4, ATF6, and XBP1, all of which play a critical role in the UPR sig-

naling pathway [18]. Indeed, Slc3a2 knockdown was sufficient to prevent Atf4, Atf6, and Xbp1
expression. Furthermore, SLC3A2 inhibited the expression of mTOR1, which was found to

interact with ATF4, ATF6, and XBP1. These data suggested that SLC3A2 functions upstream

of mTOR and UPR, and SLC3A2 suppression results in a cascade response that affects multiple

aspects of the UPR.

Various UPR proteins are involved in transmembrane transport [19]. As unfolded protein

levels rise in the ER, cytoplasmic proteins can move toward the nucleus, where they activate

the transcription of a range of target genes. Based on the results of this study, SLC3A2 protein

is primarily expressed in the cytoplasm, and its localization was not affected by TG treatment.

These data indicated that SLC3A2 is not translocated to the nucleus in the UPR signaling

cascade.

ER stress can ultimately result in apoptosis. If ER stress is excessive and prolonged, the ER

protective mechanism is not sufficient to restore ER function, and cells subsequently enter

apoptosis. ATF4-CHOP pathway activation is a key event in ER stress-induced cell death.

Overexpression of CHOP induces cell cycle arrest and apoptosis. Caspase-12, which is

SLC3A2 in ER stress-induced UPR and apoptosis
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Fig 6. SLC3A2 knockdown suppresses transactivation of UPR. (A) Heatmap of genes differentially expressed

between control (left), scramble siRNA + TG-treated (middle), and Slc3a2 siRNA + TG-treated (right) cells. The data

are log2-transformed. Statistical criteria for differential expression were a fold change� 2 and a false discovery rate

(FDR)< 0.05. (B) GO analysis using DAVID for the genes shown in (A). An FDR< 0.05 was considered statistically

significant. (C) Ingenuity Pathway Analysis of the genes differentially expressed in the Slc3a2 siRNA-treated group

revealing enrichment in signaling networks involved in protein processing in the ER. Genes most highly enriched in

ER-related processes are indicated by a red star.

https://doi.org/10.1371/journal.pone.0208993.g006
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localized on the ER membrane, is specifically activated in the ER stress-related apoptosis path-

way. Bcl-2, located in the ER, is also involved in the regulation of apoptosis pathways in

response to ER stress [20–22]. Thus, to fully understand the role of SLC3A2 in ER stress and

the UPR, we examined the influence of its knockdown on apoptosis. As expected, TG induced

apoptosis, whereas SLC3A2 knockdown promoted apoptosis as assessed by flow cytometry.

This was confirmed with direct microscopic observation of live and dead cells based on differ-

ential staining. These data indicated that SLC3A2 may function to protect injured cells against

apoptosis. Furthermore, RNA-seq analysis demonstrated that SLC3A2 knockdown also sup-

pressed a subset of ER stress-activated genes. GO analysis of these genes revealed that they

were involved in biological processes such as ER UPR, response to unfolded protein, regula-

tion of transcription from RNA polymerase II promoter, and negative regulation of protein

kinase activity. The molecular functions assigned to the differentially expressed genes included

misfolded protein binding, protein kinase inhibitor activity, chromatin DNA binding, protein

binding, and chaperone binding. These data suggest that SLC3A2 acts upstream of the UPR,

and SLC3A2 suppression results in a cascade response that affects multiple aspects of the UPR

[23].

As SLC3A2 was initially discovered as a transporter of L-type amino acids, it was not sur-

prising that its knockdown also affected genes involved in amino acid transport and regulation

of transcription from RNA polymerase II. Based on its previously reported functions, it is pos-

sible that SLC3A2 interacts with proteins such as integrins to regulate target genes via RNA

polymerase II release, or to regulate the function of protein kinases such as Src family kinase

and tyrosine kinases [24–26]. While the exact function of SLC3A2 in the ER stress response

requires further exploration, our findings indicate that the signature of SLC3A2-regulated

genes is specifically related to protein processing in ER signaling pathways.

In conclusion, we evaluated the role of SLC3A2 in ER stress using an in vitro model. Our

data highlight SLC3A2 as a novel ER stress-induced protein that is located in the cytoplasm

and acts as an important factor in the upstream UPR. SLC3A2 also appears to protect cells

against apoptosis via a CHOP-independent mechanism. To our knowledge, this is the first

study to evaluate the role of SLC3A2 during ER stress. Although more studies are needed to

fully elucidate the mechanism, the present study provides important insights into the role of

SLC3A2 in the regulation of the ER stress-related UPR, suggesting a potential target for treat-

ment of ER stress-related diseases.
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