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Emerging role of the itaconate-mediated rescue of cellular metabolic stress
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ABSTRACT

Metabolic regulations play vital roles on maintaining the homeostasis of our body.
Evidence have suggested that ATF3 and nuclear factor erythroid 2—related factor 2 (NRF2)
are critical for maintaining cell function, metabolism, and inflammation/anti-inflammation
regulations when cells are under stress, while the upstream regulators in the stressed cells
remain elusive. Recent findings have shown that tricarboxylic acid cycle metabolites such
as itaconate and succinate are not just mitochondrial metabolites, but rather important
signaling mediators, involving in the regulations of metabolism, immune modulation.
Itaconate exerts anti-inflammatory role through regulating ATF3 and NRF2 pathways
under stressed conditions. In addition, itaconate inhibits succinate dehydrogenase, succinate
oxidation and thus blocking succinate-mediated inflammatory processes. These findings
suggest itaconate-ATF3 and itaconate-NRF2 axes are well-coordinated machineries that
facilitate the rescue against cellular stress. Here, we review these fascinating discoveries, a
research field may help the development of more effective therapeutic approach to manage

stress-induced inflammation, tissue damage, and metabolic disorder.
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ITACONATE IS A METABOLITE CONDUCTING
CELLULAR SIGNALING AND MODULATING IMMUNE
RESPONSE

To release energy through the oxidation of organic
compounds, the tricarboxylic acid (TCA) cycle (also
known as citric acid cycle or Krebs cycle), is a series of
chemical reactions involving metabolites with cellular signaling
properties [1]. Those microRNAs regulating the metabolic
pathways are thus influence the inflammation outcomes [2]. TCA
cycle metabolites, including itaconate, succinate, o-ketoglutarate,
2-hydroxyglutarate, fumarate, were shown to exert various
cellular signaling properties [1,3-9]. Among these, itaconate, a
metabolite with anti-inflammatory property, is derived from the
decarboxylation of TCA cycle intermediate cis-aconitate [1].
The immune-responsive gene 1 protein (IRG1) is the enzyme
responsible for itaconate production. Lipopolysaccharide (LPS)
induces IRG1 to result the accumulation of itaconate, which
subsequently reduces interleukin (IL)-1 production [1]. IRGI
deficiency in mice led to the elevation of pro-inflammatory
cytokines interleukin (IL)-1B, IL-18, IL-6, IL-12 production
during macrophage activation by LPS treatments [10]. IRGI
deficiency also led to increased mortality and lung inflammation
in a mouse model of Mycobacterium tuberculosis infection [11].
These results suggest that itaconate is critical infection-induced
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feedback regulating factor that limits excessive inflammation.
Itaconate derivatives, such as 4-Octyl itaconate (4-OI),
inhibit aerobic glycolysis by targeting glycolytic enzyme
glyceraldehyde 3-phosphate dehydrogenase, interferon and
inflammasome to exert anti-inflammatory effects [12,13].
Overall, these studies highlight that itaconate is not just a
mitochondria metabolite but rather an important signaling
molecule involved in the regulations of metabolism, immune
modulation, and gene expression [Figure 1] [1,3-9].

ANTI-INFLAMMATORY EFFECTS OF ITACONATE
DERIVATIVES

Anti-inflammatory effects of itaconate have been associated
with inhibition succinate dehydrogenase (SDH) [Figure 1][10,14],
and down-regulation of inflammasome and pro-inflammatory
cytokines [5,10]. The 4-OI is a most studied itaconate derivative,
displaying anti-inflammatory effects [12,13,15]. For example,
4-0OI reduced the activity of pro-inflammatory cytokine IL-1[
in LPS-treated mouse and human macrophages and rescued
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Figure 1: Ttaconate-induced cell protective anti-stress responses. Inflammatory
stimulus such as LPS upregulates the expression of CAD (also known as IRG1),
an enzyme converts cis-aconitate to itaconate in the mitochondria [4]. LPS-induced
cellular activation leads to glycolytic flux and the transition towards an anaplerotic
TCA cycle with high production levels of itaconate [9]. High itaconate levels
suppress SDH, blocking succinate-mediated inflammatory processes and inducing
the anti-inflammatory proteins NRF2 and cyclic ATF3 [9]. Succinate may
enhance proinflammatory cytokine IL-1p pathway through SUCNRI [3]. Those
blue labels indicate the anti-inflammatory and anti-oxidative-stress responses;
those red labels indicate proinflammatory responses. LPS: Lipopolysaccharide,
CAD: Cis-aconitate decarboxylase, IRG1: Immune-responsive gene 1,
SDH: Succinate dehydrogenase, NRF2: Nuclear factor erythroid 2-related factor
2, ARF3: AMP-dependent transcription factor 3, SUCNRI: Succinate receptor 1,
IDH: Isocitrate dehydrogenase

