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Information technologies enable programmers and engineers to design and
synthesize systems of startling complexity that nonetheless behave as
intended. This mastery of complexity is made possible by a hierarchy of
formal abstractions that span from high-level programming languages
down to low-level implementation specifications, with rigorous connections
between the levels. DNA nanotechnology presents us with a new molecular
information technology whose potential has not yet been fully unlocked in
this way. Developing an effective hierarchy of abstractions may be critical
for increasing the complexity of programmable DNA systems. Here, we
build on prior practice to provide a new formalization of ‘domain-level’
representations of DNA strand displacement systems that has a natural con-
nection to nucleic acid biophysics while still being suitable for formal
analysis. Enumeration of unimolecular and bimolecular reactions provides a
semantics for programmable molecular interactions, with kinetics given by
an approximate biophysical model. Reaction condensation provides a tract-
able simplification of the detailed reactions that respects overall kinetic
properties. The applicability and accuracy of the model is evaluated across
a wide range of engineered DNA strand displacement systems. Thus, our
work can serve as an interface between lower-level DNA models that operate
at the nucleotide sequence level, and high-level chemical reaction network
models that operate at the level of interactions between abstract species.

1. Introduction

The evolution of DNA nanotechnology during the last few decades has shown
DNA to be a robust and versatile substrate for nanoscale construction and com-
putation [1]. It is a common abstraction to describe these DNA systems in terms
of domains: contiguous sequences of nucleotides that are intended to partici-
pate in hybridization as one entity. Complementary domains are able to
hybridize, and all other pairs of domains are not (figure 1). Once a system
has been described in terms of domains, nucleotide sequences can be designed
to optimize for the imposed domain-level complementarity rules [2,3]. How-
ever, prior to sequence design, domain-level systems can and should be
analysed at the domain level. This is particularly relevant for so-called ‘DNA
strand displacement’ systems, which have been used to implement digital
and analogue computation in a well-mixed solution [4-8], and can be pro-
grammed using the formal language of chemical reaction networks (CRNs)
[5,7,9]. Here, we call them domain-level strand displacement (DSD) systems,
because we treat the domain level as an explicit formal abstraction layer with
well defined semantics, which can be rigorously analysed without knowing
the specific type of nucleic acid or polymer.
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Figure 1. Nucleic acid secondary structure and common terminology (for
formal definitions, see §2.1). (a) An example secondary structure with five
strands (A, B, C, D and E) and lowercase-named domains (a-r), illustrating
a variety of structural motifs supported by the enumerator. Arrowheads (—)
indicate the 3’ end of each strand. (b) Multistranded complexes with their
domain-level secondary structures are represented as string. The first line
is a sequence of domains, the second line the corresponding structure
(referred to as either ‘dot-bracket’ or ‘dot-parens-plus’ notation). Matching
parentheses denote hybridized domains, ‘dots’ denote unpaired domains
and ‘plus’ denotes the concatenation of two strands. (c) In this paper, we
introduce an equivalent shorthand notation that interleaves domain-level
sequence and domain-level structure, called kernel notation.

The term enumeration refers to the process of generating a
CRN, given a finite set of initial complexes and a set of rules for
their interactions. The enumerated CRN can then be (i) visually
inspected to identify spurious and unintended reaction path-
ways, (ii) rigorously analysed to verify its correctness with
respect to a formal CRN [10,11], or (iii) simulated to track
expected species concentrations over time. In this contribution,
we introduce the domain-level reaction enumeration software
Peppercorn, which also provides an approximate rate model
for domain-level reactions of DNA molecules.

Several previous efforts have been made to enumerate and
simulate reaction networks for DNA nanotechnology at the
domain level [12-20] and will be discussed further in §6.1.
Among them, the most popular circuit analysis tool is
VisualDSD [15-17], which supports a limited class of DNA
structures (e.g. no hairpin-loops, no branched structures) and a
built-in set of common intended reaction rules between those
structures. More recently, VisualDSD can interpret a program-
ming language called LogicDSD [18,20], which has been used
to enumerate and simulate a much wider class of DNA related
systems. For example, it supports DNA structures with arbitrary
pairing between two complementary domains (including hair-
pins, branched structures and so-called pseudoknotted
conformations; see definition 2.3), it supports enzymatic pro-
cesses such as DNA degradation, etc. However, LogicDSD
may require the user to have extensive prior knowledge about
the system, both to formulate appropriate reaction rules for
enumeration and to provide the reaction rates for simulation.

Peppercorn provides an out-of-the box domain-level reac-
tion enumeration model that is more general than ‘classic’

VisualDSD, but less permissive than the LogicDSD language. [ 2 |

Like other enumerators, Peppercorn provides a single type of
bimolecular reaction: hybridization between two unpaired
domains. However, in contrast to other enumerators, it pro-
vides an exhaustive set of intramolecular domain-level
reactions within the space of pseudoknot-free nucleic
acid secondary structures (opening and closing of helix
domains, as well as three-way and four-way branch
migration via proximal and remote toeholds; see §2.2). This
class of secondary structures (see definition 2.3) is particu-
larly important, as the vast majority of conformations will
be sterically feasible and well modelled by a well-established
DNA and RNA thermodynamic energy model [21], which is
used by standard nucleic acid structure prediction software
[22-24]. Furthermore, the biophysics of conformation
changes for this class is well studied, e.g. [25-39], and Pep-
percorn provides an approximate kinetic model grounded
in this understanding.

Thus, Peppercorn is an important step forward to bridge
the gap between kinetic analysis of domain-level DNA nano-
technology and well-established nucleic acid sequence-level
thermodynamic energy models and kinetic simulators. For
example, the stochastic nucleic acid sequence-level reaction
simulator Multistrand [40] is suitable for estimating the rate
of individual strand displacement reactions, but it cannot
cope with the massive state space of a complex multistranded
DSD system. However, Peppercorn can be used as a prepro-
cessing step to enumerate a domain-level reaction network,
and then the individual reaction rates can be calculated
using sequence-level simulators [41].

Peppercorn separates enumeration and simulation so that
the exhaustive reaction network can be rigorously analysed.
Combinatorial explosion due to implausible polymerization
(figure 3) is controlled by enforcing a separation of time-
scales: assuming some reactions are much faster than
others. This approximation is valid for low species concen-
trations, and can be performed either with or without
reference to specific reaction rates, e.g. those that Peppercorn
provides for domain-level DNA systems. Finally, Peppercorn
uses this timescale separation to condense the detailed enum-
erated network with fast and slow reactions into a
considerably smaller CRN with only overall slow reactions.
We prove that those two CRNs are equivalent in terms of
overall slow reaction pathways, and we provide a corre-
sponding reaction rate condensation algorithm to simulate
DSD systems on the more compact, condensed level.

We have implemented the Peppercorn enumerator in
Python, available on GitHub [42], either as a standalone pro-
gram for domain-level enumeration, or embeddable into
other projects using the library interface. The peppercornenu-
merator library is already a central part of the DyNAMIiC
Workbench integrated development environment [43], the
automated sequence-level verification software KinDA [41],
and the ‘CRN-to-DSD’ compiler Nuskell [44]. Badelt et al.
[44] use Nuskell (and thus Peppercorn) to enumerate and com-
pare 13 different DSD systems implementing a DNA-only
oscillator [7].

2. Reaction enumeration model

The following section introduces the different components of
DSD systems, and the kernel notation for domain-level
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complexes and reactions. In §2.1, we introduce this notation
as a compact representation for structures, and in §2.2 we
use it to express reaction types as string modifications accord-
ing to pattern-matching rules. §2.3 explains the assumptions
that enable us to separate timescales for different reaction
types with or without reference to specific reaction rates. In
§2.4, we present a rule-based algorithm that supports all pre-
sented reaction types, and uses separation of timescales to
enumerate the reaction network of a DSD system.

2.1. Primitives and definitions

DSD systems are abstract representations of reaction networks
of interacting nucleic acid molecules. Intuitively, nucleic acids
are represented as sequences of domains, as opposed to
sequences of nucleotides. If domains are well designed, then
each domain can hybridize as one entity only to its respective
complementary domain, otherwise remaining unpaired.
A strand is a sequence of domains that are connected with a
covalent backbone, while the corresponding structure
describes which domains are hybridized and which are
unpaired. A complex is a structure that can be formed by
one or more strands. Two complexes are different if they
have either different strands or a different structure.

Definition 2.1. A domain d =(r, 7) is a tuple where r is the
name of the domain and 7 is its length. A domain d = (r, 7)
is complementary to domains of the form d*=(r*, 7) whose
name is r* and type is the same. (We adopt the conventions
that (@*)*=d #d* and (r*)*=r+#r* and that there cannot be
same-named domains with different lengths.) We distinguish
two types of domains: toehold domains (or equivalently
short domains) bind their complementary domain reversibly,
i.e. both the hybridization rate and dissociation rate are rel-
evant on the time scale of an experiment. Branch-migration
domains (or equivalently long domains) bind their comp-
lementary domain irreversibly, i.e. the dissociation rate is
treated as negligible.

Peppercorn considers domains with a length 7 < L nucleo-
tides to be short domains, and all other domains are
considered long. (By default L =7 nucleotides.) While not
done here, it would be natural to associate each domain
with a specific nucleotide sequence so as to introduce a
more refined, sequence-dependent kinetic model.

Definition 2.2. A strand s=[d,, ..., d,] is a sequence of m
domains in specific order from 5 to 3’ end.

Definition 2.3. A secondary structure 7 for a set of strands
S={s1, ..., s} is a function 7: (S x N) — (S x N) U ) that spe-
cifies, for each domain on each strand, the strand and domain
(if any) to which it is bound. 7(s;, j) = ) indicates that domain
d; on strand s; is unbound. #(s;, j)=(sy, [) indicates that
domain d; on strand s; is bound to domain d; on strand s;.
The domain and range of 7 must be restricted to only valid
domains for each strand. Bindings must be consistent; that
is, if 7(s;, j) = (sx, 1), then 7(sy, 1) = (s;, j). Furthermore, bindings
must only occur between complementary domains; that is, if
(s, j) = (s, 1), and s;[ j] = d, then si[l] = d*. Finally, a structure
7 is deemed non-pseudoknotted if there exists a specific

order of strands in S (without loss of generality, let the order-
ing be sy, ..., s,), such that all bindings in 7 are nested in the
following sense. We say (strand index, domain index) pairs (i,
j)>& 1) ifi>korif i=kand j>I (ie. pairs are compared lex-
icographically). A structure 7 is non-pseudoknotted if the
following nesting condition applies for all pairs in z: if
n(s;, j)= (s, 1) and (s, q)=(s,, v) and @, j)<(p, 9 <&, 1),
then (i, j)<(u, v)<(, I). If a secondary structure 7 is not
non-pseudoknotted, then 7 is pseudoknotted.

Definition 2.4. A complex is a specific secondary structure
formed either by one strand, or by multiple strands that are
connected by bound domains. Two strands s; and s; are
directly bound if there is at least one domain in each strand
that is bound to a domain in the other strand; that is, there
exist j and [ such that 7z(s;, j) = (sk, I). Two strands s; and sy
are connected if either s; is directly bound to s or s; is directly
bound to some other strand that is connected to sy.

This work only considers non-pseudoknotted secondary
structures. The primary reason we restrict attention to non-pseu-
doknotted structures is that, after domains have been given
specific nucleotide sequences, they naturally correspond (with
a few exceptions') to sterically unconstrained molecular geome-
tries for which the thermodynamic free energy can be evaluated
accurately using the standard nearest neighbour energy model
[21,23]. In contrast, pseudoknotted secondary structures imply
loop constraints and steric conflicts that necessitate incorporat-
ing additional (and possibly large) geometry-dependent
energy terms [45-47]. Simplified approximations allow some-
times-accurate estimation of energies for certain sub-classes of
single-stranded and multi-stranded pseudoknots [45,48-51],
and incorporating such sub-classes would be an interesting
extension of this work; however, doing so would also have
many non-trivial implications for reaction enumeration as dis-
cussed below. The following definition 2.5 introduces a
convenient string representation for non-pseudoknotted struc-
tures as introduced in definition 2.3 above.

Definition 2.5. The pairings of a non-pseudoknotted second-
ary structure (as in definition 2.3) can always be written as a
well-formed string where dots denote unpaired domains and
matching parenthesis denote paired domains. When multiple
strands are present, then the plus sign marks a strand break
(i.e. the 3’ end of one strand and the 5 end of the next
strand; see figure 1b), and the strands must be listed in an
order consistent with the nesting condition of definition 2.3.
The kernel notation is a compact representation where
domain-level sequence and structure are interleaved such
that a domain written by itself is unpaired, while a domain
followed by parenthesis is part of a duplex; the matching
closing parenthesis indicates the bound complementary
domain of the duplex. (The domain name is not written expli-
citly since it is implied.) A well-formed substructure is a
subsequence of a kernel string that by itself is a well-
formed kernel string, ie. each opening parenthesis has a
unique matching closing parenthesis.

Note that in a kernel string, anything between two match-
ing parenthesis is a well-formed substructure. A kernel string
(and thus a substructure) can represent multiple (discon-
nected) complexes. A well-formed non-pseudoknotted
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Figure 2. Available reaction types and their corresponding pattern matching rules. The wildcard character ‘2" is always shown as a connected dotted line, although
depending on context it may represent a non-connected substructure. Domains that change their configuration according to the corresponding pattern matching rule
are shown as straight, green, directed arrows. (a) Unimolecular binding. (b) Unimolecular opening. The pattern matching rule is the exact reverse of unimolecular
binding. (c) Bimolecular binding. The pattern requires a more explicit formulation than unimolecular binding to ensure a well-formed kernel representation of the
product complex. (d) Three-way branch migration. Two distinct rules are necessary to describe the forward and reverse reaction. The patterns for the product of the
forward reaction and for the reactant of the reverse reaction are circular permutations. (e) Four-way branch migration. One rule describes both forward and backward

reactions, as the reactant pattern is a circular permutation of the product pattern.

complex composed of k strands has exactly k equivalent rep-
resentations where paired elements are properly nested,
corresponding to the k circular permutations of the strands
[23]. As an example, there are five circular permutations of
the complex shown in figure 1, shown here with each
strand in a different colour as per the figure:

ablc)dlef(gh(+))ij(kl(+)m)nolp+ql+
+ablc))ef(gh(+))ij(k1l(+)m)n)op+)
q( + +ablc))ef(gh(+))ijlkl1(+)m)n)p
1x(m j*(no( p+ q( + +abl(c))ef(ghC+))i) k)
hx( £x( 1 j(k 1(+) m ) no(p+q(+ +ablc))e)g)
Importantly, since the same complex may be represented
in several ways, all operations discussed in later sections are
considered to act independent of representation, but may be

defined with respect to a convenient representation.

