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Abstract

Phlebotomine sand flies transmit many viral protozoan and bacterial pathogens of public

health importance. Knowledge of the ecologic factors influencing their distribution at local

scale can provide insights into disease epidemiology and avenues for targeted control. Ani-

mal sheds, termite mounds and houses are important peri-domestic and domestic habitats

utilized by different sand flies as resting or breeding habitats. However, our knowledge for

selection of these habitats by sand flies remains poor. Here, we tested the hypothesis that

these habitat types harbor different composition of sand fly species and differ in their volatile

chemistry that could influence sand fly selection. To achieve this, we employed CDC light

traps following a cross-sectional survey to investigate the distribution of sand flies in the

three habitats in an endemic site for leishmaniasis in Kenya. The study was carried out dur-

ing the dry season, when sand flies are optimally abundant in 2018 and 2020. Sand fly abun-

dance did not vary between the habitats, but species-specific differences in abundance was

evident. Measures of sand fly community structure (Shannon diversity and richness) were

highest in animal shed, followed by termite mound and lowest inside human dwelling

(house). This finding indicates broader attraction of both sexes of sand flies and females of

varying physiological states to animal sheds potentially used as breeding or resting sites,

but also as a signal for host presence for a blood meal. Furthermore, gas chromatography-

mass spectrometric analysis of volatiles collected from represented substrates associated

with these habitats viz: human foot odor on worn socks (houses indoors), cow dung (animal

sheds) and termite mounds (enclosed vent), revealed a total of 47 volatile organic com-

pounds. Of these, 26, 35 and 16 were detected in human socks, cow dung and enclosed ter-

mite vent, respectively. Of these volatiles, 1-octen-3-ol, 6-methyl-5-hepten-2-one, α-pinene,

benzyl alcohol, m-cresol, p-cresol and decanal, previously known as attractants for sandflies

and other blood-feeding insects, were common to the habitats. Our results suggest that hab-

itat volatiles may contribute to the composition of sand flies and highlight their potential for

use in monitoring sand fly populations.
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Author summary

Understanding the ecology of sand flies is critical to developing control measures. An

important ecologic adaptation of sand flies is their selective use of habitats as resting or

breeding habitats. However, the basis for this preference is not fully understood. Here, we

sought to understand the distribution of sand flies in three different habitats namely ani-

mal shed, human dwelling (houses indoors) and termite mound, and analyzed the chemi-

cal cues associated with these habitats. The study was conducted in Rabai village in

Baringo County, Kenya, endemic for visceral and cutaneous leishmaniasis. By analyzing

sand flies surveyed at different time points during the dry season, we found that sand fly

abundance and diversity varied between the habitats. We collected and analyzed volatile

organic compounds from represented substrates associated with these habitats and found

commonality in some compounds previously known as attractants for sand flies across

the habitats. These volatiles may contribute to the composition of sand flies in these habi-

tats that can potentially be exploited in sand fly surveillance and control purposes.

Introduction

Phlebotomine sand flies are dipterans belonging to the family Psychodidae. They transmit

many viral, protozoan and bacterial pathogens of public health importance. Notably, is their

vectoring role of leishmaniasis, a neglected tropical disease which causes substantial morbidity

and mortality in many parts of the world. Leishmaniasis has three clinical forms, namely, vis-

ceral leishmaniasis (VL), cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis

[1,2]. The disease is prevalent in much of eastern Africa including Kenya where VL and CL

occur [2,3]. Recent reports have shown that the geographic range of VL in Kenya is expanding,

with ~900 new cases annually [4] and case fatality rate of up to 7% in an outbreak situation

[4,5]. Repeated outbreaks of VL in previously non-endemic areas have been reported in north-

ern Kenya [6]. Most recent CL epidemics in Kenya were reported in Gilgil, Nakuru County in

the Rift Valley area [7,8].

Control of leishmaniasis relies largely on chemotherapy to treat infected humans. However,

the efficacy of this option is variable as the drugs used are toxic and expensive including

reports of parasite resistance to the available drugs [9,10]. Licensed vaccines against leishmani-

asis are non-existent [11]. Insecticides are a major tool for vector-borne disease control includ-

ing leishmaniasis targeting sand flies [12,13]. Yet, in many foci, sand fly control is often a by-

product of anti-malarial vector control [14]. In Kenya, leishmaniasis control largely focuses on

case management with minimal sand fly control mainly in response to outbreaks. The increas-

ing public health impact of leishmaniasis calls for the need to develop integrated vector man-

agement (IVM) strategies for prevention and control of sand flies.

