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The impact of adverse childhood experiences (ACEs) differs between

individuals and depends on the type and timing of the ACE. The aim of this

study was to assess the relation between various recently occurred ACEs and

morphology in the developing brain of children between 8 and 11 years of

age. We measured subcortical volumes, cortical thickness, cortical surface

area and fractional anisotropy in regions of interest in brain scans acquired

in 1,184 children from the YOUth cohort. ACEs were based on parent-

reports of recent experiences and included: financial problems; parental

mental health problems; physical health problems in the family; substance

abuse in the family; trouble with police, justice or child protective services;

change in household composition; change in housing; bereavement; divorce

or conflict in the family; exposure to violence in the family and bullying

victimization. We ran separate linear models for each ACE and each brain

measure. Results were adjusted for the false discovery rate across regions of

interest. ACEs were reported for 83% of children in the past year. Children

were on average exposed to two ACEs. Substance abuse in the household

was associated with larger cortical surface area in the left superior frontal

gyrus, t(781) = 3.724, pFDR = 0.0077, right superior frontal gyrus, t(781) = 3.409,

pFDR = 0.0110, left pars triangularis, t(781) = 3.614, pFDR = 0.0077, left

rostral middle frontal gyrus, t(781) = 3.163, pFDR = 0.0195 and right caudal

anterior cingulate gyrus, t(781) = 2.918, pFDR = 0.0348. Household exposure

to violence (was associated with lower fractional anisotropy in the left and

right cingulum bundle hippocampus region t(697) = −3.154, pFDR = 0.0101

and t(697) = −3.401, pFDR = 0.0085, respectively. Lower household incomes

were more prevalent when parents reported exposure to violence and the

mean parental education in years was lower when parents reported substance
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abuse in the family. No other significant associations with brain structures

were found. Longer intervals between adversity and brain measurements and

longitudinal measurements may reveal whether more evidence for the impact

of ACEs on brain development will emerge later in life.

KEYWORDS

adverse childhood experiences, child, brain structure, stress, neuroimaging, YOUth
cohort study

Introduction

A history of adverse childhood experiences (ACEs), such
as maltreatment, parental divorce, exposure to violence or
substance abuse in the family, is a risk factor for developing
mental health problems later in life (1–3). ACEs are associated
with decreased life expectancy, for example via the effects of
ACEs on toxic stress, increased adult health risk behavior,
increased suicidality or socioeconomic inequality (4–8). These
studies also show that especially individuals exposed to
cumulative adversity are at risk for mental or physical health
problems later in life.

Individual differences explain how a child is impacted by
ACEs. Many individuals exposed to adversity are resilient to
negative effects. For example, high psychosocial functioning
despite a history of childhood maltreatment can be explained by
neurobiological and genetic factors, but the social environment
can serve as a protective factor as well (9). Even more, volume
alterations found in older adults exposed to ACEs vary based on
their serotonergic genetic vulnerability (10).

The impact of ACEs also depends on the timing of the
ACE in relation to sensitive periods of brain development (11–
15). During childhood and adolescence, the brain undergoes
considerable developmental changes, including a thinning of the
cortex, an increase followed by a decrease in cortical surface
area and continued growth of volume of the white matter
connections (16–18); and these changes have been related to
cognitive functioning (19). Many psychiatric disorders emerge
during adolescence (20). Studying how ACEs interact with brain
development is crucial to better understand mechanisms of
latent vulnerability (21) and resilience (22).