Definition 2.6. A reaction r=(A, B) is a tuple where A is the
multiset of reactants and B is the multiset of products. The
arity a(r) of areaction risa pair (I Al, | Bl), where | A| denotes
the number of molecules in A. Any reaction with arity (1, n) is
unimolecular; reactions with arity (2, n) are bimolecular, and
those with other arities are higher order. We say a reaction con-
serves strands (and thus conserves mass) if the multiset of
strands that appear in reactants equals the multiset that
appear in products. Each reaction may be classified as fast or
slow; unimolecular reactions may be either fast or slow, while
bimolecular and higher-order reactions must be slow. For a
set R of reactions, we sometimes write Ry to represent the
fast reactions and R, to represent the slow reactions, such
that R = Rf UR;. Finally, it will sometimes be useful to
partition Ry into (1, 1) and (1, n>1) reactions, such that
R = Rj(f“) U R;l'”ﬂ), where by convention (1, #>1) indicates
reactions with any value of  greater than 1. A detailed reaction
is a reaction where reactants and products are complexes. A con-
densed reaction is a reaction between resting macrostates that will
be introduced in definition 2.7.

All reactions considered in this paper conserve strands; as
a consequence, there will be no (0, n) or (1, 0) reactions, as
those would birth new products from no reactants or cause
all reactants to disappear. The distinction between fast and
slow reactions is motivated by a separation of timescales

that occurs in the limit of low concentrations, as will be
discussed in §2.3.

Definition 2.7. A chemical reaction network (CRN) is a pair
G=(C, R) where C is a set of species (either complexes or
macrostates) and R is a set of reactions between those species.
For CRNs with reactions labelled as fast or slow, as per defi-
nition 2.6, we consider an associated directed graph
I'=(, R}l’l)) with nodes C corresponding to the set of
species in the CRN G and edges R;l’l) being only the set of
fast (1, 1) reactions. The strongly connected components
(SCCs) of T define a set of macrostates: a SCC is called a tran-
sient macrostate if G contains a fast (1, 1) or (1, n > 1) reaction
leaving the SCC, and is called a resting macrostate otherwise.
When C is a set of complexes, we refer to G as a detailed
CRN, while if C is a set of resting macrostates and R is a
set of condensed reactions then we call it a condensed CRN.

The justification for using only (1, 1) reactions, and not
other (1, n>1) reactions, when calculating the SCCs is that
reactants and products of fast (1, n>1) reactions cannot
both be in the same SCC due to strand conservation.

Kernel notation  for
can be specified with kernel notation; for example:
alb+b(c+)) —>bc+alb(+)) isa unimolecular
three-way branch migration reaction with two products. The
next section (and figure 2) will explain all reaction types in
detail, but it is worth drawing the corresponding complexes

reactions. Reaction mechanisms

of this reaction to get familiar with kernel representations.

2.2. Reaction types
Imagine an experimental setting with a test tube of complexes
as the initial state of a CRN. This section defines an exhaustive
set of intended reaction types that can occur under the assump-
tion that the nucleotide-level sequences are designed to
implement the domain-level logic. Hence, a reaction type rep-
resents a distinct molecular mechanism for intramolecular or
intermolecular configuration changes, also shown in figure 2.
Using our previously introduced kernel notation, we can
formulate this set of reactions as string modification rules.
Pattern-matching rules. A reaction matching rule is a pair
of patterns separated by an irreversible reaction arrow, ‘->".
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The rules describe permitted reactions, which transform one
multiset of complex(es) (matched by the reactant pattern)
into another (matching the product pattern). Patterns are
written in a generalized version of the kernel notation
(figure 2). In addition to named domains (e.g. ‘r’), their
complements (e.g. ‘r*’), and hybridization markings (e.g.
‘r(’ and ‘)’), here we introduce the wildcard 2’ to match a
well-formed substructure of a complex (which may or may
not in and of itself be connected). Additionally, the brackets
77 and 1’ denote a 5 or 3’ end of a complex, respectively.
As usual, ‘+” is a strand break. We distinguish two types of
pattern-matching rules: unimolecular, in which the brackets
cannot be used, and bimolecular, in which each reacting com-
plex must appear inside brackets. Pattern-matching rules
must satisfy the following criteria

(i) Both patterns are linear sequences that start and end
with a non-wildcard character.

(ii) Both patterns have the same total number of domains
and wildcards.

(iii) The domains and wildcards in both patterns occur in
the same order (including implicit domains at closing
parentheses).

(iv) Wildcards cannot have associated parentheses; only
named domains indicate structure.

(v) Both patterns (for unimolecular rules), and each
pattern enclosed in brackets (for bimolecular rules),
must represent well-formed structures when the
wildcards are removed.

To apply a pattern-matching rule to a complex containing
k strands, we must test to see if the pattern matches any of the
k representations that are equivalent up to circular permu-
tation. For unimolecular rules, the pattern may appear
anywhere within the complex, while for bimolecular rules,
each complex must fully match its respective pattern within
brackets. To match, each named domain in the pattern must
be assigned to a single domain (or domain complement)
from the complex, consistently for each occurrence of the
domain in the pattern, while each wildcard must be assigned
to a well-formed substructure from the complex, indepen-
dently for each occurrence of a wildcard in the pattern.
Thus, for each representation, there may be zero, one, or
more ways to match the left-hand side pattern to the com-
plex(es). Each such match represents a possible reaction; to
obtain the reaction, the enumerator can instantiate the right-
hand side pattern by substituting corresponding wildcards,
then separating the right-hand side into multiple connected
complexes if that is possible. There may be multiple ways
to get the same reaction via different representations; only
one copy of each distinct reaction is kept.?

For example, applying the pattern matching rule r*( 2 r
? ) =>1r*(?)? rtothecomplexa(b+b(c(+) b*+))
yields two reactions. Matching r*(? r? ) =b(c(+) b* +)
with, respectively, r =b*, ? =c(+ ), ? =+ yields a( b +
b( c(+) ) +Db* ), which separates into a( b + b* ) and
b( c( + )). The second reaction derivation begins with
the circularly permuted c* ( b* +b*( a*(+) b+ ) ), matches
r*(? r?) =b* a*( +) b+ ) with, respectively, r =b, ? =
a*( +), ? =+, and yields c*( b* + b*( a*( +) ) +b ),
which separates into c*( b* +b ) and b*( a* (+) ).

Bind reactions. Two complementary, unpaired domains
hybridize to form a duplex. We distinguish two types of

bind reactions: bindll is a bind reaction between two “

domains on the same complex, i.e. a reaction with arity
(1, 1), while bind21 is a bimolecular bind reaction with
one product (figure 24,c).

— bindll: r? r* > r(? )
— bind21:[? x?] +[?2 r* 2] —>[2 r(? +?2 ) 2]

We employ explicit end-of-strand markers for bind21
reactions to enforce that the left-hand side must match two
separate complexes; this ensures that the kernel represen-
tations of those complexes will be rotated individually to
ensure that domains r and r* are not enclosed by paired
domains, such that the representation of the product complex
is well formed.

Open reactions. Two paired domains detach (figure 2b). Open
reactions are the reverse of previously discussed bind reactions,
which means there are situations where opening happens with-
out changing the arity of a reaction and other situations where
opening results in the dissociation of two complexes.

— open: r(? ) —>r? r*

The enumeration semantics (discussed in more detail in
§2.4) determine when the open reaction rule applies. In the
default rate-independent semantics, open applies only
when r is a short domain and thus is a fast reaction; in
§2.3, we introduce rate-dependent semantics, where open
reactions are enumerated for domains of any length, but
reactions with a too-slow rate constant are discarded.

Branch-migration reactions. We distinguish two branch
migration reaction types [28]. In a three-way branch
migration, an unpaired domain displaces another instance
of the same domain that is bound in a duplex (figure 24).
A four-way branch migration is a rearrangement where two
hybridized domains exchange their binding partners at the
same time (figure 2e), i.e. a reaction that proceeds via a
four-way junction [52]. Branch migration reactions can
result in a complex that remains connected, with reaction
arity (1, 1), or they can disconnect into two complexes, with
arity (1, 2). The latter are inherently irreversible.

— three-way-fw: r?2 r(? ) >r(?2 r?)
— three-way-bw: r(?2 r? ) >r?2 r(?)
— four-way: r(? )2 r(? ) >zr(?2x*(?2)°?)

Note that both branch migration reactions are reversible
for reaction arity (1, 1), but the four-way branch migration
reaction is symmetric, i.e. a circular permutation can trans-
form the reactant pattern into the product pattern. This
transformation is not possible for three-way branch migration
reactions, which is why we distinguish the three-way-fw
and three-way-bw patterns (figure 2d,e).

2.3. Separation of timescales

We use a timescale separation principle to avoid combinator-
ial explosion of the reaction network enumeration (figure 3)
while maintaining the generality of reaction types and sec-
ondary structures considered. Intuitively, complexes have
infinite time to engage in fast reactions, before they engage
in a slow reaction. In order to increase the applicability of
the model, we present reaction enumeration semantics that
can be justified with or without reference to specific values
for specific reaction rates.
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sl—s2 sl—s2 sl—s2

-

sl—s2-sl sl—s2-s1-s2 sl—s2-s1-s2-s1

Figure 3. Enumeration with and without timescale separation. (a) Intended behaviour of two complementary strands s1 and s2. Either domains a and a* (as
shown) or b and b* bind via a slow bimolecular reaction, followed by a fast unimolecular hybridization reaction of the respective other domain. (b) Pathological
enumeration behaviour without a separation of timescales. Repeated bimolecular association reactions occur before the unimolecular bind reaction, generating
implausibly long polymers. The kinetically and thermodynamically favoured simple duplex may never be found.

Rate-independent model. Our default model declares unimo-
lecular reactions to be fast, while bimolecular reactions are
slow (see definition 2.6). Note that unimolecular open reac-
tions for long domains (as defined by the threshold
parameter L) are excluded from enumeration. This simple
model avoids consideration of a large number of unlikely reac-
tion pathways that involve biomolecular reactions between
transient intermediate complexes. For instance, it significantly
reduces the problem of potentially infinite polymerization.
Also, since the enumeration of unimolecular reactions is
linear in the number of species, while enumeration of bimole-
cular reactions is quadratic, eliminating the consideration of
bimolecular reactions between selected complexes effectively
reduces the complexity of the enumeration problem.

We can justify this classification of unimolecular reactions
as fast compared to bimolecular reactions in the limit of low
concentrations. Consider a standard mass action model of
chemical kinetics with fixed rate constant k, for each reaction
a, wherein bulk concentrations are continuous variables
whose evolution proceeds according to ordinary differential
equations (ODEs). Then the rate of a unimolecular reaction
a with reactant X will be k,[X], while the rate of a bimolecu-
lar reaction § with reactants X and Y will be kg[X][Y], where
[X] and [Y] are the respective concentrations of X and Y.
Consequently, as the concentration of all species decreases,
the rates of bimolecular reactions decreases more quickly
than the rates of unimolecular reactions, and eventually

kplX1[Y] < kol X1

Thus, in the limit of low concentrations, the bimolecular
reaction will be much slower than the unimolecular reaction.
A similar argument can be made for stochastic dynamics in
the discrete regime [53]. As an example, consider typical rate
constants for binding and dissociation of short domains at
25°C as estimated using the approximate formulae kz= 3¢ x
10°M™'s7!, and k, = kg x e'M ~ 7.41¢ x 106 x e 286/ 571,
where / is the length of the domain (see appendix §C.1).
For this rate model, the bimolecular reactions are more
than an order of magnitude slower than the unimolecular
reactions when all concentrations are less than 107124 M.
Consequently, for typical toehold lengths ¢<7, our
assumptions are valid in the low nanomolar concentration
regime, e.g. with [X]=[Y]= 1078 M, we have ks 1078 M)* <«
ke (1078 M.

Rate-dependent model. In this alternative model, the user
provides two threshold values kqoy and ke, to separate time-
scales based on unimolecular rate constants k,,; (as estimated
e.g. by the model in appendix §C.1). As before, all bimolecu-
lar reactions are slow, but now unimolecular reactions fall
into three categories: negligible (kun; <ksiow), Slow (kgow <
kuni <keas) and fast (keast <kyni). In particular, kgow is a

threshold to exclude unimolecular reactions based on their
rate constants (as opposed to the threshold parameter L in
the rate-independent model), while ki, separates slow unim-
olecular reactions from fast unimolecular reactions. That is,
kgow and ke give the lowest acceptable rate constant for
unimolecular reactions in their respective category. Impor-
tantly, threshold L in the rate-independent model only
applies to the open reaction, while kqon and ke apply to
all unimolecular reactions in the rate-dependent model.