New ways of controlling leishmaniasis can be achieved through improved understanding of

sand fly behavioral ecology especially resting and breeding habitats. Control of sand flies has

been attempted using insecticides, environmental management or other biocontrol agents

(e.g., Metarhizium anisopliae) targeting peri-domestic and non-domestic resting/breeding

habitats [12,13]. The resting ecology is complex as sand flies utilize a variety of habitats includ-

ing cracks and crevices, caves, tree holes, rock walls, a stonewall, termite mounds, human habi-

tations, animal sheds, animal burrows and Acacia species [15,16]. However, preference for

these ecological sites exists among different vector species and has been exploited in targeted

control. For instance, there have been attempts to control Phlebotomus orientalis in Sudan
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through experimental research by spraying Acacia woodlands with insecticides because of its

strong association with this plant [16,17]. Previous reports noted the importance of house

spraying with residual insecticides where vectors were domestic [12–14]. Other examples

include spraying insecticides on large tree trunks, the preferential resting site to experimentally

control Lutzomyia in Neotropical forests [18], rodent burrows used as resting and breeding

sites for Phlebotomus papatasi, and termite mounds preferentially utilized by Phlebotomus
martini as resting/breeding sites [9,19]. Environmental management targeting suitable habitats

in Brazil has been shown to impact sand fly abundance and Leishmania infection rates [20,21].

The epidemiologic significance calls for improved understanding about variation in this

behavioral adaptation among sand fly species.

In Kenya, Baringo County in the Rift Valley, is the only known leishmaniasis focus where

both VL and CL forms of the disease co-occur [2]. The vectors of VL and CL are P. martini
Parrot and Phlebotous duboscqi Neveu-Lemaire, respectively, in this focus, which has allowed

for comparative studies of their bio-ecology in relation to leishmaniasis transmission dynam-

ics. Previous studies in this locality observed that human habitations, termite mounds and ani-

mal sheds were among resting habitats of epidemiologic importance for these sand fly species

[22–25]. Differential sand fly composition and abundance patterns as well as seasonality in

these resting sites have also been recorded [22,24], although the basis for this trend is poorly

understood.

In this study, we tested the hypothesis that the composition of sand flies varies in different

habitats and that the habitats differ in their volatile chemistry that could influence sand fly

selection.This concept is well founded following evidence of attraction of hematophagous flies

including sand flies to volatile sources including animal skin [26–28] and host metabolites

such as faeces [29], urine [30], as well as habitats [31]. To achieve this, we investigated two spe-

cific objectives: i) to assess and compare the sand fly abundance and diversity patterns in the

three selected habitat types (houses indoors, termite mound, animal shed), and ii) explore the

volatile organic compounds associated with these habitats.

Materials and methods

Ethics statement

Approval for the study was sought from the Scientific Ethics and Review Committee of the

Kenya Medical Research Institute (SERU-KEMRI) (Protocol number: 3312). Additionally,

verbal consent was obtained from the chief of Rabai village and heads of households selected

for sampling sand flies from houses indoors and outdoors.

Study site

Field survey of sand flies was conducted in Rabai village (0.45866 N, 35.9889 E) located near

Marigat town, Baringo County (Fig 1). Marigat sub-county is a semi-arid ecology situated at

ca.1000 m above sea level and ~ 250 km north-west of Nairobi, Kenya (Fig 1). Mean annual

rainfall in the area is around 300–700 mm, with nightly temperatures of 16˚C and maximum

daily temperatures of 42˚C [32]. The vegetation types include scattered Acacia trees, Cactus

plants, Balanites spp, Prosopis juliflora trees and Commiphora bushes. Rabai is endemic for CL

and VL and known to harbor both P. duboscqi and P. martini among a host of other Sergento-
myia species [9]. Houses in Rabai are commonly of two types: corrugated zinc/iron or mud

wall with thatched or corrugated zinc roof. Over 60% of the inhabitants own livestock mainly

cows, sheep, chicken and goats (being predominant). In addition, there are numerous termite

mounds interspersed throughout the landscape [24]. Animal sheds are generally located out-

doors and close to houses.
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Sand fly sampling and processing

We employed a cross sectional survey of sand flies conducted in December 2018 and January

2020 during the dry season. Adult phlebotomine sand flies were sampled using CDC light

traps (Model 512, John W. Hock Company, Gainesville, Florida, USA). This trapping tool has

been shown to effectively target Phlebotomus and diverse Sergentomyia species [24]. Between

3–4 traps were deployed daily in each habitat (animal shed, houses indoors and termite

mound) for eight consecutive nights. Only one trap was set up in each habitat type at a given

time. Trapping in new habitats were targeted daily. Traps were positioned at 50–100 m inter-

vals along a transect (indoor households, and outdoor in the termite mound and animal shed)

with each trap position georeferenced using a handheld Global Positioning System (GPS)

device (Garmin etrex 20). Traps were set at a height of approximately 30–50 cm above the

ground (Fig 2). Traps were set up around 18:00 h and retrieved at 06:00 h the following day.

The number of trap nights were 36, 10 and 34 for termite mounds, animal sheds and houses

indoors, respectively, in December 2018. Trap nights in January 2020 were 22, 14 and 24 for

termite mounds, animal shed and houses indoors, respectively. Captured sand flies were

knocked down using triethylamine for sorting. Thereafter, they were stored in liquid nitrogen

and transported to the laboratory at the International Centre of Insect Physiology and Ecology

(icipe), Nairobi for storage at −80˚C until further processing.