Neuroimaging studies on childhood adversity started with a
strong focus on the effects of severe early caregiver adversity,
for example in institutionalized children or children exposed
to childhood maltreatment. Furthermore, most studies focused
on the fronto-limbic network (frontal cortex, hippocampus
and amygdala) because of the well-established role of fronto-
limbic regions in the hypothalamic-pituitary-adrenal (HPA) axis
functioning in response to stress (23), although a meta-analysis
concluded that there is no evidence for abnormalities in the
amygdala and only weak evidence for smaller hippocampal

volumes in adults that experienced childhood adversity (24).
There are only a few whole-brain studies on the association
between childhood maltreatment and brain structure. Taking
meta-analyses and reviews together, the most consistent findings
are in fronto-limbic regions, fronto-striatal regions, fronto-
subcortical association fibers and the corpus callosum (24–
30). Still, the spatial overlap between studies is weak, because
most studies rely on smaller samples or adult samples, as
children with experiences of maltreatment are difficult to
include in large numbers. Furthermore, there is evidence
for differential structural brain correlates depending on the
types of ACE (31). Therefore, studying a variety of ACEs in
developmental populations may shed light on the effects of
ACEs on brain development.

In the current study, we investigate the effect of ACEs
on brain structure in pre-adolescent children, participating
in the first wave of the YOUth cohort study, a longitudinal
study where each measurement wave covers a narrow period
of development. The main question of the current study is: Is
there an association between ACEs and brain structure in pre-
adolescent children? Regions of interest were selected a priori by
integrating studies on structural, functional and neurocognitive
correlates of childhood adversity. We focused on subcortical
volume, cortical surface area, cortical thickness and fractional
anisotropy (FA). The latter was selected as white matter measure
because it represents a good measure for integrity of the white
matter and has shown good test-retest reliability using our
acquisition protocol (32). We expect that our sample size allows
for detection of more subtle effects even though the sample
is not enriched for children with severe adverse experiences.
Within the group of children that experienced adversity, we
expect more pronounced effects in children that were exposed
to accumulated ACEs, compared to children exposed to a
single ACE. Based on the stress acceleration hypothesis (33),
we hypothesized that brain development in children exposed
to childhood adversity would be ahead of peers. Based on
brain development curves in previous studies, we expect that in
8-, 9-, and 10-year-olds accelerated development would mean
thinner cortices (34), larger subcortical volumes (35), large
cortical surface area (36), and larger FA (37). Age- and sex-
effects on global brain measures are included as well, to provide
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a full description of the YOUth cohort sample for comparison
with other cohorts.

Materials and methods

Participants

We included 1,184 children that participated in the first
wave of the population-based longitudinal YOUth cohort study.
The cohort rationale, design and procedures are described in
detail elsewhere (38). In short, participants are living in the
province of Utrecht (Netherlands) and its surrounding areas, a
densely populated region that combines both urban and rural
areas. Compared to the rest of the Netherlands, inhabitants of
the province of Utrecht are relatively highly educated. Most
children were recruited through their primary school. YOUth
includes children and their parents. Parents are considered
those with parental authority over the child. Children are
excluded if they are not mentally or physically not capable of
participating, if they or their parents’ language proficiency in
Dutch is not sufficient to understand provided information.
For the neuroimaging part of the study, we excluded children
with metal implants including most braces, following fairly
standard MRI procedures. Participating children were between
7.9 and 11.0 years old (56% females). All data was collected
prior to the COVID-19 pandemic. The study was approved
by the Medical Research Ethics Committee Utrecht. Children
participated on a voluntary basis and parents or guardians gave
written consent and assent.

Data on adverse childhood
experiences

Adverse childhood experiences were collected using parent
reports on life events that occurred in the household in the
past year, available for 1,046 children. From the recent life
events questionnaire, we selected nine types of ACEs: financial
problems; physical health problems in the family; substance
abuse in the family; trouble with police, justice or child
protective services (CPS); change in household composition;
change in housing; bereavement; divorce or conflict in the
family; exposure to violence in the family. In addition, two
ACEs were gathered from other questionnaires as they were
not covered in the recent life events survey. First, information
on bullying behavior toward the child was available for 948
children. From the bullying questionnaire one ACE was created
by selecting whether children were exposed to any type of
frequent bullying at least one time a week. Second, information
on parental psychiatric diagnoses was available for 1,056
children. Parental mental health problems were indicated as an

ACE if one or more parents or guardians were diagnosed with at
least one psychiatric diagnosis.