In effect, by categorizing some unimolecular reactions as
slow, the rate-dependent model enables us to model systems
that would not work in a low concentration regime. For
example, programmable hairpin systems such as the hybrid-
ization chain reaction [54] and catalysed three-arm junction
formation [55] (see §5.3), as well as cooperative hybridization
and strand displacement [56,57] involve two independent
bimolecular interactions that are fully reversible by one or
more unimolecular steps. But if all unimolecular reactions
are fast, and if all fast reactions occur before any slow reac-
tions, then such two-step reactions will always revert before
the second step can take place. Thus, only if at least one of
the unimolecular reverse reactions is considered slow, with
kslow < kuni < kfast/
happen sequentially in the model.

then both bimolecular reactions can

2.4. Reaction enumeration algorithm

A reaction enumerator can be considered to be a function that
maps a set of initial complexes C to a CRN G = (C, R), where
C is the set of complexes that appear in the network and R is
the set of reactions between those complexes. Recall definitions
2.6 and 2.7 from §2.1, which state how to coarse-grain a CRN
G =(C, R) with species (microstates) C and reactions R into
transient macrostates and resting macrostates. A complex is a
resting complex if it is in a resting macrostate, or a transient
complex otherwise. Our reaction enumeration algorithm
returns a unique CRN with the following properties:

(i) every complex has all valid fast reactions enumerated,
(ii) transient complexes have no reactions
enumerated,
(iii) resting complexes have all valid slow reactions enum-
erated, and
(iv) all initial complexes are included,

slow

where the notion of valid, fast, and slow reactions is
referred to as enumeration semantics. The implementation
is a rule-based approach, where fast reactions are always
enumerated exhaustively from every species in the system,
then SCCs are identified using Tarjan’s algorithm [58], resting
complexes are identified, and all slow reactions between rest-
ing complexes are enumerated. New products have their fast
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neighbourhood enumerated first, and if new resting com-
plexes have been found, new slow reactions are enumerated.

Limitations. Unfortunately, in this most general enumer-
ation model, enumeration is critically dependent on the
domain-level representation of the real system. For example,
a long domain cannot engage in an open reaction, but if it
is represented as a sequence of consecutive short domains
then they can all open via a sequence of fast reactions. This
is problematic, because now an actually stable complex will
be classified as transient and cannot engage in slow reactions.
We provide a solution called max-helix semantics for this
example, but not for other more ambiguous cases where
related problems still exist (see below).

2.4.1. Enumeration semantics

Different reaction enumeration semantics enable us to vary
the size of the state space in a controlled manner and are avail-
able as model parameters. For example, one can vary the
release-cutoff, i.e. the threshold for open reactions L, or
exclude a branch-migration reaction type, e.g. with ignore-
branch-4way. Other systems might require the user to
choose a max-complex-size, such that all reactions produ-
cing larger complexes are ignored. The reject-remote
semantics excludes so-called remote-toehold branch migration
[35], where the invading domain and its complement are not
directly adjacent to already bound domains (figure 7). Thus
with reject-remote semantics, only ‘proximal’ branch
migration, i.e. adjacent to a bound domain, is permitted.
This option may exclude states and reactions of biophysical
importance, but can be especially useful for debugging unin-
tended behaviour of a DSD system as many systems are
designed without remote-toehold interactions in mind. See
appendix §A on how reject-remote semantics affects enu-
meration. Using k-slow and k-fast switches to rate-
dependent semantics, where unimolecular transition rates
are classified into negligible, slow and fast reactions based
on their estimated rate constants.

The max-helix notion extends every reaction of a single
domain to propagate through all neighbouring domains com-
patible with that same reaction type. In other words, the
pattern matching rules for reaction types remain the same,
but the characters r, r*, r (,) donot match single domains,
but instead match maximal sequences of consecutive
domains. There are several advantages to using max-helix
semantics: (i) enumeration is faster, as fewer states are
explored and therefore fewer reactions are enumerated, (ii)
any system enumerated using max-helix semantics can be
modified by dividing its domains into subdomains (e.g.
d — d;d»dj), while the state space and enumerated reactions
remain the same, (iii) as a consequence of (ii), max-helix
semantics yields a biophysically reasonable resting complex
assignment whenever a sequence of fast reactions can be
combined into one slow reaction.

However, max-helix does not solve the following
ambiguous problems: (i) the same system can have an
unexpectedly different state space when enumerated with
or without max-helix semantics. (ii) Max-helix semantics is
not a guarantee that toehold domains remain bound, if they
are part of a long stem, as it only excludes the specific reac-
tion opening that toehold. (iii) It is still possible to design
complexes that in reality would be stable, but which would
be considered transient in the max-helix model—for example,

multiple short domains that are not adjacent can open as indi-
vidual steps. Note, that cases (ii) and (iii) might actually cause
troubles in a physical DSD system, so it is perhaps fortunate
that our enumerator points out these issues. These and other
details concerning max-helix semantics are discussed further
in appendix §A and figure 12. The option no-max-helix
turns max-helix semantics off, and can be especially useful
to investigate partial unbinding of long domains.

2.4.2. Premature termination

The enumerator provides a threshold to limit the maximum
complex size of products, in order to (at least partially) enu-
merate systems which result in genuine polymerization, such
as the hybridization chain reaction [54] and insertional
polymerization [59]. However, some systems might simply
get too big in the number of reactions and products. In
order to detect and report such behaviour, the enumerator
places a soft limit on the maximum number of complexes
and the maximum number of reactions that can be enumer-
ated before the enumerator will exit. These limits are
checked before the neighbourhood of fast reactions is enum-
erated, which ensures that the CRN enumerated up to that
point can still be investigated, for example by reaction
condensation (as discussed in §3). However, when the maxi-
mum number of complexes or reactions is reached, there is no
longer a reliable notion of completeness of the enumeration,
which can be problematic.

3. CRN condensation

Consider a coarse-grained representation of a CRN, where we
distinguish transient macrostates and resting macrostates.
The condensed CRN is a projection of the original CRN
that describes the overall reactions between resting macro-
states. A condensed CRN is an intuitive way to formulate
DSD systems, either for compact visualization or as a basis
to prove/disprove the equivalence of CRN [10,11,44,60]. We
present a rigorous self-contained theory that is independent
of DSD enumeration, but requires certain properties of the
original, detailed CRN to which the coarse-graining and
condensation algorithm is applied:

(i) Reactions can have any arity (1, m), as longas1<n <2
and m > 0.
(ii) All fast reactions are unimolecular.

(iii) Reactants of slow (unimolecular and bimolecular)
reactions must be resting complexes.

(iv) For any sequence of unimolecular reactions, where
each reaction consumes a product of the previous reac-
tion and the last reaction produces the original species,
the sequence must consist only of 1-1 reactions.?

The reaction enumeration algorithm presented in §2.4 yields
a detailed CRN that satisfies these properties, even when the
enumeration terminates prematurely. This section explains a
rate-independent, trajectory-based projection of a detailed
CRN into a condensed CRN, which is also illustrated in
figures 4 and 5; the calculation of condensed reaction rates
is discussed separately in appendix §C.2. For a formal corre-
spondence between trajectories in the detailed CRN and its
condensed representation see appendix §B.
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condensed reactions:
A+B—>C+D
A+B—>C+E
A+B —>C+F
A+B —>D+E
A+B —>D+F
A+B —>E+E
A+B—>E+F
F—E

@  microstate (complex)
— fast (1,1) reaction

-=====3 slow (1,1) reaction
A fast (1,2) reaction

slow (2,1) reaction

A+B),(C+E),(C+F), i1 resting macrostate
D+E),(D+F),(E+E),(E+F)} -

! } transient macrostate

{}  setof fates
2 ) ((E) (F)}

Figure 4. Trajectory-based CRN condensation. Fast reactions between microstates (nucleic acid complexes) determine the SCCs of a graph; terminal SCCs are resting
macrostates. The result is a directed acyclic graph, where the set of fates for each complex can be calculated recursively for every macrostate. A condensed reaction
exists for every slow reaction and every fate of the product of a slow reaction. Pathways of reactions that have the same reactants and products, such as {A + B —
A+ B, F— F}, are not included in the condensed CRN, but they are important for the calculation of condensed reaction rates.

:j&

{(RM1 + RO), (R21 + R22), (R3] + RM32)}

—> fast (1,1) reaction detailed reactions:

|

! )\ fast (1,2) reaction RCla+ R0 — TC1
! TC1 — RO +RCla
| V slow (2,1) reaction RC1b+ RO = TC2
: { } set of fates $g% - ?g; RCIb

|’_‘I resting macrostate -

o s TC2 — TC1

: 1 } transient macrostate TC2 - TC3

I A= TC3 — TC2

TCl1 - R21 +R22
TC3 — R21 + R22
TC3 — R31 + RC32b
RC32b — RC32a
RC32a — RC32b

condensed reactions:

RMI + RO — R21 + R22
RM1 + RO — R31 + RM32

RC32a

| RC32b

Figure 5. Condensation of a small DSD system with two alternative condensed reactions. Resting macrostates can contain more than one complex, e.g. RM1 contains
two resting complexes: {RC1a, RCTb}. Whenever a resting macrostate contains only one complex, we use the same name for the macrostate and the complex.
As discussed in the main text, the fate of a resting macrostate is the resting macrostate itself, while the fate of a transient macrostate (here: TM) is the set
of resting macrostate combinations reachable via fast reactions. After RM1 and RO react in the detailed network, the product of the condensed reaction is not

yet determined, a phenomenon sometimes referred to as ‘delayed choice’.

Coarse-graining of CRN. The definitions 2.6 and 2.7 in §2.1
state how to coarse-grain a CRN G = (C, R) with species C and
reactions R into transient macrostates and resting macro-
states. We define the corresponding condensed CRN to be

= (C, R), where C is the set of resting macrostates and R
is the set of condensed reactions. Recall that R = Rf U R;,
where Ry are fast reactions and R, are slow reactions. We
write fast reactions with arity (1,1) as R}] D and

=(C, R(1 V) for a directed graph that contains only the
subset of R}l D reactions. Additionally, denote S(x) as the
SCC of I' containing some complex x. Hence, complex x is
either a resting complex if S(x) is a resting macrostate, or a
transient complex if S(x) is a transient macrostate.

CRN condensation algorithm. While coarse-graining yields
the species C of a condensed CRN, we still need to find con-
densed reactions R between them. For each slow reaction in
the detailed CRN, and for each way that the (often transient)
products could reach resting states again by following fast

reactions, we will introduce a condensed reaction between
the resting macrostates corresponding to the reactants and
the resting macrostates that were eventually reached (even
if the resulting resting states are no different from the starting
ones). There may be several distinct slow reactions in the
detailed CRN that correspond to interactions between the
same resting macrostates (just different microstates) and
yield the same eventual products.

To make this construction precise, we introduce the set of
fates of a single complex [F(x), which, intuitively, describes all
combinations of resting complexes that could emerge from
the complex x after all fast reactions have gone to completion.
(There may be more than one possibility, depending on
which reactions take place first, see figure 5.) We can also cal-
culate the set of fates of a multiset of complexes, which can be
used to define the set of fates of a reaction R(r) = F(X), where
X are the products of a reaction r and the extension of F to
multisets is as defined below. The set of condensed reactions
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can now be computed. For each slow reaction in the detailed
CRN, we convert each reactant (which will be a resting com-
plex) to its corresponding resting macrostate, and then we
produce a condensed reaction for each possible fate. The
formal derivation is shown below.

Cartesian sum. We will use blackboard-bold braces { |} to rep-
resent multisets and normal braces { } to represent sets. Let A
and B be sets of multisets; then we write the Cartesian product
as AxB={(, b):ae€ A, be B}. The Cartesian sum, by contrast,
is an operation that sums each of the individual pairs of the Car-
tesian product, and returns a set of all the sums i.e.

A®B={a+b:a€ A beEB}. G.1)

The result is, therefore, a set of multisets. The Cartesian sum is
associative and commutative, such that we can write @B,E sBi
to represent By @& B, @ - - - forall B; € B.

Definition 3.1. A fate F of a complex x is a multiset of
possible resting macrostates, reachable from x by fast reactions.

For example, if complex x is a dimer that can decompose
into two identical resting complexes: x—y+y then
{SW), SW] is a fate of x. A complex x may have many
fates, and all complexes must have at least one fate. We
will denote the set of fates by [F(x). For example,
F) ={{SM™) ]} if and only if S(x) is a resting macrostate.
Fates for different complexes are independent, hence, the set
of fates of multiple complexes X ={x1, xp, ... [}, is the set of
all possible combinations of the fates of x;, x,, etc. Therefore,
F(X) is given by the Cartesian sum

FOO) = PFw =Fe) e Fa) & - (3.2)

x€X

We now define the set of fates for a detailed reaction r = (A, B)
as R(r) = F(B), where B ={by, by, ...b,]} are the products of
the reaction r

R@) = FB) = @[F(b) =Fb) o) ®---OFb,). (3.3)

bEB

Finally, let R,,,(S) be the set of fast reactions leaving some tran-
sient macrostate S, then we can provide an expression for F(x)
in terms of a recursion

if S(x) is a resting macrostate

{Sw }}
Fx) = U R@) otherwise. (3.4)

rERout(S(x))

Equation (3.4) can be evaluated in finite time: consider the
graph I, where the nodes are SCC of I, and there is a
directed edge between nodes if there is a reaction with arity
(1, n>1). I is a directed acyclic graph, as all cycles were con-
densed into single nodes. That means, if we start with some
arbitrary transient complex x, the recursion can be evaluated
by a depth-first traversal of I, starting from x; since I'" is
acyclic, each branch of the depth-first traversal will terminate
at a leaf of I'’, i.e. a resting complex for which [F(x) is trivial.

With F(x) capturing all of the information about the fast
reactions in which x participates, we can easily calculate the
set of condensed reactions. The condensed reaction network
G=(, R has C being the set of resting macrostates; we
build R as follows: for each slow reaction r=(A, B)E€R,,
with S(A) ={S(@;) : a; € A]}, then for each fate F € R(r), we
add a condensed reaction (S(A),F) to R. Some of the

condensed reactions constructed this way may be unproduc-
tive, in the sense that the multiset of products is identical to
the multiset of reactants. Such unproductive reactions are
omitted from R; the detailed CRN reactions that gave rise to
the unproductive reactions will, however, be considered
when rates are assigned to condensed reactions. Pseudocode
for the CRN condensation algorithm can be found in electronic
supplementary material, §1.2. In appendix §B, we present the-
orems justifying the choice of this algorithm.

4. Approximate kinetics

To support simulation and rate-dependent separation of
timescales, we introduce a model for approximating the
rate constant for all detailed reactions supported by Pepper-
corn. We also present a model for approximating the rate of
each condensed reaction to accompany our algorithm for
reaction condensation. Thus, all CRN generated by Pepper-
corn can be transferred directly to ODE or stochastic kinetic
simulation packages for further analysis. In 85, we use the
script Pilsimulator, which is also provided with the pepper-
cornenumerator library to simulate Peppercorn’s standard
output format (PIL) using the ODE solver from SciPy [61].
We provide a brief sketch of the detailed and condensed
reaction kinetic models here; see appendix §C for details.