Sand fly species identification

For each sand fly specimen, the head and genitalia were excised and mounted on a slide and

cover slip using Berlese’s medium. One day after allowing the slides to dry, species level identi-

fication was achieved by microscopically observing cibarial armatures (Phlebotomus or Sergen-
tomyia), male genitalia or female spermathecae and pharynx using established morphological

keys [33,34].

Fig 1. Map of Marigat sub-county, Baringo County, Kenya showing the study site. The map was designed using

ArcMap 10.2.2. With the ocean and lakes base layer derived from Natural Earth (http://www.naturalearthdata.com/, a

free GIS data source). The sample points were collected using a handheld GPS device (Garmin etrex 20), and the

county boundaries for Kenya derived from Africa Open data (https://africaopendata.org/dataset/kenya-counties-

shapefile, license Creative Commons).

https://doi.org/10.1371/journal.pntd.0009062.g001
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Collection of volatiles

Odors were collected from three substrates representative of the three habitat types: fresh cow

dung (animal shed), human foot odors on worn socks (houses indoors), and termite mound.

Odor collection was conducted concurrently during sand fly trapping in January 2020. Fresh

cow dung (600 g) and human worn socks (a pair) were placed in quick-fit airtight glass cham-

bers (1600 mL), whereas volatiles were collected directly from the termite mound in the field

(Fig 3). To obtain human foot odors, male volunteers (aged 35–60 years old) wore a pair of

socks (made of cotton, Kaite Socks, China, solvent and oven-cleaned) overnight for 12 h. The

volunteers were asked not to use any soap when showering, nor apply lotion or perfume 24 h

prior to sampling. The human volunteers and dung were from represented houses indoors

and animal sheds, where sand flies were trapped. Odors from selected termite mounds (where

sand fly trapping occurred) were collected by enclosing the vent in an airtight oven bag

Fig 2. Sand fly sampling habitats in Rabai village with CDC-LT A) on a termite mound, B) near an animal shed, C) indoors in a mud-type house, D) indoors in a

corrugated zinc-type house. (Source: Iman B. Hassaballa).

https://doi.org/10.1371/journal.pntd.0009062.g002
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(Reynolds, Richmond, VA, USA) (Fig 3). In all cases, charcoal- filtered air was passed over the

enclosed scented substrates at a flow rate of 350 ml/min on to two Super-Q adsorbents (30 mg,

Analytical Research System, Gainesville, Florida, USA) for each replicate substrate. For each

substrate, volatiles were collected for 12 h and replicated three–four times. Trapping from neg-

ative controls were also conducted: cleaned unused socks (human) or enclosed air or blank

(dung and termite mound) employing the same conditions. Each adsorbent was eluted with

150 μL gas chromatography—mass spectrophotometer (GC-MS) grade dichloromethane

(DCM) (Burdick and Jackson, Muskegon, Michigan, USA) and the eluent (300 μl/replicate

substrate) stored at -80˚C until chemical analysis as described below.

Analysis of volatiles

For identification of the constituent volatile organic compounds (VOCs) of the different sub-

strates, an aliquot (1μl) of the dichloromethane (DCM) volatile extract of each sample (and

controls) was injected into a gas chromatograph coupled mass spectrometer (GC-MS) in a

splitless injection mode. The GC was equipped with an HP-5 column (30 m × 0.25 mm

ID × 0.25 μm film thickness) with helium as the carrier gas at a flow rate of 1.2 ml/min. The

oven temperature was held at 35˚C for 5 min, then programmed to increase at 10˚C/min to

280˚C and was maintained at this temperature for 10.5 min. The mass selective detector was

maintained at ion source temperature of 230˚C and a quadrupole temperature of 180˚C. Elec-

tron impact (EI) mass spectra were obtained at the acceleration energy of 70 eV. Fragment

ions was analysed over 40–550 m/z mass range in the full scan mode. The filament delay time

was set at 3.3 min. The volatile organic compounds were identified by comparing their mass

spectra with library data (Adams2.L, Chemecol.L and NIST05a.L) search program (v. 2.0) and

NIST Chemistry Webbook. Compounds present in controls were excluded from composi-

tional profiles in each sample. Where available, the identities of VOCs were confirmed by co-

Fig 3. Collection of volatiles from three substrates representing the different habitats in Rabai village, Marigat sub-county, Kenya A) cow dung (animal shed), B)

termite mound (termite vent) and C) human foot odor on worn socks (houses indoors). (Source: Iman B. Hassaballa).

https://doi.org/10.1371/journal.pntd.0009062.g003
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injection and comparison of mass spectral data with authentic standards. Retention indices

(RI) were determined with reference to a homologous series of normal alkanes C8-C23 and cal-

culated using the equation below as described by Van den Dool and Kratz [35] and compari-

son with published literature [36–38].