All ACEs were used as binary variables (yes/no). In most
cases, information from different questionnaire items was
combined into a single composite variable. For example, change
in household composition would be set to yes if at least one new
member was added to the household, for example cohabitation
of a new partner, cohabitation of a step brother or sister, birth
of a new family member etcetera. As these separate items
are conceptually very similar, we regard this as a single event
rather than multiple independent events. Overlap between the
separate items of the recent life events survey was mapped
(Supplementary Figure 1), but not decisive when creating the
composite variables, because high overlap between items does
not necessarily implicate a single underlying environmental
factor. Overlap was mapped by taking the subgroup of children
that experienced a specific event and then computing the
percentage of the children in this subgroup that additionally
experienced another event. In the same way, we mapped
the overlap between the final 11 ACEs used in this study
(Figure 2C).

The prevalence of ACEs was similar in the total group,
compared to the subgroups that had MR data available.
Because we used various data sources for the ACEs, sample
sizes differed between bullying, recent life events and parental
psychiatric diagnosis dependent on the overlap of respondents
with available MR data.

Image acquisition

The collection of MRI data is closely monitored in the
YOUth cohort study. Patterns in data quality are monitored
over time based on human data and weekly collected phantom
data. The YOUth MRI protocol, quality control and test-
retest reliability are described in detail elsewhere (32). In
short, anatomical T1-weighted MRI scans were available
for 956 children and diffusion-weighted images (DWI) for
895 children. All MR scans were acquired on the same
scanner, a Philips Ingenia 3.0 T CX scanner with a 60 cm
bore (Philips Medical Systems, Best, Netherlands) using a
32- channel SENSE head-coil. A structural T1-weighted 3D
gradient echo scan was acquired with the following parameters:
TR = 10 ms; TE = 4.6 ms; flip angle = 8◦; reconstructed
voxel size = 0.75 mm× 0.75 mm× 0.80 mm; parallel
imaging factor = 1.70 (AP) and 1.40 (RL). Next, a diffusion-
weighted multi-shell multi-band echo planar (EPI) acquisition
is obtained including two short DWI scans with a reversed
phase encoding readout to correct for susceptibility artifacts.
The following parameters were used to acquire the DWI scan:
TR = 3500 ms; TE = 99 ms; flip angle = 90◦; reconstructed
voxel size = 2.0 mm× 2.0 mm× 2.0 mm; multiband acceleration
factor = 3; parallel imaging factor = 1.3; b-values = 500 (15), 1000

Frontiers in Psychiatry 03 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.955871
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-955871 October 1, 2022 Time: 17:5 # 4

Buimer et al. 10.3389/fpsyt.2022.955871

(30), 2000 (39) and every 10th scan is a diffusion unweighted (b-
value = 0) scan. At the start of the study a different DWI protocol
was used. Therefore, 13% of the included data was acquired
without reversed phase encoding readout and with the following
parameters: TR = 6827 ms; TE = 101 ms; flip angle = 90◦;
reconstructed voxel size = 2.5 mm× 2.5 mm× 2.5 mm; parallel
imaging factor = 2.5; b-values = 1000 (15), 2000 (25), 3000
(35) and every 10th scan is a diffusion unweighted scan.
We corrected for the different protocols in our analyses (see
below for details).

Image processing

At the time YOUth provided access to the data for this
study, defacing or face masking procedures had not yet been
implemented. Therefore, T1-weighted scans were not subjected
to any defacing or face masking procedures that may have a
small effect on outcome measures (40).

FreeSurfer 6.0 was used for automatic brain segmentation
and parcellation of the T1-weighted scans (41). Subcortical data
was extracted from the output of FreeSurfer’s volume-based
stream. For the initial registration and non-linear alignment
steps we relied on the default MNI305 atlas. Cortical data
was extracted from the output of FreeSurfer’s cortical surface-
based atlas. For registration of the individual surfaces to an
average sphere we used the default fsaverage. The Desikan-
Killiany atlas was used for cortical parcellation (42). To be able
to study whether our findings were specific to the ROIs rather
than a global effect, we also extracted intracranial volume and
computed total cortical surface and average cortical thickness.