4.1. Approximate detailed reaction kinetics

Peppercorn uses empirical domain-level reaction rates derived
from selected DNA strand displacement and other DNA bio-
physics experiments. The bind21 and open reaction
formulae are based on studies of the kinetics and thermodyn-
amics of duplex hybridization and dissociation [25-27,62]; the
bindl1l reaction formulae are based on studies of zipping
[26,63,64], bubble closing [32], and hairpin loop closing
[31,33,36,39,65]; the three-way-fw and three-way-bw reac-
tion formulae are based on studies of toehold-mediated three-
way strand displacement [34,38]; the four-way reaction for-
mulae are based studies of toehold-mediated four-way
branch migration [28,29,37]; and the treatment of remote toe-
holds [35] is based on the loop closing probabilities from the
biophysics of hairpin closing. The domain-level reaction rate
constants used here assume perfect Watson—Crick complemen-
tarity of domains, experimental conditions at 25°C and 10 mM
Mg?*, as well as ‘well designed’ sequences that minimize unin-
tended internal secondary structure and minimize unintended
base-pairing  interactions between non-complementary
domains. This is often achieved by using a three-letter nucleo-
tide alphabet (A, T, C) or (A, T, G) for domains and their
complements, therefore avoiding unintended, stable G-C
pairs within a domain. Under these assumptions, we calculate
rates that only depend on the length of involved domains
and the type of a reaction: unimolecular binding, bimolecular
binding, opening, as well as proximal or remote three-way or
four-way branch migration. See appendix §C.1 for details.

4.2. Derivation of condensed reaction kinetics

The rate of each condensed reaction is derived from the
detailed reaction rates. In simple cases, for example when
resting macrostates each consist of a unique resting complex,
each condensed reaction 7 = (A, B) is derived from one slow
reaction 7= (A, B) in the detailed CRN and one of its fates.
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Reactant resting complexes in A are the reactant resting
macrostates in A, and B is a multiset of resting macrostates
reachable from the products B of the detailed reaction r via
fast reactions. However, in the general case, a single con-
densed reaction may correspond to multiple pathways in
the detailed network that have an equivalent end result.
For example, in figure 4, there are two detailed bimolecular
reactions that involve reactants from resting macrostates A
and B and produce a transient complex in the central transi-
ent macrostate, which may then break down into some
combination of C, D, E and F. The overall rate of e.g.
A + B — E + F must sum the rates for all the possible detailed
pathways. Thus, in general, each condensed reaction
# = (A, B) between multisets of resting macrostates A and B,
is derived from all slow reactions r = (A, B) between multisets
of complexes A and B, where A contains one resting complex
from each resting macrostate in A, and B are product com-
plexes that can reach a multiset of resting complexes X via
fast reactions, where X contains one resting complex from
each resting macrostate in B.

The rate of a condensed reaction depends on three quan-
tities: (1) The probability that each resting macrostate is in a
configuration that permits the underlying slow reaction r to
occur; that is, the probability that each resting macrostate in
A is transiently in the microstate corresponding to the reactant
in A of . (2) The rate of the underlying slow detailed reaction r.
(3) The probability that the products B of r decay to the multi-
set of resting macrostates described by B. This resulting rate is
summed over all detailed reactions r that correspond to the
given condensed reaction. We model each resting and transient
macrostate as a continuous-time Markov chain (CTMC)
between microstates, with detailed reactions representing
possible transitions between microstates and transition prob-
abilities given by the detailed reaction rates. From here, the
stationary distribution of each resting macrostate can be calcu-
lated to give (1), the detailed CRN directly gives (2), and the
decay probabilities of each transient macrostate (treating out-
going fast reactions as absorbing states) can be calculated to
give (3). Our algorithm to calculate decay probabilities mirrors
the algorithm for CRN condensation, so that the condensed
reaction rates can be calculated alongside the condensed reac-
tions. See appendix §C.2 for details.

4.3. Comparing detailed and condensed reaction
kinetics

Condensation allows for analysis of some CRNs for which
the detailed representation is too large. For example, ODE
simulations of the Seesaw square-root circuit shown in
figure 10 are only feasible using the condensed reaction net-
work. The theorems in appendix §B state that all transition
pathways between resting complexes in the detailed CRN
are preserved as condensed reactions between resting macro-
states in the condensed CRN. Thus, how well the dynamics of
a condensed reaction network approximates the detailed net-
work (our ground truth) ultimately depends on the timescale
separation argument. Because all fast reactions are unimole-
cular, the mean residence time in a transient state, which is
missing in the condensed model, is a (concentration indepen-
dent) constant given by all outgoing rates. The derivations in
appendix §C provide rates for condensed reactions that guar-
antee simulations of detailed and condensed networks to
match exactly in the limit of low concentrations, where

bimolecular reactions are always much slower than unimole-
cular reactions. Simulations of detailed and condensed
networks confirm this expectation, and further illustrate
that the point at which deviations arise, as the concentrations
increase, may vary considerably from system to system
(figure 6). Intuitively, the condensed reaction rates may fail
to accurately represent the detailed system when, in the
detailed system, the rates of bimolecular reactions approach
those of rate-limiting unimolecular reactions. Using rate-
dependent semantics, which include additional unimolecular
reactions based on kg, and kgow, may therefore extend the
range of concentrations for which the condensed network is
accurate. Of particular importance in some systems are the
unproductive reactions, such as ‘toehold occlusion’ [4,7],
where two species bind temporarily before falling apart
again into the original species. Without rate-dependent
semantics, such reactions will be omitted from the condensed
network, but at high enough concentrations, they will seques-
ter a substantial fraction of molecules in the detailed network.
When examining the subnetwork of the detailed system that
corresponds to just a single condensed reaction, accuracy may
be preserved to higher concentrations. The comparison of
detailed and condensed semantics will be explored more in
figure 8.

5. Case studies

We now compare Peppercorn’s rate model with experimental
data. First, we present the correspondence to data that were
used to parameterize our present rate model (basic three-
way and four-way strand displacement reaction pathways,
figure 7a—c), then we compare our simulations against a
broad range of different experimental case studies. We con-
sider a less than 10-fold difference in reaction rates or
completion times to be satisfactory, given the limitations
and simplifying assumptions of our model. This is achieved
for most of the simple cases and some of the more complex
cases studied, but may be dependent upon choices for the
enumerator parameters and settings, as discussed below.
Code to reproduce the following plots is available on the pep-
percornenumerator Git repository [42], and raw data are
given in electronic supplementary material, §2.

Where possible (e.g. when only a single condensed reac-
tion is involved) we compare experimentally derived
reaction rate constants directly (see figure 7a—c); otherwise
(e.g. when the behaviour of a system of reactions is
measured) we switch between two different metrics, both
of which compare experimentally observed strand displace-
ment dynamics against enumeration and ODE system
simulation using a single time point, rather than the full
course of the trajectory. The first metric is called 50%-com-
pletion time; it compares the time where the reporter
species of experiment and simulation reach 50% of total con-
centration (e.g. figure 9c). This measurement provides
qualitative feedback only for ‘fast’ systems that actually
reach 50% on the timescale of an experiment. In order to cap-
ture both fast and slow systems, we use a second metric,
called diagonal-crossing time, which compares the time
points where experiment and simulation cross a chosen diag-
onal line that connects the x and y axes at the maximum
clearly visible ticks from experimental data plots (e.g. figure
10a). Data points were extracted using the WebPlotDigitizer
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Figure 6. Comparison of simulation results for detailed and condensed domain-level reaction networks at increasing initial concentrations. We calculate the time
point when a product species reaches 50% of its final concentration in the detailed and condensed network, and plot the ratio of t;,, for detailed and condensed
systems. At low initial concentrations (all initial complexes less than or equal to 10 pM), this ratio is close to 1 in all our examples, which confirms that bimolecular
steps are rate-limiting. All examples shown here are taken from literature [34,37,66] and will be explained in more detail in §5 (figures 7 and 8). Triangles denote
single condensed reactions: Zhang & Winfree [34] - 5s and - 7s are single condensed three-way strand displacement reactions with a 5 nt and 7 nt toehold,
respectively. Dabby [37] - (2,2) and - (4,4) are each single condensed four-way strand displacement reactions with two 2 nt and 4 nt toeholds. Simulations
start to differ between 1M and 1 mM initial concentrations of complexes. Kotani & Hughes [66] - F4s is a slow condensed reaction isolated from a complex
autocatalytic DSD system ({I5 + S6 — P2 + P8 + P9 + (} cf. figure 8). The detailed reaction pathway requires multiple four-way branch migration reactions to
succeed, and can only be considered fast at concentrations below 10 pM. Circles denote two condensed reactions: Zhang & Winfree [34] - 5 and - 7 show the
original experimental setup to measure reaction rates, which involves a separate reporter reaction. The full detailed network contains an unproductive toehold
interaction between substrate and reporter that slows down the system at concentrations above 10 nM. When using rate-independent enumeration, this effect
(called toehold occlusion) can only be observed in the detailed CRN. Squares show a complex system of many reactions: Kotani & Hughes [66] - F4 is an auto-
catalytic system, which contains slow four-way branch migration reactions (such as in the single condensed reaction discussed earlier). As a consequence, already at
low concentrations the rate-limiting steps are not always bimolecular, and we will use rate-dependent enumeration and condensation when analysing this system.

tool [67]; details on which points of reference were used can correspond to experimentally observed rate constants over
be found in electronic supplementary material, §2. In §5.5, we nine orders of magnitude. Among these experiments, four-
show that the choice of metric does not influence the qualitat- way strand displacement reaction rates show the largest
ive correspondence between Peppercorn’s predictions and variability. The data from figure 7a—c were used during the
the experimental data. development of the model, and therefore the prediction
In the following section, we say a reaction is intended if the errors are best considered as part of the ‘training error/, in
authors used this reaction to describe a strand displacement the parlance of machine learning. See electronic supplementary
system, or it is clear from context that the reaction is part of material, §2 for raw data of reaction rates.
the desired circuit behaviour. By contrast, a reaction is unin- A comparison of our rate model with reaction times for
tended if it was not explicitly presented by the authors of a proximal and remote toehold-mediated three-way strand
system and it is not essential for the function of the system, displacement [35] can be seen in figure 7d. Some experiments
but it does not change the logic of the system. We use the here use long toeholds and slow remote branch-migration
term leak to denote a reaction that changes the logical behav- reactions, which are incompatible with the timescale
iour of the system, e.g. by producing output without the separation of the rate-independent model. Thus, we use
presence of input signals, or by taking shortcuts from input rate-dependent enumeration with kgow =107° s7! and
to output without producing the proper intermediate signals. ktast =20 57" such that all relevant detailed reactions are con-

sidered slow (e.g. dissociation of 14 nt toeholds). These

data were not considered during the development of the kin-

5.1. Condensed reaction rates of basic strand etic model, and therefore may be considered as our first
displacemen t assessment of the ‘testing error’. For example, experiments

suggest a much larger difference in remote branch migration
As mentioned above, our rate model for detailed reactions

reaction rates when a 1 nt spacer is introduced, which

was developed based on studies of basic biophysical pro- Peppercorn’s current rate model does not predict.

cesses, with some parameters tuned to match phenomena
that are especially important for dynamic DNA nanotechnol-

ogy. We therefore begin our assessment of the kinetics model 5.2. Autocatalytic DNA strand diSpIacement system

by examining experimental systems that correspond to a Autocatalytic feedback systems are particularly difficult to
single condensed reaction, such that the rate constants can control and to simulate reliably, as small errors may be exponen-
be directly compared. In figure 7a—c, we compare condensed tially amplified. This can be seen in a system presented by
reaction rates for toehold-mediated three-way strand Kotani & Hughes [66]. It involves large complexes with up to
displacement [34], three-way toehold exchange [34] and toe- 24 individual strands and a diverse set of detailed reactions:
hold-mediated four-way strand displacement [37] with three-way branch migration, four-way branch migration and

experimental data. Rate constants predicted by our model remote-toehold three-way branch migration. Figure 8 provides
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Figure 7. Comparison of Peppercorn’s condensed reaction rates with experimentally derived reaction rate constants; corresponding drawings below illustrate the
design of these investigated systems. (a—c) Plots compare a range of different toehold lengths and branch-migration domain lengths for classic three-way strand
displacement [34], three-way toehold exchange [34], and four-way strand displacement [37], respectively. Regression lines show the correspondence of model and
experimental data over approximately nine orders of magnitude. An annotation is provided for selected points, corresponding to the lengths of relevant domains in
the drawings below. (d) Comparing 30% system completion times for proximal and remote toehold experiments measured by Genot et al. [35] with Peppercorn
predictions. Experimental data are taken from six figures in [35] (fig. 3, fig. 4A, fig. 4B, fig. 4C, fig. 4D and sup. fig. 4A). There are three types of experiments
(indicated by different marker shapes): fig. 3, sup. fig. 4A [35] (circles) compare remote-toehold three-way strand displacement with variable length of the spacer
region between toehold and branch-migration domain, using slightly different experimental set-ups; in fig. 3 [35], a fluorophore/quencher pair is attached directly to
the displaced strand, while in sup. fig. 4A [35] a separate reporter reaction occurs. fig. 4A [35] measures kinetics of a 9 or 11 nt proximal toehold (where |n| =
|m| = 0), compared to a remote toehold in fig. 4B [35] (where a 1 nt spacer region was introduced; crosses). fig. 4C [35] analyses the sensitivity of proximal 6 nt
toehold to different initial concentrations of the invader strand ([invader]o = 66 nM, 145 nM, 330 nM), compared to a remote setting (fig. 4D [35]), where a 14 nt
toehold combined with a 17 nt spacer was used (triangles). Peppercorn’s model confirms the observation that the remote toehold makes the overall reaction rate
insensitive to concentration changes; the three data points overlap. Runtime for enumeration (7z) and condensation (7)) on a PC (i5-4300U (PU @ 1.90 GHz):
(ab) Tr+T,=3865s, () Te+ T =878 ms, (d) Tr+ T, =347 ms.