RIx ¼ 100 n0 þ 100ðRTx � RTn1Þ=ðRTn1 � RTn0Þ

With:

x = the name of the target compound

n1 = n-alkane Cn1H2n1+2 directly eluting before x

n0 = n-alkane CnoH2nO+2 directly eluting after x

RT = retention time

RI = retention index

Chemicals

The chemicals used in GC-MS analysis including hexanal, heptanal, benzaldehyde, octanal,

nonanal, decanal, 6-methyl-5-hepten-2-one, acetophenone, α-phellandrene, α-pinene, p-cym-

ene, β-citronellene, camphene, sabinene, β-pinene, limonene, 1,8-cineole, (Z)-β-ocimene, (E)-

β-ocimene, γ-terpinene, δ-2- carene, (Z)-linalool oxide (furanoid), linalool, α-copaene, α-

cedrene, (E)-caryophyllene, α-humulene, (Z)- caryophyllene, skatole, heptanol, octanol,

1-octen-3-ol, nonanol, p-xylene, o-xylene, phenol, benzyl alcohol, m-cresol, p-cresol, indole,

and standard n-alkanes solution were purchased from Sigma Aldrich (purity>97%).

Data analysis

Daily catches were recorded for each sand fly species and sex per trap for each habitat type. Total

sand fly abundance and specific-species abundance (inclusive of males and females) were analysed

using generalized linear models (GLM) with a negative binomial error structure, with trapping

period and habitat type specified as predictors. Abundance was compared for the leishmaniasis

vectors P.martini, P. duboscqi and for four most abundant Sergentomyia species (S. schwetzi, S.

antennata, S. clydei and S. africana africana). Total daily catches/trap by species (both sexes

included) per habitat type were recorded from which measures of sand fly community structure

Shannon diversity index (H, hereafter referred to as diversity) and species richness, were estimated

and compared between the habitats and trapping period using generalized linear models. All analy-

ses were conducted in R v. 3.6.3 [39] using the MASS package (for abundance data) and vegan

package (diversity data) at 95% significance level. Best-fit models were selected based on model

residuals. December 2018 and animal shed served as references for trapping period and habitat

type, respectively. The mean of replicate peak areas of volatile compounds identified by GC-MS for

dung, human socks and termite mound representing the different sand fly habitats, were visualised

in a heatmap using the R software package “(gplots)” [40]. After checking for data normality using

Shapiro-Wilk test (P> 0.05), we used analysis of variance (ANOVA) followed by Tukey’s test to

compare daily mean catches per trap for selected sand fly species between the habitats.

Results

Sand fly abundance and composition

A total of 6,931 sand flies (f = 4732, m = 2199) were collected comprising nine species in two

genera across the two sampling periods (Table 1). In December 2018, 2952 sand flies were
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collected with female catches significantly higher than males (f = 1676, m = 1276; χ2 = 53.93,

df = 1, p< 0.0001). The 3,979 sand flies collected in January 2020 comprised 923 males and

3056 females with significant difference in catches between the sexes (χ2 = 1142.4, df = 1,

p< 0.0001). Sand flies in the Phlebotomus genus were represented by three species: P.

duboscqi, P. martini and P. saevus. Six species encountered in the genus Sergentomyia included

S. adleri, S. africana africana, S. antennata, S. clydei, S. schwetzi and S. squamipleuris (Table 1).

Overall, sand fly catches were predominantly Sergentomyia species, notably S. schwetzi
(38.3%), S. antennata (38.3%) and S. clydei (8.8%). P. martini comprised 4.3% of the total cap-

tures while P. duboscqi and P. saevus accounted for 1.4% and 0.4%, respectively (Table 1).

Habitat specific abundance patterns

Of the leishmaniasis vectors, P. martini was the most abundant Phlebotomus species collected

from all the habitats during the trapping period. P. duboscqi was not encountered in the collec-

tions from houses indoors in December 2018. P. saevus implicated recently as CL vector [7]

was encountered in the January 2020 collection across the habitats although predominantly

from termite mounds (Table 1). Regardless of the trapping session, collections from each habi-

tat type was dominated by Sergentomyia species. In the December 2018 collection from animal

shed, S. clydei and S. schwetzi were the most abundant species. Predominant species were S.

schwetzi followed by S. antennata in houses indoors with the former species recorded in high-

est numbers in termite mound (Table 1 and Fig 4). In the January 2020 collection, S. antennata
was the most abundant species collected from the animal shed followed by S. schwetzi, with

both species dominating catches obtained from houses indoors. The most abundant species

collected from termite mound was S. schwetzi and S. antennata (Table 1 and Fig 4).

Table 1. Composition of sand flies caught across the three habitat types during the dry season in Rabai, Marigat sub-county, Kenya.