Diffusion-weighted images scans were processed using
FSL version 6.0.1 (43) in combination with MRtrix 3.0 (44).
The processing pipeline consisted of denoising (45, 46),
gradient direction corrections (47), eddy current corrections
(48), susceptibility corrections (49) and corrections for Gibbs-
ringing artifacts (50). FSL’s EDDY QC framework was used
to get quality control reports for each individual (QUAD)
and at the group-level (SQUAD) (48, 51–53). QC parameters
in the QUAD output include estimates of absolute motion,
relative motion, translations, rotations, eddy current linear
terms, susceptibility, B-value outliers, signal-to-noise ratio and
contrast-to-noise ratio. Next, FSL’s Tract-Based Spatial Statistics
(TBSS) was used to skeletonize the fractional anisotropy (FA)
maps in standard space (53, 54). For the TBSS registration
and transformation to MNI152 space we used the default adult
template, FMRIB58_FA. Using the TBSS processing pipeline we
also generated a webpage with, for each individual, slices of
the FA maps for visual quality control. Lastly, the intersection
between the skeleton and the regions of the JHU-ICBM-DTI-
81 atlas (55) was used to compute the average FA values
for these regions. Furthermore, the mean FA over all atlas
regions was computed.

Quality control

For the T1-weighted scans, an experienced rater visually
assessed image quality for each individual based on the original
scan and segmentation quality based on the pial reconstruction.
From the 956 T1-weighted scans a total of 132 scans were
excluded for various reasons: motion artifacts that affected
pial surface reconstruction (N = 96), inhomogeneity artifacts
(N = 17), brain anomalies (N = 9), FreeSurfer failed (N = 5),
corrupt DICOM files (N = 3), dental artifact (N = 1), and
incorrect field-of-view (N = 1). This resulted in gray matter
estimates for 824 children.

For the DWI scans, we started off with 895 scans. We
used the presence of artifacts on the T1-weighted scans as a
predictor for the quality of the DWI scans, thereby excluding the
same children that were excluded in the T1-weighted analysis
(N = 123). Furthermore, DWI data was incomplete or missing
in some cases (N = 10) or failed the processing pipeline (N = 17).
Next, based on the visual inspection of the FA map snapshots for
each individual, we additionally excluded DWI scans that were
acquired in a different orientation (N = 7) or with an incorrect
field-of-view (N = 2). The distribution of the SQUAD QC
parameters was as expected. Outliers were visually checked once
again, but did not lead to exclusions. We performed t-tests for
each QC parameter using the individual-based QUAD output,
to test if image quality differed between children without any
ACE versus children with at least one ACE. The prevalence
of differences between the QC parameters in children with
versus without an ACE were as would be expected by chance,
with no consistent patterns of lower quality for specific ACE
subsets. Therefore, no exclusions were made based on these
parameters. The results of FSL’s TBSS were visually checked as
recommended in the user guide.1 This QC did not result in
additional exclusions.

Regions of interest

Regions of interest were selected from the gray matter and
white matter atlases (Figure 1) based on meta-analyses and
reviews described earlier (24–30).

Statistical analyses

Using R version 4.0.5 (2021-03-31) in R studio version
1.4.1106 each brain measure was regressed on each ACE in a
separate linear model. All variables were scaled and centered
to create standardized output that is comparable across cohorts
and across different brain measures. Apart from each specific

1 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuide
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FIGURE 1

Fronto-limbic and fronto-striatal regions-of-interest. (A) Subcortical volume was measured in the colored subcortical structures (overlaid on a
reference brain for orientation). (B) Cortical thickness and cortical surface area were measured in the colored cortical structures. (C) Fractional
anisotropy was measured in the colored white matter structures (overlaid on a reference brain for orientation).