an overview of the system. There are six intended reactions when newly designed systems are evaluated prior to exper-
(two reversible, two irreversible), which perform autocatalytic imental testing. In figure 8¢, we summarize the different
amplification of catalyst complex C. We depict a simplified enumeration parameters and compare properties of the
condensed CRN in figure 8a, which differs from the actual enumerated detailed and condensed reaction networks.
enumeration results (figure 8b,e), as discussed below. figure 84 shows corresponding simulated 50%-completion
Enumeration semantics. The choice of enumeration seman- times in comparison with experimental results.
tics for this system has interesting effects on predicted Setting #1: A rate-independent enumeration. We have to
dynamics. The analysis is tedious, but understanding the set the option release-cutoff to 8 nt or higher, as there is

subtle consequences of different semantics can be rewarding at least one unintended 8 nt bind reaction (see figure 8b), and
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Figure 8. Autocatalytic DNA strand displacement from Kotani & Hughes [66]. A system with diverse reaction pathways involving three-way, four-way, and remote-
toehold branch migration. (a) An overview of the intended system. Six reactions (two reversible, two irreversible) perform autocatalytic amplification of C. The
colours of complexes are chosen to indicate which strands of the fuel complexes will eventually hybridize. R is the reporter complex with a fluorophore
(yellow star) and quencher (black dot) on one side. The top strand of the reporter is called Dye (D) and used to track the production of catalyst C. Kernel strings
using the same colour scheme are shown for all initially present complexes. Despite a difference in colour the unpaired part of P8 has the same sequence as C and
thus can act as catalyst. (b) Examples of unintended reactions, large intermediate complexes, and leak reactions. The leak pathway (bottom, red) produces products
without presence of the catalyst. (c) A simulation of the experimental setup with initial conditions [$5], = [S6], = 10nM and [R], = 20 nM shows trajectories of
the Dye species D for four initial conditions of catalyst C. The system was enumerated using rate-independent semantics (i.e. parameter setting #1 in the table).
Colour scheme corresponds to fig. 4 in Kotani & Hughes [66], which shows experimental data. Note that this enumeration semantics includes the leak reaction,
triggered without the presence of C. The dashed line marks the threshold to calculate the 50%-completion time for comparison with experimental data. (d) The
plot compares 50%-completion times (t;/,) for six different enumeration semantics shown in (e), each with the four initial conditions simulated in (c). Enumeration
using setting #2 does not yield the fluorescent product species, settings #4, #5, #6 do not return the leak pathway; the corresponding simulation trajectories (with
[Clo = 0) never reach 50%-completion time (INF). (e) The table gives different enumeration parameters that have been tested: release cut-off, kq, and Kz, and
their effects in terms of maximum complex size (MCS), numbers of resting complexes (RC), transient complexes (TC) and detailed reactions (DR) for the
detailed CRN and numbers of resting macrostates (RM) and condensed reactions (CR) for the condensed model. Runtime for enumeration (7;) and conden-
sation (T7) on a PC (i5-4300U CPU @ 1.90 GHz): (d) detailed enumeration: T =1 min 195, (d) condensed enumeration: Tz + T =1 min 59s.

this binding has to be reversible in order to avoid predicting
implausible polymers. The 50%-completion time of the con-

important four-way branch migration reactions are slower
than kgow = 0.001 87}, and therefore considered negligible.

densed reaction network is orders of magnitude less than
that of the detailed reaction network (figure 8c), indicating
that there are time-consuming reaction pathways in the
detailed network that had been assumed to be instantaneous
during rate condensation.

Setting #2: A rate-dependent enumeration with kgey =
ke =102 571 In comparison, the rate of an 8 nt open reac-
tion has ky~6x102s7!, and thus all previously
mentioned unintended 8 nt bindings are reversible by fast
opening reactions. It turns out that starting enumeration
with species S5, S6 and C does not yield the product D, as

Setting #3: A rate-dependent enumeration with kgey =
keast =104 571 (corresponding to a release cut-off between 9
and 10 nt) includes all important four-way branch migration
reactions and yields the same detailed and condensed
simulation results as in the rate-independent model.

Setting #4: A rate-dependent enumeration with ko, =
107*s7! and ke =10"3s7" 50%-completion times of the con-
densed network are longer due to the rate constants of slow
unimolecular reactions. This results in similar predictions for
condensed and detailed networks, and a better fit with
experimental results. The maximum observed complex size
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increases, as slow unimolecular reactions cause an additional
stable intermediate state I6R (figure 8b). Two copies of I6R can
engage in a transient interaction of 16 strands. Interestingly,
with four-way branch migration being a slow reaction, we do
not observe the leak pathway {S5 + S5 — P1 + P2 + P8 + P9}
(figure 8b) because dissociation of a fast 2-nt toehold will
always occur before the slow branch migration step.

Setting #5: A rate-dependent enumeration with kgey =
10™*s7! and kg =1072 571 This assigns more unimolecular
reactions into the slow regime, pushing results closer to the
experimentally observed results. However, this also increases
the size of detailed reaction network more than 10-fold.

Setting #6: A rate-dependent enumeration with kgey, =
107%s7! and keo=10"2s7". More low-probability reaction
pathways are included in the detailed and condensed reac-
tion network, but have no observable effect on 50%-
completion times.

The bottom line here is that it remains important to explore
different semantics and parameter settings in order to under-
stand and appreciate the possible behaviours of a system,
since we cannot at this time recommend a universally ‘best’
setting. Here, we might consider setting #4 to be a good com-
promise of simplicity and accuracy. Note that while it was nice
that Peppercorn identified a (real) leak pathway with settings
#1 and #3, in general we do not expect Peppercorn to auto-
matically detect leak pathways because in most real systems
these appear via zero-toehold strand displacement, which is
not a part of the current Peppercorn enumeration semantics.

5.3. Cross-catalytic hairpin system

This case study analyses a cross-catalytic system that uses
only DNA hairpin structures [55] and a single stranded
initiator. The system is designed on the domain level using
typical domain-level reaction pathways, but it is not a ‘classic’
DNA strand displacement system. For example, it does not
use dedicated fuel complexes to translate input to output,
and there are no condensed toehold-mediated strand displa-
cement reactions. Instead, there are reaction pathways that
require cooperative binding to form product complexes.
Two properties of this system require specific enumeration
semantics: first, all domains are toehold length, so the
system can only be enumerated using max-helix semantics.
Second, all bimolecular reactions are fully reversible via
unimolecular steps, so we need to use the rate-dependent
model to classify critical unimolecular reactions as slow.

! and kfast:
0.1s7! is shown in figure 9. It has nine reactions, three of
which are the catalytic formation of AB using the catalyst
(or initiator) I. AB then can catalyse the formation of CD,
which itself catalyses the reaction of AB. While Peppercorn
predicts the correct CRN underlying the system, the qualitat-
ive fit of 50%-completion times is the worst across all case
studies. A comparison of many case studies can be found
in §5.5 (see figure 11). Presumably, the remote-toehold

The enumerated CRN using kgow =108~

strand displacement mechanism to reverse dimerization is
highly sequence dependent. Note that it is also possible to
enumerate the system with the rate-independent model
when disabling remote-toehold interactions. In that case,
the enumerated CRN would be the same as the intended net-
work presented by Yin et al. [55] or the one enumerated by
VisualDSD as shown in Petersen ef al. [18].

5.4, Seesaw DNA strand displacement architecture
The Seesaw architecture [4] was developed to implement
scalable, multilayer, digital DNA circuits. Every DNA gate
is equipped with threshold complexes (to filter low-concen-
tration, unintended DNA input) and signal amplification
complexes (to release the full amount of output, if the input
signal exceeds the threshold). The systems can be designed
using a compiler that translates a digital circuit into a specific
set of DNA sequences, for which individual reaction rates
have been measured experimentally. A strength of the
Seesaw approach is that it provides rates for intended reaction
pathways, as well as for selected unintended and leak path-
ways. All those reactions are taken into consideration when
simulating Seesaw systems using the Seesaw compiler. See
Qian & Winfree [4] or electronic supplementary material, §3
for details on Seesaw reaction semantics.

Peppercorn’s enumeration model is an independent
approach that does not consider architecture-specific reaction
pathways. After enumeration, Peppercorn’s detailed reaction
network contains all the intended reactions and is generally
consistent with the Seesaw compiler’s model (see electronic
supplementary material, §3), with a few notable differences.
(i) While the Seesaw compiler includes zero-toehold leaks,
Peppercorn does not enumerate these reactions. Because the
Seesaw experiments used a sequence design method that
reduced leak rates, inclusion of these leak reactions with
experimentally appropriate rate constants would not signifi-
cantly change simulation results for the cases studies.
(ii) Both models include unintended side reactions in which
the universal toehold allows temporary binding of signal
strands to unrelated gates, briefly preventing the toehold
from being accessible for intended reactions (toehold occlu-
sion). However, while the Seesaw compiler’s model makes
an approximation to lump many of these unproductive reac-
tions together for efficiency, the Peppercorn enumeration
explicitly enumerates each, making simulation of large
Seesaw networks infeasible. (iii) For the same reactions, rate
constants in Peppercorn’s model, which uses generic bio-
physics, differ from those the Seesaw model, which was
calibrated to experimental results. Most notable are the toe-
hold occlusion reactions involving threshold gates: the
Seesaw compiler uses a slower unbinding rate to account
for additional spurious sequence-level interactions with
domains neighbouring the universal toehold. (iv) Peppercorn
identifies a gate-gate leak that acts via four-way branch
migration, and which is not part of the Seesaw compiler
model. This leak rate is so slow that it does not noticeably
affect simulation results.

Figure 10 compares the Peppercorn and Seesaw models
against experimental results for a variety of circuits from
ref. [4]. Because for the largest of these circuits, the Pepper-
corn model can only be simulated after condensation, we
use the condensed CRN for all simulations. Notably, the
unproductive toehold occlusion reactions are pruned by con-
densation; these reactions slow down circuit function at high
total strand concentrations, as occurs in large circuits—an
effect that is therefore missing in the Peppercorn model.
However, the Peppercorn model is faster than the Seesaw
model even for small circuits (figure 10b,c), as a consequence
of the different rate constants for the intended reactions. To
demonstrate how slight modifications at the rate model can
change the predictions, we provide a parameter (-dG-bp)
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Figure 9. Cross-catalytic DNA hairpin system [55]. (a) The input complexes A, B, C, D, I, and output complexes AB, (D. Species A has a fluorophore/quencher pair
attached (shown as star and dot in the figure), which is initially separated by about 6 nt (quenched), and presumably much further apart (not quenched) after the
initiator starts invading at the helix end. (b) Peppercorn enumerates nine condensed reactions: three reversible and three irreversible. The initiator | starts a catalytic
process where A and B are consumed to form AB; AB itself is a catalyst to produce (D, and (D is a catalyst to produce AB. The three ‘reverse’ reactions in this
system are unimolecular remote-toehold interactions. (c) Simulations of the enumerated system at different concentrations of the initiator I. The trajectories start at
[Alo=[Blo=1[Clo=[Dlo=20nM and show the decrease of species A over time. The dashed black line marks the 50%-completion time, which was used to
compare with experimental data in figure 11. Colour scheme corresponds to fig. 3 in Yin et al. [55], which shows experimental data. Runtime for enumeration
(Te) and condensation (T,) on a PC (i5-4300U CPU @ 1.90GHz): (c) T¢ + T = 274 ms.

to alter the binding free energy of an average base-pair, which
affects the dependence of strand displacement reactions
on the toehold length. After changing the sequence inde-
pendent estimate for the toehold binding free energy from
—1.7 kcal mol ™ bp_1 to —1.3 kcalmol™! bp_l, the rates of
intended reaction pathways are more comparable between the
two models, and thus diagonal-crossing times in the simu-
lations agree better with experimental results (figure 10d).
Nonetheless, this adjustment should be understood as a phe-
nomenological fit that is accounting for multiple factors, as the
experimental slowdown is at least partially due to toehold
occlusion [4], which is not being modelled in the condensed
CRN. The individual trajectories predicted by Peppercorn and
shown in figure 10a are therefore different than those provided
by the Seesaw compiler (see electronic supplementary material,
§3), even though the diagonal-crossing times are similar.

5.5. More systems

Figure 11 provides an overview of Peppercorn’s model per-
formance using DNA strand displacement systems from a
selection of additional publications [34,55,56,66,68,69]. All
systems have been enumerated starting with the initially

present complexes and then the condensed CRNs were simu-
lated. We use both metrics: 50%-completion time (e.g.
figure 9c) and diagonal-crossing time (e.g. figure 10a) for
comparison. The choice of metric can have an effect when
comparing individual case studies, but does not qualitatively
change the overall performance of Peppercorn’s predictions.

The autocatalytic hairpin system using remote toehold
branch migration [55] is particularly difficult to simulate
accurately. The experiment requires remote toehold strand
displacement, for which the model is not sufficiently trained
(see §5.3). On the other hand, both a paper where cooperative
hybridization effects were investigated [56] and experiments
that tested robustness of strand displacement using different
nucleotide sequence designs are approximated reasonably
well [69].