LPS injection-induced mortality in mice [15]. Treatments of
4-Ol ameliorated LPS-stimulated pro-inflammatory cytokines
IL-1B, IL-6, and tumor necrosis factor (TNF)-a production in
human peripheral blood mononuclear cells (PBMCs) and THP-1
macrophages is associated with the activation of the nuclear
factor erythroid 2-related factor 2 (NRF2) pathway [16]. Such
4-Ol-mediated NRF2—dependent anti-inflammation can also
limit the expression of type I interferon (IFN) [17]. These results
collectively suggested that itaconate is an anti-inflammatory
metabolite. In addition to 4-OI, some other itaconate derivatives
were found to have more or less anti-inflammatory and
immune-modulating effects. For example, evidence have shown
that both dimethyl itaconate and 4-octyl itaconate induce
immunosuppressive phenotypes in an NRF2-independent manner,
which associated with inhibited IkBC and pro-interleukin (IL)-1p
induction, as well as pro-inflammatory cytokines IL-6, and
interferon-f secretion [13].

ITACONATE-INDUCED ANTI-INFLAMMATORY ATF3
PATHWAY

Recently, it is shown that itaconate conducts
anti-inflammatory effects primarily mediating through at least
3 downstream pathways: Pathway 1, Cyclic AMP-dependent
transcription factor (ATF3); pathway 2, NRF2 [9]; pathway 3,
itaconate-mediated inhibition on inflammasome-IL-1 axis [5].

ATF3 is an anti-inflammatory, basic region-leucine
zipper (bZip) DNA binding domain containing transcription
factors [18]. By forming dimers with ATF3-itself and various
other bZip proteins, such as ATF2, c¢-Jun, JunB, and JunD, ATF3
can function as a transcriptional activator or repressor [19,20].
Evidence have suggested that ATF3 plays a role in a variety

of biological processes, such as metabolism [20,21], cell
motility [22], cell cycle [23], DNA repair [24], cell death [25],
and various functions on maintaining the homeostasis [26-37].
ATF3 can be up-regulated by stimulations from wide spectrum
of toll-like receptors (TLRs), including TLR4, 2/6, 3, 5,
7, and 9, and serves as a negative feedback regulator [38].
For example, ATF3 limits the release of pro-inflammatory
cytokine high mobility group box 1, which results in lung
injury after LPS challenge [33]. ATF3 also limits LPS-induced
chemokine (C-X-C motif) ligand 1 production in mouse
airways [22]. Basal and LPS-stimulated chemokine (C-C
motif) ligand 4 (CCL4) mRNA and protein levels are higher
in the bone-marrow-derived macrophages (BMDMs) of
ATF3 deficient (ATF37") mice compared with those of wild
type (ATF3"") mice [39]. Consistently, primary macrophages
from ATF3~ mice exhibit increased production of IL-6 and
IL-12p40 cytokines following TLR activation [38]; LPS
induces higher IL-6 and IL-12 mRNA levels in BMDMs of
ATF3~~ mice [40]. Such anti-inflammatory effect of ATF3 is
in part mediating through the interact with histone deacetylase
1, leading to histone deacetylation and suppression of IL-6 and
IL-12b promoter activity in LPS-treated macrophages [40].
Accordingly, ATF3 was suggested negatively regulating the
gene expression of those pr-oinflammatory cytokines containing
ATF/CREB binding sites [40]. Additionally, comparisons
of wild type and gene knockout mice, evidence have shown
that dimethyl itaconate (DI) inhibits LPS-mediated IxB(
induction in mouse BMDMs and ameliorates IL-17-mediated
IxB( induction, and associated psoriatic pathology in mice
in an ATF3-dependent but NRF2-independent manner [41].
These results revealed that the itaconate-ATF3 axis exerts an
anti-inflammatory role.

In addition to inflammation, mitochondrial stress also
induces ATF3 expression [42]. ATF3 was shown to involve
in adipocyte hypoxia-mediated mitochondrial regulation [43].
Inhibition of ATF3 expression increased mitochondrial
stress and induced cytochrome C release [44]. In addition,
ATF3 suppresses PTEN-induced putative kinase 1 gene
expression in lung epithelial cells to control mitochondrial
homeostasis [45]. In other words, itaconate is a native ATF3
inducer, which couples to metabolic regulation.