ACE, we also tested the relation between brain measures and
any ACE and accumulated ACEs (sum of ACEs per child). Any
ACE and accumulated ACE variables were only computed if
data was available for all ACEs. All analyses were corrected
for age and sex. For the DWI analyses we also included
a dichotomous variable to correct for the DWI acquisition
protocol. Additionally, to assess regional specificity, we repeated
the main analysis for the T1-weighted brain measures correcting
subcortical volumes for intracranial volume, regional cortical
thickness for average cortical thickness and regional cortical
surface area for total cortical surface area.

We corrected for multiple comparisons by controlling the
false discovery rate (FDR) (56). Throughout this manuscript
we will report uncorrected p-values (puncorr) and FDR-adjusted
p-values (pFDR). FDR-adjusted p-values were adjusted across T1-
weighted or DWI brain measures independently for each ACE
separately and thus not across all analyses.

To estimate the robustness of the regression coefficients,
we applied non-parametric bootstrapping, drawing random
samples with replacement from the residuals of the regression
model and added these to the original fitted values to create
5,000 new samples. We chose resampling residuals over
resampling subjects because of the small groups for some ACEs.

Data visualization

For (sub)cortical surface data visualization, we used the
ENIGMA toolbox (57). For white matter tract visualization,
we used Surfice.2 Subcortical and white matter structures were
overlaid on a reference brain to indicate the orientation of the
structures and the approximate location in the brain.

Results

Exposure to adverse childhood
experiences

On average children were exposed to two ACEs in the
last year and up to nine accumulated ACEs (Figure 2A).
The percentage of children with at least one ACE was 83%
(Figure 2B). In general, the overlap between different ACEs
was as expected based on the prevalence in the group as whole,
i.e., for most ACE subgroups the co-occurrence of physical

2 www.nitrc.org/projects/surfice/
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FIGURE 2

Descriptive statistics for the exposure to ACEs. (A) Histogram of the number of adverse childhood experiences (ACEs) per child. (B) Table with
the prevalence of specific ACEs in our sample. Borders between the rows indicate a different data source: 9 ACEs from the life events survey, 1
from the bullying survey, 1 from the health survey, and 1 composed from all three surveys. The prevalence of ACEs was similar in the total group
compared to the subsets with MR data available. The last columns list the sample size for each data source in the total group and in the subsets
with T1-weighted MRI data or diffusion-weighted imaging data available. (C) Matrix visualizing the overlap between two types of ACEs. Darker
colors represent a higher overlap (in percentage) between children with one ACE (row) and a second ACE (column). The upper and lower
triangle are not symmetric because the percentage is based on the subset defined in the row. The diagonal is masked out (white).

health problems, change in household composition, change in
housing, bereavement and divorce or conflict in the family was
high. Children growing up in families with financial problems
appear to be disproportionately burdened by accumulated ACEs
(Figure 2C).

Age and sex effects for global brain
structure

For all brain estimates individual differences were large
with overlap between children of different ages and sexes.
Still, age effects were found for all global brain estimates
and sex effects for all global estimates except average FA

(Table 1 and Figure 3). ICV was also positively associated
with age t(821) = 3.096, puncorr = 0.0020, β = 14.556,
CI95% [5.328, 23.784] and larger for boys t(821) = −17.964,
puncorr < 0.0001, β = −145.426, CI95% [−161.317, −129.536].
Total cortical surface area was also positively associated with
age t(821) = −2.076, puncorr = 0.0382, β = 12.025, CI95% [0.656,
23.395] and larger for boys t(821) = −18.109, puncorr < 0.0001,
β = −180.631, CI95% [−200.209, −161.052]. Total average
thickness was negatively associated with age t(821) = −4.580,
puncorr < 0.0001, β = −0.015, CI95% [−0.021, −0.0008] and was
on average lower for boys compared to girls t(821) = 2.830,
puncorr = 0.0048, β = 0.015, CI95% [0.005, 0.026]. Average
FA over the TBSS skeleton was positively associated with age
t(732) = 4.732, puncorr < 0.0001, β = 0.0036, CI95% [0.002,
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TABLE 1 Sample characteristics.