Animal shed House indoors Termite mound

Trapping period Sand fly species M F Total % M F Total % M F Total %

December 2018 P. duboscqi 11 18 29 4.89 0 0 0 0.00 8 14 22 1.91

P. martini 29 17 46 7.76 7 7 14 1.16 70 57 127 11.05

P. saevus 0 0 0 0.00 0 0 0 0.00 0 0 0 0.00

S. adleri 4 1 5 0.84 0 0 0 0.00 0 2 2 0.17

S. africana africana 23 7 30 5.06 61 79 140 11.57 14 13 27 2.35

S. antennata 21 33 54 9.11 139 330 469 38.76 23 64 87 7.57

S. clydei 109 115 224 37.77 31 24 55 4.55 44 98 142 12.36

S. schwetzi 99 92 191 32.21 299 226 525 43.39 283 447 730 63.53

S. squamipleuris 0 14 14 2.36 1 6 7 0.58 0 12 12 1.04

Total 593 1210 1149

January 2020 P. duboscqi 9 12 21 1.96 1 2 3 0.29 4 18 22 1.17

P. martini 19 15 34 3.18 9 13 22 2.13 28 30 58 3.09

P. saevus 0 1 1 0.09 3 0 3 0.29 13 9 22 1.17

S. adleri 0 1 1 0.09 0 1 1 0.10 0 2 2 0.11

S. africana africana 12 51 63 5.89 8 70 78 7.54 6 35 41 2.19

S. antennata 144 486 630 58.88 56 588 644 62.28 187 581 768 40.96

S. clydei 11 26 37 3.46 15 33 48 4.64 18 84 102 5.44

S. schwetzi 82 159 241 22.52 75 109 184 17.79 210 575 785 41.87

S. squamipleuris 6 36 42 3.93 5 46 51 4.93 2 73 75 4.00

Total 1070 1034 1875

M = males; F = females

https://doi.org/10.1371/journal.pntd.0009062.t001
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Analysis of species-specific habitat patterns indicated that abundance of P. martini was

highest for termite mounds and then animal shed, which was significantly different from

catches in houses indoors (Table 2). There was a 5-fold chance of this species being encoun-

tered in termite mound and animal shed than in houses indoor (Fig 4). Significantly higher

catches of P. duboscqi was found in animal sheds than termite mounds and houses indoors.

The likelihood of P. duboscqi being captured in animal shed was 38- and 2-times higher than

in houses indoors and termite mound, respectively. The mean number of catches for each spe-

cies by habitat is presented in Fig 4.

Abundance of S. antennata did not vary by habitat although higher mean catches were

obtained from the animal shed than in houses indoors and termite mound. No significant dif-

ference in catches was observed between the habitats for S. antennata, however, mean catch

recorded for S. schwetzi was higher from the termite mounds, than from the animal shed and

houses indoors. On the other hand, the catch for S. clydei was highest from animal shed, which

significantly varied from that recorded for houses indoors but not for termite mound in both

species. Among the species, variation in abundance based on the trapping period was evident

for P. saevus and S. antennata (Table 2).

Fig 4. Mean numbers (± SE) of sand fly species collected in CDC light traps/day/night from three different sampling habitats in two trapping

sessions in Rabai village, Marigat sub-county. Means followed by different letters are significantly different at α = 0.05 according to Tukey’s test of

ANOVA.

https://doi.org/10.1371/journal.pntd.0009062.g004

Table 2. Sand fly abundance and diversity trends sampled during the dry season in three habitat types in Rabai, Baringo County, Kenya. Models used were GLMs

with negative binomial error structure. Animal shed served a reference category for habitat and January 2020 for trapping period.

Total abundance (df = 5,134) P. duboscqi abundance (df = 5,134)

Estimate ± SE Z value P-value Estimate ± SE Z value P- value

House -0.421 ± 0.251 -1.676 0.094 -3.621 ± 0.686 -5.277 < 0.001 ���

Termite mound -0.121 ± 0.254 -0.476 0.634 -0.860± 0.402 -2.14 0.032 �

Period: January 2020 0.447 ± 0.183 2.451 0.014 � 0.152 ± 0.373 0.407 0.684

P. martini abundance (df = 5,137) P. saevus abundance (df = 4,135)

Estimate ± SE Z value P- value Estimate ± SE Z value P- value

House -1.595 ± 0.381 -4.093 <0.001 ��� 0.296± 1.444 0.205 0.837

Termite mound 0.095 ± 0.364 0.26 0.795 2.360 ± 1.347 1.752 0.079

Period: January 2020 -0.100 ± 0.283 -0.354 0.723 - - -

S. africana africana abundance (df = 5,134) S. antennata abundance (df = 5,134)

Estimate ± SE Z value P- value Estimate ± SE Z value P- value

House 0.116 ± 0.315 0.368 0.713 0.426 ± 0.332 1.284 0.199

Termite mound -1.017±0.334 -3.046 0.002 �� -0.411 ±0.338 -1.241 0.214

Period: January 2020 0.211 ± 0.239 0.919 0.358 1.696 ± 0.242 7.001 < 0.001���

S. clydei abundance (df = 5,134) S. schwetzi abundance (df = 5,134)

Estimate ±SE Z value P- value Estimate ±SE Z value P- value

House -1.636±0.464 -3.529 0.0004 ��� -0.347±0.296 -1.17 0.242

Termite mound -0.713±0.463 -1.542 0.123 0.518 ± 0.298 1.736 0.083

Period: January 2020 -0.308±0.341 -0.903 0.367 -0.135±0.215 -0.626 0.531

�P < 0.05

��P < 0.01

���P< 0.001

https://doi.org/10.1371/journal.pntd.0009062.t002
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Sand fly diversity patterns

There was variation in species richness by habitat and sampling period. Animal shed had the

highest species richness, which significantly differed from house but not termite mound. Sand

fly diversity was highly influenced by habitat and trapping period. Like richness, diversity was

highest for animal shed (H = 1.2), which varied significantly from values observed for the ter-

mite mound (H = 1.0) or house (H = 0.8) (Table 3 and Fig 5).