5.6. Conclusion

Taken together, the results demonstrate that (i) Peppercorn
can enumerate a valid reaction network for all these systems,
(ii) the enumerated reactions can provide a qualitatively good
estimate for the experimental results, indicating that we
choose individual reaction pathways with reasonable
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Figure 10. Enumeration and simulation of DNA strand displacement circuits using the Seesaw architecture [4]. (a) Superimposed simulations of the largest circuit,
which computes the floor of the square root of a 4-bit binary number. ¥,0, Y11, Y50, Y31 represent the dual-rail implementation of the 2-bit binary output. The full
trajectory for each of the 16 possible input combinations is shown. The diagonal-crossing time metric used in this and subsequent plots enables us to compare
OFF signals, which remain at low concentration and are inherently relevant for dual-rail systems. We choose the endpoints of the diagonal at the maximum dlearly
visible reference point of experimental data plots (see electronic supplementary material, §2). Enumeration and simulation settings correspond to those explained for
(d). (b) Comparison of the Seesaw compiler simulation model with experimental data, both derived from Qian & Winfree [4] and using the diagonal-crossing
time metric described above. () Comparison of Peppercorn enumeration with the same experimental results using condensed, rate-dependent semantics
(kgow = 0.01 57", keae = 157"). Differences between OFF trajectories (comparatively slower) are small, but differences on ON trajectories can be strong, as simulated
systems are much faster than the experimental results. (d) Comparison of Peppercorn enumeration with experimental results after the toehold binding free energy
has been changed to —1.3 kcal mol~" bp™". This slows down ON trajectories sufficiently to provide similar-quality predictions of completion time as the Seesaw
compiler itself. Runtime for enumeration (7;) and condensation () on a PC (i5-4300U CPU @ 1.90GHz): For of all systems except square-root circuit: Tr=7.42's,

Te+ Tc =19 s. Square-root circuit: T=1min 155, Tz + Tr=8 min 1s.

probabilities, (iii) the rate model cannot calculate the exact
completion times for individual systems, as it does not com-
pensate for the expected time spent before a reaction
completes (see appendix §C), and (iv) obtaining useful results
in some cases may require the user to select among the avail-
able enumeration semantics and parameters. For example,
the default toehold length threshold for the rate-independent
model (7 nt) is too stringent for many systems, and a first step
would be to increase this parameter before exploring the rate-
dependent model parameters that often provide more
nuanced insights into modelling the system.

6. Discussion

We have presented (i) an enumeration algorithm for DSD
reaction networks, (ii) a condensation algorithm to express
a given CRN in terms of its overall slow reactions, (iii) an
approximate rate model for DNA domain-level systems,

and (iv) multiple case studies comparing our model against
experimentally observed system dynamics. We have proven
that condensation preserves the relevant properties of the
detailed CRN—namely, that all transitions between resting
sets are possible in the condensed CRN—and that the con-
densed CRN does not introduce spurious transitions, i.e.
transitions that were not possible in the detailed CRN.

6.1. Related work
Early work from Nishikawa et al. [12] presents a DNA
simulator that includes a joint enumeration and simulation
model that uses ‘abstract bases’” analogous to our ‘domains.’
The six supported reaction types are hybridization, self-
hybridization, denaturation, digestion, extension and
ligation. Notably, the first three are a subset of Peppercorn’s
supported reactions (bind21, bindl1l, and open), whereas
the other three are enzymatic reactions to simulate a different
class of experimental systems.

Using tentative rate
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Zhang et al. [68] fig. 1 - Single-layer catalytic DSD system (varying catalyst)
Zhang et al. [68] fig. 3 - Two-layer feedforward DSD system (varying catalyst)
Zhang et al. [68] fig. 4 - Autocatalytic DSD system (varying autocatalyst)
o Yinetal. [55] fig. 3 - Autocatalytic hairpin system (varying initiator)
Zhang & Winfree [34] fig. 3 - Single strand displacement reactions (varying toehold length)
Zhang & Winfree [34] fig. 4 - Single toehold exchange reactions (varying toehold lengths)
A Zhang & Winfree [34] fig. 5 - Catalytic DSD system (varying toehold lengths)
Zhang & Winfree [69] fig. 3A - Catalytic DSD system with 100 nM substrates (varying catalyst)
# Zhang & Winfree [69] fig. 3B - Catalytic DSD system 30 nM substrates (varying catalyst)
*  Zhang & Winfree [69] fig. 3C - Catalytic DSD system with 3 nM substrates (varying catalyst)
Zhang & Winfree [69] fig. 3D - Catalytic DSD system with 1 nM substrates (varying catalyst)

v Zhang [56] fig. 3A - Cooperative strand displacement

Kotani & Hughes [66] fig. 2 - Single-layer catalytic DSD with four-way branch migration (varying catalyst)
Kotani & Hughes [66] fig. 3 - Two-layer feedforward DSD system with four-way branch migration (varying catalyst)
e Kotani & Hughes [66] fig. 4 - Autocatalytic DSD system with four-way branch migration (varying autocatalyst)

Figure 11. Simulated condensed DNA systems in comparison with fluorescence measurements from experimental data. We simulate data from six selected pub-
lications with a variety of DNA reaction networks [34,55,56,66,68,69], and compare both 50%-completion time (58 data points), and diagonal-crossing time (77 data
points). Yin et al. [55] fig. 3, Zhang [56] fig. 3A and Kotani & Hughes [66] fig. 4 use rate-dependent enumeration, all others use rate-independent enumeration.
Runtime for enumeration (7¢) and condensation (T¢) on a PC (i5-4300U (PU @ 1.90GHz) for all systems: T+ T, =3.17 s.

parameters for each reaction type, combinatorial explosion is
controlled by only enumerating interactions between com-
plexes during ODE simulation after they have exceeded
some threshold concentration. An alternative strategy to
cope with combinatorial explosion has been demonstrated
by Kawamata et al. [13,14]. Their model enumerates and
simulates a reaction network between local structures, not
complexes, considering three types of reactions: bimolecular
binding, dissociation and three-way branch migration. Enu-
meration of local structures corresponds to finding possible
configurations of a single strand within different complexes.
The state space of local structures can be finite for systems
exhibiting genuine polymerization, such as hairpin chain
reaction (HCR) [54], although the number of local structures
still increases exponentially with the number of distinct
strands in a system.

VisualDSD is well-known and well-developed software
for enumeration and simulation of DNA strand displacement
systems [15-18,20]. The enumeration semantics is based on a
process calculus for modelling DNA strand displacement,
originally allowing a restrictive class of secondary structures,
e.g. no four-way junctions, hairpins, internal loops, or non-
toehold single-stranded domains [15]. In the more recent
versions (LogicDSD) [18,20], the language to express a

‘process’ is conceptually related to kernel notation for
complexes, but does not prohibit pseudoknots. For example

x(u(y+)) tr=[<xjulk y> | <urlk x*!5 t*x > ]
where the indices after ‘!’ (here j, k) indicate arbitrary paired
domains, not restricted to nested structures. The rules as
programmed by the user determine whether reactions
involving pseudoknots, remote-toeholds or specific branch
migrations are allowed, and these rules may be very
specific to the investigated system. Rules are thereby often com-
posed of multiple steps and can be conditional on yielding a
specific product. By contrast, Peppercorn provides a modular
set of single-step reaction semantics which are never conditional
on following a desired reaction pathway. VisualDSD's infinite
reaction semantics treats all branch migration and open
reactions as infinitely fast. This is similar to Peppercorn’s
condensed semantics applied to a rate-independent enumer-
ation; however VisualDSD does not provide an analogous
formulation of rate-dependent condensation.

The default enumeration semantics of both VisualDSD
and Peppercorn may be inappropriate for some systems; for
instance, the enumeration may not yield the expected pro-
ducts, or expected reactions may be missed. However, the
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approach a user would take to address this behaviour is
different for the two packages. In VisualDSD, to model sys-
tems that do not perform as expected, the user has to
formulate additional abstract rules using the modelling
language LogicDSD. By contrast, Peppercorn requires the
user to adjust aspects of the biophysical model. This can be
done via adjustments to domain lengths or toehold binding
strength, or the system may require rate-dependent enumer-
ation semantics. For example, in Petersen et al. [18],
VisualDSD is used to enumerate the auto-catalytic hairpin
system from Yin et al. [55] (see §5.3). Enumeration produces
the expected reactions and complexes. However, additional
reverse reactions—in which multistranded products dis-
sociate and re-form the starting complexes—are not
predicted, because they require a remote toehold. To find
these reactions in VisualDSD, the user would need to write
a rule in LogicDSD for remote toehold-mediated branch
migration. Peppercorn identifies these reactions using default
semantics. However, by default, these unimolecular reactions
are expected to occur faster than downstream bimolecular
reactions, so the expected final products are not found. In
order to enumerate the expected complexes, one can either
(i) use rate-dependent timescale separation as demonstrated
in §5.3 or (ii) reduce the enumeration rule set by explicitly
prohibiting toehold-mediated
reject-remote semantics. As explained in appendix A,
reject-remote semantics can miss biophysically impor-
tant pathways and has to be used with caution. By contrast,
option (i) yields a reaction network with all biophysically
plausible reactions and provides insights about potential
unintended pathways; specifically, these semantics reveal
that the domain lengths (and hence the rates of the remote
toehold-mediated reverse reactions) are critical to the
proper functioning of the system—if these domains are too
short, the reverse reactions will dominate, whereas if they
are longer, the bimolecular reactions will have time to occur.
Other rule-based models developed for concisely represent-
ing combinatorial structures in systems biology and chemistry,
e.g. BioNetGen [70], Kappa [71], MID [72] could in principle
be used for DNA systems. However, while we use general pur-
pose pattern-matching reaction rules, those models require
hard-coded rules for site-specific interactions which would
have to be provided by the user for each system. A more in-
depth description of this problem can be found in Petersen
et al. [18] and in Mokhtar et al. [19], both of which present an
encoding of DNA molecules into graphs and propose a set of
graph rewrite rules applicable for DNA nanotechnology.

remote reactions  with

6.2. Future work
In conclusion, Peppercorn provides all relevant DSD reaction
types within the domain of pseudoknot-free secondary struc-
tures, and thus can be used as an independent source to
analyse the properties and dynamics of domain-level sys-
tems. However, future development should address several
improvements for a more reliable and automated analysis:
(i) refinements of the rate model, (ii) an automatic conversion
from high-level experimental conditions to low-level enumer-
ation semantics, (iii) refinements of the available enumeration
semantics, and (iv) a combined enumeration and simulation
mode for stochastic analysis of large systems.

Rate model. The rate model captures our understanding of
DSD biophysics, and incorporates parameters to reproduce

experimental results on single condensed reactions from
Zhang & Winfree [34] and Dabby [37] (figure 7). We have
shown that it is sufficient to get a qualitative understanding
of domain-level system dynamics, but that individual
system completion times are not reliable. That is not surpris-
ing, as the model has several limitations: (i) the parameters
reflect a specific experimental set-up (temperature, ion con-
centrations), (ii) the parameters neglect nucleotide sequence
variations, (iii) the model calculates the right probability of
a successful reaction, but not necessarily the correct time
spent in that reaction (see appendix §C).

Future development of a more sophisticated rate model
may adjust for the expected time spent in a reaction pathway
[41], may incorporate nucleotide sequence, temperature and
buffer conditions, and may be optimized via systematic par-
ameter inference to better match experimental measurements.
Eventually, such a kinetic model can complement thermo-
dynamic energy parameters [73], and provide deeper
insights into fundamental principles of nucleic acid folding.

Automatic choice of enumeration semantics. The choice of
parameters can be important and may require some knowl-
edge about the experimental setup, e.g. when to use the
rate-dependent model and which values for ko and ket
are appropriate (see §5.2). Conversely, if specific semantics
are required to find the intended reaction network from a
set of initial species, then that has implications on how to
choose an experimental setup. Yet it is an open problem to
provide a high level interface that connects experimental con-
ditions with particular parameters. For example, future
versions (using a systematically trained kinetic rate model)
may automate the choice of semantics, depending on initial
species concentrations.

Augmented enumeration semantics. More fundamental
changes in the enumeration semantics may be warranted.
Our condensation algorithm for reducing the size of the
enumerated CRN is justified with respect to the limit of
low concentrations—an assumption that is also baked into
the detailed enumeration semantics that ignores bimolecular
interactions between transient species. As these assumptions
do not hold for some cases of interest, it would be valuable to
develop enumeration methods that are better adapted to the
high concentration regime and to make use of CRN reduction
methods that have been developed in more general contexts
[74-76]. A further enhancement would be for Peppercorn to
(at the user’s discretion) include bimolecular zero-toehold
three-way and four-way branch migration reaction types,
which would be valuable for exploring leak pathways in
strand displacement circuits [77,78].

Just-in-time simulation. While our implementation exhaus-
tively enumerates the full reaction network, other enumerators
include a just-in-time simulation mode, which combines the enu-
meration and simulation processes. The algorithm generates a
set of possible reactions among initial (or current) complexes
and determines the products probabilistically for the next iter-
ation. It is not clear how such a mode is compatible with the
timescale separation approach used here, but the prospect of
producing statistically correct samples from the time-evolution
of the ensemble is appealing, as it would enable us to simulate,
for example, systems with genuine polymerization.

Data accessibility. Raw data for case studies are available online at
https://github.com/DNA-and-Natural-Algorithms-Group/ peppercor
nenumerator.
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Endnotes

"Most directly, hairpin loops containing fewer than 3 unpaired bases
are not sterically plausible; such cases may be effectively eliminated
by assigning them a large energy or imposing a hard constraint.
Although standard sequence-level models [22-24] strictly impose
this constraint, Peppercorn does not impose any length constraint
on hairpin loops at the domain level. For example, the hairpin x()
is permitted. The rationale is that, at least for long enough domains,
a real molecule would still form a hairpin, but with just a few
intended base pairs omitted — this is not particularly worse than
say long duplex domains where the real molecule would be likely
to have a few base pairs breathing or fraying at the ends. It is some-
times assumed that other than the hairpin length constraint,
non-pseudoknotted secondary structures guarantee the absence of
steric constraints, and thus justify the simple additive form of the
standard nearest neighbour energy model. Unfortunately, this is
not always correct: some large secondary structures describe con-
figurations with impossible molecular densities, which are less
straightforward to identify and counteract. For example, consider a
secondary structure M, that folds into a depth-n binary tree, e.g.
M; = a(a(a(h)a(h))a(a(h)a(h))). Domain a appears 2" —1 times,
implying that the mass of the molecule scales as O(2"). However,
every domain is within distance O(1) of the root because it is a tree of
depth 1, implying that the volume of the molecule fits within a sphere
of radius O(1) and thus volume O(11®). Regardless of constant factors,
a contradiction arises for large 11, at which point steric effects would pre-
vent fitting the full molecular mass within the volume implied by the
tree-like secondary structure. In such cases, the standard nearest
neighbour energy model will be woefully inaccurate.