All available data

Sex (% girls) N = 955

56

Mean age in years (SD) N = 955

9.54 (0.86)

Mean CBCL total problem score (SD) N = 1055

22.92 (16.49)

Self-reported ethnicity mother (%) N = 1212

Dutch 91

Dutch and another ethnicity 2

Another ethnicity 7

Self-reported ethnicity father (%) N = 955

Dutch 93

Dutch and another ethnicity 2

Another ethnicity 5

Mean education in years mother (SD) N = 1212

15.12 (2.00)

Mean education in years father (SD) N = 955

14.86 (2.50)

Gross monthly household income (%) N = 1133

< €1.250 2

€1.250–€2.000 6

€2.000–€3.000 8

€3.000–€4.000 18

> €4.000 66

Number of children at home (%) N = 1232

0 or 1 12

2 53

3 or more 35

0.005] and not significantly associated with sex t(732) = 0.101,
puncorr = 0.9194, β = 0.004, CI95% [−0.002, 0.002]. Age effects
were modeled in a linear fashion only. Age squared did not reach
significance in the sample’s narrow age range.

The association between adverse
childhood experiences and brain
structure

When focusing only on the standardized effect sizes (β)
and ignoring statistical significance, we observe a pattern of
larger subcortical volume and larger cortical surface area in
children exposed to ACEs. For fractional anisotropy and cortical
thickness, results were more mixed. The results for all analyses,
sorted by FDR-adjusted p-values and with color-coded effect
sizes, can be found in Supplementary Tables 1–5. For most
ACEs, none of the ROIs reached significance (pFDR < 0.05),
except for children growing up in a family where substance

abuse is an issue and children that grow up in an environment
where the parents report exposure to violence.

Substance abuse in the household was associated with
larger cortical surface area in the left superior frontal
gyrus, t(781) = 3.724, pFDR = 0.0077, puncorr = 0.0002,
β = −0.118, CI95% [0.056, −0.181], right superior frontal gyrus,
t(781) = 3.409, pFDR = 0.0110, puncorr = 0.0007, β = −0.109,
CI95% [0.046, 0.172], left pars triangularis, t(781) = 3.614,
pFDR = 0.0077, puncorr = 0.0003, β = −0.121, CI95% [0.055, 0.187],
left rostral middle frontal gyrus, t(781) = 3.163, pFDR = 0.0195,
puncorr = 0.0016, β = −0.101, CI95% [0.038, 0.164], and right
caudal anterior cingulate gyrus, t(781) = 2.918, pFDR = 0.0348,
puncorr = 0.0036, β = −0.100, CI95% [0.033, 0.168]. After
correction for total cortical surface area, effects were attenuated
and no longer significant. Effects in the same direction were
found in non-significant ROI’s. Together, this suggest a more
global effect on (frontal) cortical surface area. Figure 4 shows
the effect sizes and scatter plots for the association between
substance abuse in the household and cortical surface area.

Household exposure to violence was associated with lower
fractional anisotropy in the left cingulum bundle hippocampus
region, t(697) = −3.154, pFDR = 0.0101, puncorr = 0.0017,
β = −0.102, CI95% [−0.166, −0.039], and in the right cingulum
bundle hippocampus region, t(697) = −3.401, pFDR = 0.0085,
puncorr = 0.0007, β = −0.121, CI95% [−0.191, −0.051]. The
direction of effect in other ROIs was mixed. Figure 5 shows the
effect sizes and scatter plots for the association between exposure
to violence and FA.

The main results were robust as suggested by comparable
means and confidence intervals for the bootstrapping of
each regression coefficient. Histograms followed a normal
distribution (Supplementary Figures 2–8 and Supplementary
Tables 6–12). Bootstrapping confidence intervals for all
regression coefficients are reported in Supplementary material.