Analysis of volatiles

Analysis of volatiles collected from the three substrates representative of animal shed (fresh

cow dung), termite mound and houses indoors (human foot odors) by GC-MS detected 47

VOCs. Of these volatiles, 26 were detected from human worn socks, 35 from cow dung and 16

from termite mound odors. The compositional profile of the VOCs detected across the three

odor substrates are represented in a heatmap (Fig 6). The volatiles generally belonged to seven

functional groups: aldehyde, alcohol, benzenoid, ketone, monoterpene, nitrogenous comp and

sesquiterpene (Table 4). Eight of these VOCs including α-pinene, 1-octen-3-ol, 6-methyl-

5-hepten-2-one (sulcatone), limonene, benzyl alcohol, m-cresol, p-cresol and decanal (Fig 6

and Table 4) were common to the three volatile sources.

Discussion

Knowledge of ecologic factors influencing vector distribution can provide insights into disease

epidemiology and avenues for control. This study investigated the distribution of sand flies in

selected habitats in an endemic site for leishmaniasis in Kenya. Additionally, the possible olfac-

tory determinants of their selection of these habitats was investigated. Our results indicate that

habitat type influences the diversity and abundance of sand fly species. Interestingly, the over-

all abundance did not vary between these habitats; however, species-specific differences in

abundance were evident. Previous research showed that P. martini is associated with termite

mounds [22,23]. Despite habitat selection having been suggested for sand flies in Kenya, to the

best of our knowledge, this is the first report comparing sand fly diversity and richness profiles

across selected habitats in Kenya. Intriguingly, we found that both measures of community

structure (diversity and richness) were highest in animal shed, followed by termite mound and

lowest in houses indoors. Our findings further lend support for habitat choice among sand fly

species which can potentially be exploited in the control of leishmaniasis or perhaps other dis-

eases they transmit to break transmission to humans.

Notably, we found that overall, more females were captured than males across habitats

throughout the study period. Our results are consistent with previous findings of sand fly col-

lections using light traps [7,22]. The pattern can be explained considering our trapping times,

Table 3. Sand fly diversity trends during the dry season in three habitat types in Rabai, Baringo County, Kenya. Models used were GLMs. Animal shed served a refer-

ence category for habitat and January 2020 for trapping period.

Shannon diversity index (df = 5,134) Species richness (df = 5,134)

Estimate ± SE t value P- value Estimate ±SE t value P- value

House -0.416 ± 0.091 -4.579 <0.001��� -1.937±0.378 -5.118 <0.001���

Termite mound -0.234 ± 0.092 -2.542 0.012� -0.639±0.383 -1.669 0.097.

Period: January 2020 0.019 ± 0.066 0.288 0.774 0.900 ± 0.275 3.273 < 0.001���

�P < 0.05

���P< 0.001

https://doi.org/10.1371/journal.pntd.0009062.t003
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which occurred between 18:00 h—06:00 h. These are times when sand flies, predominantly

females actively search for hosts for a blood meal, required for maturation of their eggs [41].

Although sand flies were not trapped during the wet season, our results suggest that abundant

phlebotomine sand flies species occur in this ecology during the trapping periods in the dry

season as previously noted by other investigators in Kenya [25,42], Sudan [17] and Ethiopia

[43]. Regarding the examined vectors of VL and CL, their presence across the habitats poten-

tially indicates the ease of movement between these habitats to feed on human and domestic

animals or reservoir hosts in resting sites as previously noted [42]. This would have epidemio-

logical implications and hence explain the maintenance of the transmission of leishmaniasis

between animals and man. A similar analogy pertains to sand flies in the Sergentomyia genus

which have recently been implicated in the transmission of a novel virus of potential zoonotic

importance and infecting humans in this ecology [44]. Perhaps, a variation in habitat microcli-

matic factors such as temperature, moisture and organic matter known to influence sand fly

abundance [45] may have contributed to the differential abundance trends observed between

the two trapping periods.

Fig 5. Mean Shannon diversity index for Phlebotomine sand flies during the dry season in Rabai, Marigat sub-County, Baringo County,

Kenya. Sand flies were surveyed using CDC light traps. Means followed by different letters are significantly different at α = 0.05 according to

Tukey’s test of ANOVA.

https://doi.org/10.1371/journal.pntd.0009062.g005
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Suitable habitats are important in disease epidemiology as they influence the life history

parameters of vectors e.g. development and population growth rates, resting, and breeding.