2A unimolecular pattern-matching rule can be written in 1 equivalent
circular permutations, where n is the number of 2" wildcards in each
pattern. In order to rotate a pattern, the structure enclosing the pat-
tern becomes a new wildcard, and shifts one of the previous
wildcards out of the pattern. For example, see figure 2d: the product
pattern of three-way-fw is equivalent to the reactant of three-
way-bw. The third circular permutation is not shown, but it would
start at the unbound domain r. Our implementation derives a
unique permutation (canonical form) for each complex, which
saves computation time whenever the products of a pattern matching
rule are compared to the set of known configurations, but it requires
us to apply all k permutations of pattern matching rules to the cano-
nical form of a complex.

3Consider a pathological reaction network such as a—b+c, ¢ —a. m

These types of reactions prevent us from finding meaningful SCCs.
Such a reaction network would not be generated by our enumerator,
because Peppercorn requires that the number of DNA strands are
conserved across reactions; this network would also ot satisfy prop-
erty 3.

“*Note that ~ itself is not an equivalence relation, since the left-hand
side (multisets of complexes) and the right-hand side (multisets of
resting macrostates) are not members of the same set and therefore
neither symmetry not reflexivity hold. One might think that each of
the resting macrostates form an equivalence class, and the set Q of
resting macrostates is the quotient space of this equivalence class.
However, the directed acyclic graph I is not simply the quotient
graph of I" (the graph between complexes, connected by (1, 1) reac-
tions) under this equivalence relation, because (1, 2) reactions are
not represented in I, yet must still generate possible fates in I"'.

Appendix A. Reaction enumeration semantics

Different reaction enumeration semantics enable us to vary the
size of the reaction network in a controlled manner. That
means in the simplest form, we can exclude a reaction type,
e.g. four-way branch migration reactions, or we can vary the
dissociation threshold L. Here, we will discuss two alternative
semantics: reject-remote reduces the state space significantly
but might thereby exclude states and reactions of biophysical
importance, while max-helix reduces the state-space whenever
there exists a more compact domain-level representation for a
sequence of same reaction types. Examples of how those
semantics effect reaction enumeration are shown in figure 12.

Max-helix notion. An enumeration as described previously
is inherently dependent on the domain-level representation of
the system. For example, a long domain cannot unbind, but if
it is represented as the concatenation of two or more short
domains, then those can dissociate by a sequence of two or
more fast reactions. The max-helix reaction semantics reduces
the effects of the chosen domain-level representation. Let r
denote a maximal-length sequence of immediately adjacent
domains that can engage in the same reaction type, then we
can formulate max-helix semantics as a simple extension of
the pattern-matching rules:

— bindll: r ? r*x —> r(?)
—bind21:[?£?}+[?3§k?1 > [?2r(? +?2)7?]
— open: r( ? ) > r? r*

— three—way—?w: o?r
— three-way-bw: g ?
— four-way: r( ? l ? z
Max-helix requires all involved components of reactants to
have the correct domain-level sequence such that the rate
can be calculated in terms of a single overall reaction. Note
that bind and open reactions are trivial cases where any
matching domain can extend to the left and to the right. It
is important to include both directions, such that any
domain corresponding to a partial open or bind reaction
will extend to the same max-helix pattern match. Initial
matches for three-way and four-way branch migration can
only be extended in one direction under max-helix notion.
For example, the three-way branch migration reaction from
A to A3 in figure 124, can only be initiated from domain c
and extended until domain b. The direction of potential
extensions can also be seen directly from the kernel notation:
any ‘2’ must be well formed, so there must never be arrows
that extend a given helix into two independent ?” regions.
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Figure 12. Irreversible reactions as a consequence of max-helix and reject-remote semantics. (a) Max-helix semantics. Domains b and ¢ are always part of the same max-helix
move, domain a can sometimes, but not always be combined with b and c. This competition of different rules can lead to irreversible reactions, e.g. {A34 — A43, A34 — Ad).
However, note that the every single complex is still part of the same SCC, where every state is reachable from every other state. Also, if k were a toehold domain (not shown), then
only complexes A, A3, A33 and A3x would have an outgoing reaction opening that toehold, but the SCC would contain a copy of every complex with an open toehold, connected
via the shown three-way and four-way branch migration reactions. Also, if k is a toehold, A3 and A3x would split into two complexes, and the shown SCC would become a
transient macrostate. (b) Reject-remote semantics. Only proximal toehold branch migration reactions are allowed, which leads to a highly disconnected state space. Note an extra
unnamed intermediate state on the path {A34 — A4} as we do not use max-helix semantics here.

Reject remote branch-migration. DSD systems are often
designed using simplified variants of the reaction rules
described above. In particular, branch migration domains
are often immediately adjacent to already bound domains.
One might therefore choose to enumerate a system using
these constrained reaction types. The corresponding modifi-
cations of our pattern matching are shown below; we leave
it as an exercise for the reader to draw the corresponding
secondary structures:

three-way-fw-rr: r(? ra(?)) >r?2r(a(?))
three-way-bw-rr:r(a(? ) r*?)->r(a(?))? r*
four-way-rr:a(r(? ) b(?)r(?2)) —>al(r(?
* (b(?2))?2))

The reject-remote notion has a potentially undesirable feature
that unimolecular reactions that do not involve dissociation are
no longer guaranteed to be reversible (figure 12b). This is
easily visible for three-way branch migration reactions because
of their asymmetry. Note that if we remove the bound domain
a () from the expressions, then the reactant of the backward
three-way reaction is a circular permutation of the product of
the forward three-way reaction

r?2r(?)=r*x(2r?2)=r(?2zrx ?)

but since we have the constraint a (. . .) this is not guaranteed.
The reject-remote conditions for four-way branch migration
enforces that the initial configuration is a proper four-way junc-
tion (where a(...) and b(. . .) form two opposite arms).
Consequently, if the proximal toehold four-way branch
migration reaction does not yield a properly formed four-way
junction, then the reaction will be irreversible.

Appendix B. Justification of the condensed
reaction algorithm

We will now justify the algorithm for condensing reactions
with several theorems that show the relationship between
the condensed reaction network G = (C, R) and the detailed
reaction network G =(C, R). Here, we treat the rate-indepen-
dent model, for which bimolecular detailed reactions are
always classified as slow and unimolecular detailed reactions
are always classified as fast. Recall from §3 that S(x) is the
strongly connected component of a complex x, F(x) denotes
the set of fates of a complex x, and R(r) is the set of fates of
a reaction r. We introduce two further definitions.

First, we need a notion of what kind of processes from the
detailed reaction network are actually included in the con-
densed reaction network. We define a fast transition T,z
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to be a sequence of (zero or more) unimolecular reactions that
begin from a single initial (transient or resting) complex x and
result in a multiset B of resting complexes. A resting transition
T{a,a,—B is a sequence of detailed reactions starting with a
bimolecular (slow) reaction (by definition between two resting
complexes a; and a,), followed by a sequence of (zero or more)
unimolecular (fast) reactions that can occur if the system starts
with just 4; and a, present, and such that the final state B con-
sists exclusively of resting complexes.

Second, we need a notion of correspondence between
some reaction in the condensed reaction network and a tran-
sition that can occur in the detailed reaction network. For a
given multiset of resting macrostates A= { Ay, A, .. It
where each A; = {ai1, aip, ...}, a representation of A is a set
containing a choice of one complex 4;; from each A;. Note
that if any of the sets A; € A are not singletons, then there
are multiple representations of A. For example, if A =
ﬂAl, A, I, A = {a11, a2}, and Ay = {a21, a2}, then there
are four possible representations of A: {a11, a21}, {12, 021},
{a1,1, a2}, or {ay 5, a5,}. We can write A ~ A to indicate* that
A is a representation of A.

Lemma B.1. For every complex x, and for every fate F in the set of
fates F(x), and for every B such that B ~F, there exists a fast
transition Tyyyp.

Proof. Consider a single fate F € F(x). In the base case where x
is a resting complex, then F(x) = {S(x)} is singleton, and we
take F = S(x). If S(x) is non-singleton, then any transition
Txp—(») between x and another complex b € S(x) will satisfy
the property that B~F when B={b]}. If S(x) is singleton
(S(x) = {x}), then the transition Ty, _ v is degenerate, but
still satisfies the propery that B= {{x]} and {{x]} ~F.

When x is not a resting complex, recognize that each fate
F € F(x) was generated by application of the recursive case of
equation (3.4), in which a union is taken over outgoing reac-
tions from S(x). That is, each fate F € F(x) is generated by
some reaction r=(a, f§) that is outgoing from S(x). Specifi-
cally, F is one element of the set R(r) = F(B) = P,cF0).
For any B ~F, the fast transition Ty,_p can thus be accom-
plished by first following r, followed by the concatenation
of Typp—r@) for each b e p.

By induction, we recognize that, for any complex x and
fate F € F(x), a fast transition can be accomplished from x
toany B~F. L]

Theorem B.2 (Condensed reactions map to detailed reac-
tions). For every condensed reaction i = (A,B), for every A that
represents A, and for every B that represents B, there exists a
detailed resting transition Ta_p.

Proof. First, recognize that every condensed reaction 7 = (A, B)
was generated by some bimolecular reaction r=(A, A'),
where A contains only resting complexes and represents A.
Therefore, we must only show that there exists a fast tran-
sition T4 _p, such that B ~B. We recognize that the multiset
of products B, of the condensed reaction 7, was generated
from one element of R(r) = F(A’). Therefore, B is an element
of F(A"). By lemma B.1, there exists a detailed transition
T4 _p, such that B ~B. Therefore, there exists a transition
Ta_p such that A~ A and B ~B. n

Lemma B.3. For every complex x, each fast transition Ty.y_p,
such that B contains only resting complexes, corresponds to exactly
one fate F € F(x). Specifically, there exists some fate F € F(x) such
that B~F.

Proof. Consider the base case where x is a resting complex; in
this case, all fast transitions from x must lead to another rest-
ing complex in S(x). F(x) = {S(x)}, by equation (3.4), and
therefore this transition corresponds to the fate F = S(x).

Consider some detailed fast transition Ty,)_p such
that B={ by, by, ... |} contains only resting complexes. We
recognize that, if x is not a resting complex, there must be
at least one reaction in this process. The transition begins
with this initial reaction r° = ({x], Y); Y may have multiple
products, each of which decays independently to some
complex or set of complexes in B.

For some reaction r;=(A;_1, A;), by applying equation
(3.4), we recognize that if a fate F is reachable from A;, then
it is reachable from A;_;. That is, for some fate F,
F € F(A;) = F € F(Ai-1). This means that, for some prior
reaction 7,_1 = (A;_o, A’;) such that A;C A’; (that is, a reaction
ri_1 that produces the reactant of ;) F € R(r;) = F € R(ri_1).

Next, we note that the set of products B of the transition
T{x)—p must represent some fate; that is, B~ F. Since B con-
sists exclusively of resting complexes, F={S(b):b € B |.
Multiple reactions r, 15, ...1;,, may have produced complexes
that are in B; let us denote the set of reactions whose products
are in B by Rp: Rp ={ri =(A4; B) ETyy-p:Bi C B}, B is
therefore the sum of the products of these reactions:
B =3}, _ ek, Bi- Because B ~ F and equation (3.4) includes
all possible sums of R(B), this means that if we choose fates
F; € F(r;) for each of those reactions, there exists some set
{F,, F, ..., F,;} such that F{ +F,+---+F,,=F.

Consider one of the reactions r;=(A;, B)) € Rg, that pro-
duces complex(es) in B. Each fate F' € R(r;) is also a fate of
any reaction that produces A;. This means that, for r;, the par-
ticular fate F; € (Fy, F,, ..., F,,) satisfying Z’]":l F; must also be
a fate of any reaction that produces A;. By induction, we can
work backwards from r; all the way to the initial reaction 0
and recognize that F; C F° for some F* € R(Y). The same is
true for all reactions r; € Rg. Because the recursive case of
equation (3.4) sums over all combinations of fates for all
such pathways, the F; +F,+---+F,,=F must be a member
of R(#Y), and therefore a member of F(x). n

Theorem B.4 (Detailed reactions map to condensed reac-
tions). For every detailed resting transition Ta_.p, there exists a
condensed reaction # = (A,B) such that A represents A and B
represents B.

Proof. Since T4_,p is a transition between two sets (A and B) of
detailed resting complexes, the transition consists of two
steps: first, a bimolecular reaction r=(A, A’) converts A to
A’; second, a series of unimolecular reactions convert the
complexes in A’ to B. The algorithm generates one or more
condensed reactions for each detailed bimolecular reaction.
Specifically, the algorithm generates one condensed reaction
for each combination of fates of the products in A’. That is,
each of the condensed reactions is generated from one
element in R(r) = @, 4 F(A). By lemma B.3, for each pro-
duct o' €A’, F@') corresponds to the set of possible
transitions from a’ that result in some resting macrostate.
Therefore, we can choose any possible fast transition between
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T —p, and it will correspond to some element of R(r)—and
therefore to a condensed reaction 7 = (A, B). n

Intuitively, these two theorems mean that the condensed
reaction network effectively models the detailed reaction net-
work, at least in terms of transitions between resting
macrostates. The first theorem shows that a condensed reac-
tion must be mapped to a suitable sequence of reactions in
the detailed reaction network. The second theorem shows
the converse—that any process in the detailed reaction net-
work is represented by the condensed reactions. Having
proved these theorems, we propose the following corollaries
that extend this reasoning from individual (detailed and con-
densed) reactions to sequences of condensed and detailed
reactions. We omit the proofs.

Corollary B.5. For any sequence of condensed reactions starting in
some initial state A and ending in some final state B, and for any
A~ A and for any B ~B, there exists a sequence of detailed reac-
tions starting in A and ending in B.

Corollary B.6. Conversely, for any sequence of detailed reactions
starting in some multiset of resting complexes A and ending in
some multiset of resting complexes B, there exists a sequence of con-
densed reactions starting in A and ending in B such that A ~ A
and B ~B.