Post-hoc description of sample subsets

In deviation of our data request (specified in advance of the
study) and after the data were seen, we wanted to investigate
whether our results could be related to attrition bias and whether
our main effects could be explained by other environmental
factors. The Supplementary material provides the methods
related to this section. Household income was analyzed in the
same way as in a previous study on socioeconomic status in,
among others, the YOUth cohort (58). Sample characteristics
can be found in Table 1. First, children with data on T1-
weighted brain measures and recent life events were compared
to children with missing data for either the T1-weighted brain
measures or the life events survey. Children with missing
data scored on average two points higher on the CBCL total
problems score (Supplementary Table 13). The same was found
for children with missing DWI data or life events data and,
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FIGURE 3

Effects of age and sex on global brain measures. Red dots indicate brain measures in girls and blue dots indicate brain measures in boys. Lines
show the relation modeled linearly between brain measures and age (for girls in red, boys in blue and in black for the group as whole). Fractional
anisotropy measures were corrected for the different acquisition protocols.

additionally, the percentage of fathers with another self-reported
ethnicity than Dutch was higher in this group with missing
data (Supplementary Table 14). Second, subsamples with and
without ACEs were compared for the ACEs and brain scans
relevant for our main effects. We found that parents’ educational
attainment in years was shorter for children with versus without
exposure to substance abuse in the family (Supplementary
Table 15) and lower household incomes were more prevalent
when parents reported exposure to violence (Supplementary
Table 16).

Discussion

This study explored the association between various
ACEs and brain morphometry in selected ROIs during

pre-adolescence in a cohort of over 1,000 children between 7
and 11 years old. We found an association between substance
abuse in the household and larger cortical surface area in frontal
regions (Figure 4). Furthermore, we found evidence for an
association between exposure to violence and lower fractional
anisotropy in the bilateral cingulum bundle in the hippocampus
region (Figure 5).

This study contributes to previous work by providing
specific ACEs that could be worth further investigation:
substance abuse in the family and exposure to violence. Growing
up in a family with substance abuse problems was associated
with a larger cortical surface area in the bilateral superior frontal
gyrus, the left pars triangularis, the left rostral middle frontal
gyrus and the right caudal anterior cingulate gyrus. A previous
study in pre-adolescent children found an association between
growing up in a family with substance abuse problems and
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FIGURE 4

Associations between substance abuse in the household and cortical surface area.

larger cortical surface area in frontal regions (59). In that same
study, thinner cortices were also found and we did not replicate
that finding. For white matter we found an association between
family exposure to violence and lower fractional anisotropy

in the bilateral cingulum bundle hippocampus region. The
cingulum is the tract that connects the frontal cortex with
the parahippocampal gyrus in the temporal lobe. Exposure to
violence has in the past been associated with lower quantitative
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FIGURE 5

Associations between exposure to violence and fractional anisotropy.

anisotropy in the hippocampal cingulum (60) and lower mean
diffusivity but not difference in fractional anisotropy in the
hippocampal cingulum (39).

In general, we found small effects and no evidence
for significant differences in most ACEs. There are several
explanations to be considered. One, there is discussion as to
what qualifies as an ACE. We rely on parent-report and do not
know to what extent children were impacted by the ACEs. Two,
only ACEs within one year before the first wave were measured.
Thus, effects of ACEs that occurred before that time and may
have influenced brain development could not be included in
the analysis. Effects of recent ACEs on brain morphology may
emerge later in development. Three, the effects of ACEs on the
brain could be too small to detect with our current method.
Rather than running separate analyses for each brain measure
and each ACE, integrating features from brain measures or
ACEs to create latent variables may be a better approach to
detect small effects. We will discuss these points below.

There is a lack of consensus which experiences qualify as
ACEs. Childhood adversity has been defined as “experiences
that are likely to require significant adaptation by an average
child and that represent a deviation from the expectable
environment” (3). Also, ACEs have been defined as “childhood
events, varying in severity and often chronic, occurring in a

child’s family or social environment that cause harm or distress,
thereby disrupting the child’s physical or psychological health
and development” (61). An extensive body of research shows
that experiences of maltreatment, sexual abuse and neglect
impact the brain (26, 29, 62). However, in our study no data
experiences of maltreatment, sexual abuse or neglect were
available. Therefore, we focused on other types of ACEs. Our
broad definition of ACEs results in only 17% of the children that
were not exposed to any type of ACE and thus may not have
fully captured the expected complexity and dimensionality of
adversity. Because we did not assess the impact or severity of the
ACE and did not include measures of functioning, it remains
unclear how children experienced these events and whether the
experiences are so disruptive that brain development or (future)
functioning could be affected.