Resting sites provide a microclimate to extend vector survival thereby contributing to their

ability to transmit pathogens. The contrasting patterns of habitat selection exhibited among

the two Phlebotomus vector species, that is, P. martini and P. duboscqi and even between the

Sergentomyia species examined are of ecological significance. Several propositions could be

advanced for the difference in habitat preferences. First, the fundamental differences in the

biology between the species likely reflects utilization of the habitats. Some sand fly vectors are

dependent on their blood-feeding host as a source of habitat. For instance, P. duboscqi and P.

papatasi which are both vectors of Leishmania major preferentially rest and breed within bur-

rows of their rodent blood meal hosts and reservoir of the parasite [23,46,47]. P. duboscqi
mainly bites humans when they occur in areas with many animal burrows [23,25]. Blood meal

analysis previously carried out in the study site showed that P. martini fed more commonly on

cow but also humans and dogs, similarly to S. schwetzi [48]. S. antennata which primarily

feeds on reptiles has been shown to also bite humans [48]. While many Sergentomyia species

Fig 6. Heatmap depicting the volatile organic compounds (VOCs) identified from representative substrates of habitat types: human foot odor (houses indoors),

termite mound and fresh cow dung (animal shed).

https://doi.org/10.1371/journal.pntd.0009062.g006
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Table 4. Summary of identified volatile organic compounds (VOCs) from three Phelobtomine sand fly habitats in Rabai, Marigat sub-county, Baringo County,

Kenya.

RT (min) Compound name Cow dung Termite mound Human foot odor on worn socks Functional group RIa RIb
L

6.49 Hexanal - - + Aldehyde 803 801

8.32 p-Xylene + - + Benzenoid 838 884

8.89 o-Xylene + - + Benzenoid 884 888

9.12 Heptanal - - + Aldehyde 903 907

9.69 α-Phellandrene + - - Monoterpene 949 985

9.82 α-Pinene� + + + Monoterpene 960 932

10.09 β-Citronellene + - - Monoterpene 982 938

10.14 Camphene + - - Monoterpene 985 953

10.43 Benzaldehyde + - + Aldehyde 1009 965

10.65 Heptanol - - + Alcohol 1027 974

10.67 Sabinene + - - Monoterpene 1029 1017

10.73 β-Pinene + - + Monoterpene 1033 1008

10.81 1-Octen-3-ol� + + + Alcohol 1040 1456

10.88 Phenol + - - Benzenoid 1046 1050

10.97 6-Methyl-5-hepten-2-one� + + + Ketone 1053 987

11.28 Octanal - + + Aldehyde 1007 1009

11.67 p-Cymene - + + Monoterpene 1041 1020

11.75 Limonene� + + + Monoterpene 1051 1031

11.80 1,8-Cineole + + - Monoterpene 1057 1031

11.86 Benzyl alcohol� + + + Benzenoid 1062 1017

11.92 (Z)-β-Ocimene + - - Monoterpene 1021 1044

12.10 (E)-β-Ocimene - + + Monoterpene 1038 1054

12.30 γ-Terpinene + - - Monoterpene 1053 1076

12.46 Acetophenone + + + Ketone 1057 1561

12.51 Octanol - - + Alcohol 1061 1098

12.56 m-Cresol� + + + Benzenoid 1067 1077

12.63 p-Cresol� + + + Benzenoid 1085 1001

12.83 δ-2-Carene + - - Monoterpene 1085 1068

12.83 (Z)-linalool oxide (furanoid) - - + Monoterpene 1100 1095

13.00 Linalool - + - Monoterpene 1107 1087

13.08 Nonanal - + + Aldehyde 1133 1014

14.16 Nonanol - - + Alcohol 1161 1186

14.71 Decanal� + + + Aldehyde 1211 1203

16.02 Indole + - - Benzenoid 1298 1298

17.20 α-Copaene + - - Sesquiterpene 1383 1378

17.30 Skatole + - - Nitrogenous comp. 1392 1381

17.57 Cyperene + - - Sesquiterpene 1416 1401

17.64 (Z)- Caryophyllene + - - Sesquiterpene 1423 1421

17.65 Longifolene - + + Sesquiterpene 1425 1406

17.73 α- Cedrene + - + Sesquiterpene 1432 1413

17.81 (E)- Caryophyllene + - - Sesquiterpene 1439 1417

17.92 β-Cubebene + - - Sesquiterpene 1449 1460

18.25 α- Humulene + - - Sesquiterpene 1462 1454

18.76 Zonarene + - - sesquiterpene 1510 1521

18.97 γ- Cadinene + - - Sesquiterpene 1530 1513

19.07 δ-Cadinene + - + Sesquiterpene 1539 1523

(Continued)
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are regarded as catholic in feeding habits, recent findings suggest the readiness of some species

to expand their host range to include feeding on humans [44]. Thus, the overall high sand fly

abundance and diversity in animal shed may reflect presence of livestock hosts as a potential

source of blood meal, with ease of access compared to human habitations or termite mounds.