ITACONATE AND NUCLEAR FACTOR ERYTHROID
2—RELATED FACTOR 2 PATHWAY

NRF2 is an anti-oxidative stress and anti-inflammatory,
bZip DNA binding domain-containing transcription
factor [46]. Itaconate is transported from the mitochondria
to the cytoplasm, where it shows its functions via the
carriers that transport dicarboxylate and citrate [15]. In
the cytosol, itaconate uses its electrophilic o.B-unsaturated
carboxylic acid to alkylate the cysteine residues on Kelch-like
ECH-associated protein-1 (KEAPI1) that normally binds and
promotes proteasome degradation of NRF2 [15]. Similar
to the modification of cysteines by fumarate itaconate
activates NRF2 by alkylation of KEAPI1 cysteine residues.
Because 4-OI stabilized V5-tagged NRF2 (NRF2-V5) in
COSI cells co-expressing wild-type KEAP1 but not a cysteine
151 (Cysl151)-Ser mutant, Cys151 is a sensor on KEAP1 for
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itaconate [15]. KEAP1 alkylation allows newly synthesized
NRF2 to accumulate and translocate into the nucleus to activate
the anti-oxidant and anti-inflammatory gene expression [6].
Accordingly, itaconate is a native NRF2 inducer, which
couples to metabolic regulation. By binding to the promoters,
NRF2 inhibits the expression of pro-inflammatory genes
IL-1B and IL-6 [47]. Similarly, the itaconate derivative 4-OI
activates NRF2 signaling to inhibit pro-inflammatory cytokine
production in PBMCs [16].

ITACONATE AND SUCCINATE-INFLAMMASOME-IL-1
AXIS

Immune system defenses against external stimulations and
pathogen invasions [48-57], in which the inflammasome-IL-1
axis exerts critical role on the induction of inflammation in
various conditions [58-70]. Itaconate was demonstrated to
inhibit SDH, and subsequently succinate oxidation and thus
blocking succinate-mediated inflammatory processes [10,14].
Succinate was shown to induced the pro-inflammatory IL-1
pathway through succinate receptor 1 [71]. By contrast,
itaconate and 4-OI specifically inhibited NLRP3 activation,
but not AIM2 or NLRC4 inflammasomes [5]. Conversely,
NLRP3 activation was increased in itaconate-depleted Irgl ™~
macrophages [5]. In addition, 4-OI inhibited NLRP3-dependent
IL-1p release from PBMCs isolated from cryopyrin-associated
periodic syndrome patients, and reduced inflammation in an
in vivo model of urate-induced peritonitis [5]. These results
suggest a negative role of itaconate on inflammation.

METABOLIC BRAKE MODEL

For easier explanation, here we postulate a simplified
model, in which itaconate-ATF3 and itaconate-NRF2 axis
are critical metabolic brakes on maintaining metabolic
homeostasis to achieve anti-inflammation and tissue
repair [Figure 2]. When cells are under inflammation,
metabolic overload, itaconate levels are increased [Figure 1],
by which metabolic brakes-induced physiological metabolic
brake responses exert ameliorative roles to reduce metabolic
stress  (e.g., inflammation, metabolic diseases, tissue
damages)-elicited adverse effects. Thus, without ATF3,
other molecular brake become more rapidly wore down by
stresses [Figure 2].

CONCLUSIONS

Because NRF2 and its principal negative regulator
KEAPI are critical in the maintenance of redox, metabolic,
and inflammation, the activators and inhibitors of NRF2
have been considered as therapeutic agents in chronic
diseases [72-74]. Similarly, cardiac ATF3 exerts a protective
role on the amelioration of high fat diet-induced cardiac
remodeling processes [75]. Overexpression of ATF3 induced
the trans-differentiation of white adipocytes into beige/brown
adipocytes in vitro [76]. Chemical ATF3 inducer sulfuretin
counteracts weight gain and improves glucose tolerance in an
ATF3 dependent manner, indicating that ATF3 induction can
be a molecular target for preventing obesity and metabolic
diseases [77]. It is also shown that ST32da, a chemically
synthesized ATF3 inducer, enhances ATF3 expression to inhibit
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Figure 2: The metabolic brake model. Itaconate-mediated
regulations (e.g. itaconate-ATF3, itaconate-NRF2 axes) serve as potential
“metabolic brakes” to conduct anti-inflammation, anti-oxidant and tissue
repair effects. The “metabolic brake” exerts ameliorative roles on metabolic
stresses (e.g. oxidative stress, excessive inflammation, metabolic overload,
obesity) induced adverse effects. The image of wheel displayed in the center of
the figure is originally downloaded (March 19, 2021) from the clipart-library.
com, a free cliparts collection. NRF2: Nuclear factor erythroid 2-related factor 2,
ARF3: AMP-dependent transcription factor 3

lipogenesis and promote adipocyte browning by inhibiting
the  carbohydrate-responsive  element-binding  protein—
stearoyl-CoA desaturase-1 axis [76]. Accordingly, ATF3 is
considered a therapeutic target for obesity and metabolic
diseases [18,75-77]. Evidence described collectively suggest
that itaconate derivatives may be used as therapeutic agents
and the pathway-associated factors ATF3 and NRF2 may be
served as therapeutic targets on the management of metabolic
stress-associated diseases. New discoveries in this field may
help the development of more effective therapeutic approach
to manage stress-induced inflammation, tissue damages, and
metabolic disorders.
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