Another explanation for the small effects is that we study
recent experiences, disregarding prenatal early life stress and
ACEs that occurred more than a year ago. Effects of recent
ACEs on brain structure may emerge later in development or
even adulthood (15). It is possible that ACEs may impact brain
structure over time, but effects on brain functioning may be
easier to detect shortly after the experience. There are numerous
studies that find a relation between ACEs and brain functioning
during childhood or adolescence (26, 31, 62–64). For the effects
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that we found, it is plausible that they refer to an adverse family
environment throughout childhood rather than a single event
that occurred in the last year. For example, substance abuse
problems in the family could have been present throughout
childhood or even throughout pregnancy. No information on
duration and severity of the ACEs was available and prenatal
exposure to alcohol or drugs was not included in this study.
In the same way, exposure to violence could be an indication
of an adverse family environment in general or neighborhood
disadvantage. To get a general idea of the broader social
environment, we tested for difference in parental education,
parental ethnicity, household income, child’s psychopathology
and number of children in the household. We found that lower
household incomes were more prevalent when parents reported
exposure to violence and shorter parental education was related
to substance abuse in the household.

A last point to consider is that there are different
methodological approaches to deal with the small effect sizes
when studying the relationship between childhood adversity
and brain structure. In our study we opted for a broad
approach to include regions beyond the traditionally studied
fronto-limbic structures and to study each ACE separately. Our
approach is similar to a recent study in 398 older adults that
also included a large number of ROIs and different types of
ACEs (10). In this study a similar pattern of subtle effects
of ACEs on brain morphology was found. Another approach
is to integrate brain measures (atlas-based or voxel-/vertex-
wise) using multivariate techniques, e.g., non-negative matrix
factorization (65), independent component analysis, canonical
correlation analysis or partial least squares approaches (66).
Principal component analysis was used in a study on the effects
of brain structure and adverse lifetime experiences in adults (67).
Another approach would be to improve the way that childhood
adversity is measured, for example using extensive interviews
to assess different ACEs and their impact (68). However, this
approach is often not feasible in population-based cohorts. On
the whole, statistical power remains a challenge when studying
the effect of many ACEs on many brain morphology estimates
in population cohorts.

For the main effects it remains unresolved if they are
environmental, genetic or both. Neural effects in response to
adversity could be adaptive in the short-term, but in the long-
term these adaptations may contribute to risk or resilience.
Lockdown restrictions during the COVID-19 pandemic can
be seen as another example of an environmental stressor to
some (69–73). All children in our study were measured before
the onset of the pandemic, but pandemic-related ACEs may
impact the follow-up data collected in the YOUth cohort study.
Importantly, accelerated or delayed brain development could
also be driven by genetic factors (74, 75) and the environment
that parents can provide for their children is also influenced by
genetics (76, 77).

Three limitations of this study were not yet discussed. One,
MRI data were processed using adult templates while the use of
age appropriate templates could have improved the registrations
(78). Two, the group of children with missing MRI data scored
slightly higher on the CBCL total problem scale and missing
DWI data was more prevalent when children had a father with
another self-reported ethnicity than Dutch. Three, the described
cohort is homogenous with regard to self-reported ethnicity
and on average participants have high socioeconomic status,
and thus the sample is not representative of the general Dutch
population (58) and results cannot readily be generalized to
other parts of the world.

A better understanding of the impact of adversity on
neural development is important given current pressing
societal issues (79). Early detection of children that are
at risk for negative outcomes later in life can help policy
makers, health care professionals, families and schools
to break with childhoods characterized by accumulated
ACEs. Developmental neuroscience can play a crucial
role to inform these interventions with regard to sensitive
periods of development.
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