The differential presence of sand flies across the habitats could be an indication about potential

differences in host range of the species (narrow vs wide range). Second, the represented sub-

strates of the different habitat types release volatiles that may serve as olfactory signals to these

insects to which they may respond differently. Variation in response to volatile signals among

different species of hematophagous insects like mosquitoes is known in literature [28]. For

instance, sand flies may associate cues from mounds/animal sheds for suitability as breeding

sites for egg laying or development of immatures [49]. Organic matter associated with some of

these sites used for breeding [45], may serve as sources of volatiles to ascertain suitability of the

sites. Volatile cues may be used as habitat location cues [50]. Sand flies must also host-seek and

bite humans to transmit pathogens, a process widely known to be largely influenced by olfac-

tory cues.

We explored the latter proposition by analysing the VOCs from substrates associated with

these habitats. Interestingly, we detected a total of 47 VOCs although there was more represen-

tation from human worn socks (26/47) and cow dung (35/47) than from termite mounds (16/

47). However, of particular interest are VOCs common across the habitats including 1-octen-

3-ol, 6-methyl-5-hepten-2-one (sulcatone), α-pinene, limonene, benzyl alcohol, m-cresol, p-

cresol and decanal (Table 4). Laboratory and field studies with some of these compounds

including 1-octen-3-ol and 6-methyl-5-hepten-2-one have shown increased responses from

different sand fly species, which confirms their roles as attractants in sand fly chemical ecology.

For instance, in laboratory assays, Magalhães- Junior et al [51] demonstrated the attractiveness

of decanal and nonanal to the sand fly species, Lutzomyia longipalpis. Octenol is a known

attractant for a wide range of blood feeding insects including sand flies [52] and has been

reported in the emanations from diverse sources e.g., cattle [53], human breath [54], human

skin [55] and plants [56]. For the alcohols, hexanol and octanol have been found to elicit

attractive responses in sand flies in laboratory and field settings [52,57]. A recent finding

implicated the human-specific cue, sulcatone [28], in the attractive response of the New World

sand fly Lutzomyia intermedia in laboratory assays [27]. Further, a subset of these compounds

has been reported to play a role in the olfactory and behavioural ecology of other blood feeding

insects like mosquitoes (e.g., 6-methyl-5-hepten-2-one, heptanal, decanal, nonanal, α-pinene,

indole) [26], and tsetse flies (e.g., 6-methyl-5-hepten-2-one, heptanal, octanal, nonanal and

decanal) [30]. For instance, Baleba et al [29] found that limonene and m-cresol were the most

important VOCs of cow dung elicting attraction in the stable fly Stomoxys calcitrans for egg

laying. The already proven role of some of these compounds as attractants lends support to

proposition that they could be involved in habitat selection among sand flies. A review on

Table 4. (Continued)

RT (min) Compound name Cow dung Termite mound Human foot odor on worn socks Functional group RIa RIb
L

20.10 epi-Cedrol + - - Sesquiterpene 1624 1611

(RT) = retention times.

RIa = Retention index relative to C8-C23 n- alkanes of a HP-5 MS column.

RIbL = Retention index obtained from literature: [36–38].

(+) = present compound and (-) = absent compound.

�Compounds detected in all three different substrates.

https://doi.org/10.1371/journal.pntd.0009062.t004
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sand fly biology noted that seasonality in the types of resting sites used by these flies is a com-

mon occurrence likely influenced by the amount of moisture [58]. However, this is likely to be

insufficient to represent an independent mechanism of habitat selection. Noteworthy, whereas

terpenes were found to be more represented in volatiles of cow dung, aldehydes dominated

human volatiles. The different classes of volatiles may interact with each other in specific ways

or ratios important in modulating attraction to a given substrate. Nonetheless, the current

study provides empirical evidence of possible involvement of volatiles in habitat selection.

While the hypothesis about role of semiochemicals in habitat selection among sand flies is

tentatively indicative by our data, additional studies are needed, including using different vola-

tile sampling techniques, to establish a clear association of sand fly catches with specific volatile

profiles from the examined substrates. Such considerations should capture the contribution of

background habitat volatiles. Another methodological challenge included the difficulty to

access habitat types without sand flies for comparative analysis of volatile profiles. Thus, we

limited our assessments to the sites we confirmed had sand flies based on trap collections.

Other sand fly habitats not captured in this study should be the focus of future research.

In conclusion, the present findings show differential abundance and diversity trends

among Phlebotomus and Sergentomyia sand fly species, vectors of leishmaniasis and arbovi-

ruses in three selected habitats during the dry season. This knowledge on habitat choice can

potentially be exploited in adult sand fly control or management to break disease transmission,

especially during emergency outbreak situations. We note that these habitats or associated sub-

strates emit important olfactory cues which could influence the observed choices, as some

have proven roles as attractants for sand flies and other blood feeding insects. Evaluating these

compounds for their behavioral impact will inform the basis for their development as lures to

improve sand fly monitoring and even control. Overall, our findings offer insights into habitat

selection among sand fly species and add to the existing body of literature about aspects of

sand fly bioecology and epidemiology of the diseases they are associated with.
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