Appendix C. Biophysical kinetics model

The model presented below in §C.1 calculates approximate
reaction rates for different types of detailed reactions from
the length of involved domains. In §C.2, we present how to
calculate reaction rate constants for condensed reactions from
the detailed reactions along with our algorithm for reaction
condensation. Both sections rely on the standard mass-action
model for chemical kinetics. For simulations with deterministic
continuous semantics, ie. bulk systems, we use ODEs to
describe the dynamics. Let p(r) be the molar rate of some

reaction r = (A, B), with reactants A =ay, a5, ..., then
p(r) =k [ ] a1 (ehY
a€A
and
dla] C2)

o Z X = x"p),

where [a] represents the concentration of some species g, k is
the rate constant for reaction r, and x'/ and x"* are the stochio-
metry coefficients of a4 as a product or reactant in 7,
respectively. Since the reaction enumerator has no knowledge
of concentrations, the problem of estimating the rate p(r) of a
reaction boils down to estimating the rate constant k. Implicit
in this choice of rate law is the assumption that all reactions
are elementary (meaning there is only a single transition
state between the reactants and the products such that once
the reaction occurs, the products are released effectively instan-
taneously). For simulations with discrete stochastic semantics,
i.e. small-volume systems, the same CRN is described as a con-
tinuous-time Markov chain (CTMC) with rate parameters
derived from the bulk rate constants in a standard way that
depends on the reaction volume V. In the CTMC model, the
probability that the next event is reaction r is linearly

proportional to its propensity, i.e. the instantaneous reaction
rate. Thus the assumption that reactions are instantaneous
amounts to assuming that the probability a particular reaction
occurs next is directly related to the expected time that the
reaction will take to complete.

Since we use CRNs with mass-action kinetics for both
the detailed and condensed network representations, it is
reasonable to ask how well the assumptions hold. While
base-pairing changes in models of sequence-level secondary
structure kinetics [40,79] may usually represent physically
elementary reactions (with some exceptions where non-
Markovian effects have been observed [80]), for our
domain-level representation, this may not be the case, as
many DSD reactions have a complex transition state land-
scape and involve many intermediate states. As an
example, the probability that a length-n three-way branch
migration process completes rather than returns to the start
(and thus the probability that this domain-level reaction
occurs rather than a competing branch migration reaction)
scales as 1/n, while the actual expected time to complete
scales as 1/n* due to the random walk [38]—violating the
strict linkage between probability and rate that is inherent
in CTMCs. When considering condensed reactions, this
issue is compounded, as there may be complex trajectories
through transient states before a resting macrostate is
reached. When assigning a rate model for detailed reactions
at the domain-level, we acknowledge and accept this limit-
ation; when forced to choose, we prioritize accuracy for
probabilities rather than reaction times because in the limit
of low concentration, the duration for a reaction becomes a
negligible, whereas the probability that a trajectory through
transients arrives at a given fate remains pertinent.

C.1. Approximate detailed reaction kinetics

It is important to emphasize that our formulae for reaction rate
constants, although based on experimental evidence and intui-
tion, are heuristic and approximate; they serve as a placeholder
until a more accurate and more general model can be devel-
oped. The kinetics of a real physical system will be affected
by parameters outside the consideration of our model. For
example, the nucleotide sequences of each domain, the temp-
erature and salt concentrations all affect the binding energies
and hybridization kinetics. The formulae here assume ‘well-
designed’ sequences with perfect Watson—Crick base pairing
(e.g. x is complementary to x*), perfect binding orthogonality
(e.g. x does not bind to either y or y*), and experimental con-
ditions similar to 25°C and 10mM Mg** and pH 8.0. As
mentioned above, they focus on kinetics and trajectory prob-
abilities; as a consequence of these choices, they are not
guaranteed to satisfy detailed balance and we cannot claim a
well-defined energy for complexes.

Ultimately, our rate model must provide bimolecular rate
constants for bind21 reactions and unimolecular rate con-
stants for bindl1, open, three-way-fw, three-way-bw
and four-way reactions. The rate constants will depend
not only on the lengths of the relevant domains but also
upon features of the local secondary structure. The bimolecu-
lar bind21 reaction has the fewest such context-dependent
considerations, so we will start there.

Bimolecular binding rate constant (bind21). A bimolecular
bind reaction, i.e. with arity (2,1), is dominated by the rate
limiting step of forming the initial stable contact. The
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number of opportunities to initiate successfully scales with
the length ¢, so the binding rate constant is approximated
as Kpinaz1 =3¢ x 10° M~ 1s71, following the empirical formulae
of Wetmur [26] for complementary strands shorter than
roughly 100 nucleotides. The assumption is that the initiation
of a bimolecular binding reaction is dominated by the case
where binding is well-aligned, even though there are up to
* possibilities of forming an initial inter-molecular base-
pair and potentially more initial contacts with other unpaired
domains.

Opening reaction rate constant (open). In our model, open
reactions are predominantly important for toehold dis-
sociation. Using the previously introduced parameters for
bimolecular binding, we can calculate kopen as the reverse
reaction of kpingp1 using the parameters of the nearest neigh-
bour energy model. The equilibrium constant of the reaction
relates to the change in free energy AG® as:

(c3)

where for the gas constant, we use R =1.987 cal mol ' K.
According to SantaLucia & Hicks [62], the average energy
of a single base stack is AGgpc=—1.7 kecal mol™! at
T=298 K (25°C) in a 1M sodium buffer (which is thermo-
dynamically similar to a 10 mM magnesium buffer), and
the penalty for strand association is AGgsoc = 1.9 keal mol~L.
The typical free energy change of a hybridization reaction
according to the nearest neighbour energy model is therefore
approximately

AG° = /- AGstack + AGassoo (C 4)

where the length ¢ roughly corresponds to the number
of stacking interactions and we ignore possible dangle and
coaxial stacking contributions. We therefore, compute the
reaction rate constant for dissociation as

Kopen = Kindzy e ACsa G /RT

— 3/ % 105 x e(71.7-£+1.9)/298.15«R sfl

=7410 x 100 x e *% 571, (C5)

Unimolecular binding rate constant (bind11). The unimole-
cular bind reaction depends on the linkers connecting the
binding domains, that is, it depends on the secondary struc-
ture immediately on either side of the domains that bind. The
intuition is that the linkers on either side determine the effec-
tive local concentration for formation of the initial base pair in
the binding domain, or other potential geometric constraints
that prove rate-limiting. We distinguish three cases, provid-
ing distinct formulae for kping11 for each:

First, zipping is the unconstrained elongation of an already
formed helix. This case occurs when on exactly one side of the
binding domains is an already-bound domain, while on the
other side is an open loop or a closed loop (with the exception
of the bubble closing case described below). The per-base-pair
rate of zippering (with an open loop on one side) has been esti-
mated between 10° s7! and 10'° s! for DNA [26,63,64]. For
numeric stability, we use ki, = 10° s7%, which is still orders of
magnitude faster than the rate-limiting steps of most reaction
pathways. Treating zippering of the entire domain as an
elementary step, we arrive at kpind11 = kzip/{ = 10/¢s7! for
this case.

Second, bubble closing corresponds to simultaneous zip-
ping from both ends of a domain. Thus, this case occurs
when both sides of the binding domains are immediately
flanked by an already-bound domain. Perhaps surprisingly,
this reaction has been found to be dominated by the rate lim-
iting step for closing the last base-pair [32], and we use
Kpina11 =10%s7".

The third case occurs when both sides of the binding
domains are flanked by an open loop or a closed loop that
matches neither the zippering or bubble closing cases
described above. In general, we call this case of unimolecular
binding to be loop closing, but the simplest case—where one
side is an open loop and the other side is just a single-
stranded domain—is the familiar and well-studied hairpin
closing reaction. As other cases are less well studied, we
derive our general rate formula as a generalization of hairpin
closing. Specifically, we use kpina11 = C(£) x k,ip, where C(£)
represents a ‘closing fraction” that accounts for the formation
of the first base pair being the rate-limiting step, but depend-
ing on the relevant loop length ¢, the relevant nucleotides will
be appropriately positioned to zip up only a fraction of the
time. Below, we show how ¢ and C(¢) are calculated for gen-
uine hairpins and for more complex generalizations.

Experimental studies of DNA hairpin opening and clos-
ing kinetics [31,33,36,39,65], usually with poly-T or poly-A
loops and in sodium and magnesium buffers of lower ionic
strength than our default here, disagree by sometimes more
than a factor of 10—but all are consistent with a power-law
scaling for the dependence of the closing rate on the loop
length. Here, we attempt to strike a balance, using a simpli-
fied expression for the rate of hairpin closing with a cut-off
for short hairpins:

100 x £-25571
knp = min (Ceo)
33000s71,

where £ is the number phosphate links in the hairpin loop (i.e.
the number of unpaired nucleotides plus one). For loop-clos-
ing reactions that are open on one side and have a single-
stranded domain (or domains) on the other side, we simply
use

kpina11 = C(Dkyip = knp. (o)

Since k,;p, is known, this implicitly defines C(¢).

Due to a lack of systematic biophysical studies, further
generalization is based on unverified intuition. We first gen-
eralize to loop-closing reactions that are open one side, while
the nascent loop on the other side consists both of single-
stranded domains and helix stems (that may lead to other
secondary structure). A mixed-composition loop with h
helix ends and u nucleotides of single-stranded domains
will have an effective length ¢ =1+ u +h+(2.0/0.43) h in
nucleotides, because each helix stem contributes one phos-
phate link of length 043 nm and has a diameter of
approximately 2.0 nm. For example, if we consider the open-
ing and closing of the central multiloop of figure 1 via
domains d and d*, u is the combined length of domains e,
i, n and r, while h=3.

Finally, in the case where the complementary domains
form closed loops on both sides, we calculate ¢ for both
and use just the minimal value, as the smaller loop is
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expected to provide the stronger constraints and determine
the effective local concentration. An example of this would
be the opening and closing of the helix formed by domains
j and j* in figure 1.

Branch migration rate constants (three-way-fw, three-
way-bw and four-way). We distinguish two properties of
branch migration: the average number of attempts until a
branch migration reaction is successful depends on the
length of the domain ¢, while the expected time to complete
branch migration corresponds to a random walk scaling with
% [34,38]. Assume we have the rate for initiating the first step
of branch migration kpminit and the rate for subsequent branch
migration steps kpmstep, then the rate for initiating a successful
branch migration is kpm = kpminit/¢. Note that this rate is inde-
pendent of kpmstep, as we ignore the time spent in the branch
migration process.

We distinguish several cases based on how the branch
migrating domains are connected to each other. In three-way
branch migration, we have the canonical (direct) case, exempli-
fied by reaction A43 — A4 in figure 124; the canonical (two-
tailed) case, exemplified by reaction A34 — A43 in figure 124;
and the non-canonical (remote) case, exemplified by reaction
A3 — A33 in figure 124. In four-way branch migration, we
have the canonical (closed) case, exemplified by reaction
A — A4 in figure 124; the canonical (open) case, exemplified
by reaction A3 — A34 in figure 124; and the non-canonical
case, exemplified by what could happen in the multiloop of
figure 1a if domain d were identical to domain j*.

For canonical (direct) three-way branch migration, where
the first displacing nucleotide extends from a helix stem
that is coaxially stacked with the helix being displaced, and
where the first nucleotide of the displaced domain is the
end of the strand, we use kpminic = 0.333 x 10° s7! as inferred
experimentally [38], 50 kthree—way—fw = Kthree—way—bw = 0.333 x
10%/¢s™'. For the canonical (two-tailed) case, the first
displacing nucleotide again extends from a helix stem that is
coaxially stacked with the helix being displaced, but now the
first-displaced nucleotide of the displaced domain has some
extension, which must not be connected to the displacing
domain (except via the displaced domain). In this case, there
are overhanging nucleotides on both sides of the initiation
side, as in an intermediate step during branch migration, and
therefore we use Kpminit = Kbmstep = 10* s7! as inferred experimen-
tally [38], 50 kinree—way—fw = Kthree—way—bw = 10%/¢s7L.

For canonical four-way branch migration, initiated from a
perfect Holliday junction consisting of four helix stems, we
use Kominit = Kbmstep = 0.333 s~!, which is inferred from Panyu-
tin & Hsieh’s measurements [28] in 10 mM Mg** at 50°C and
37°C, and extrapolating to 25°C. Thus, for this ‘closed loop’
case we have kiour—way = 0.333/¢ s L

Four-way branch migration initiated from a Holliday junc-
tion with an open loop (i.e. two opposing helix stems with
identical sequence, connected by a third stem on one side
but with an open loop on the other side) has been studied
by Dabby [37], who reports kpminit = 0.0093 s7L. Thus, for this
‘open loop’ case we have kiour—way = 0.0093/4¢ sL

Other cases of three-way and four-way branch migration
have been less well studied, to our knowledge. For simplicity,
we treat all cases with a consistent approach: using the kpminit
from the closest category above (three-way, closed four-way,
or open four-way), the rate for initiating branch migration
is slowed down based on the estimated fraction of time that
first displacing nucleotide is in position to initiate branch

migration. We use C(/) for this fraction, following the
method discussed above for unimolecular binding reactions.

For non-canonical (remote) three-way branch migration,
there may be a linker either to the left or to the right of the
first displacing nucleotide, or both—in which case the shorter
linker is used, as before. The displacing single-stranded
domain(s) will be part of one of the linkers, if the side containing
it is connected, because that linker’s length is relevant for the
local concentration of the first displacing nucleotide. Thus, for
such cases, kenree—way—fw = Kthree—way—bw = C(€) X Kpminit/ 4.

For non-canonical (remote) four-way branch migration,
using the value of kyminit appropriate for the closed (two lin-
kers) or open (one linker) case, we similarly use the smallest
available value of £ and compute kiour—way = C(€) X Kpminit/ £

C.2. Derivation of condensed reaction kinetics

The overall rate for a condensed reaction is proportional to the
rates of the detailed reactions, weighted by the joint prob-
ability that the reactant complexes are actually present, and
that the product complexes decay to the correct resting macro-
states with the correct probabilities. That is, the overall rates of
interactions between molecules should be consistent between
the detailed model and the condensed model, and the prob-
abilities of particular outcomes from an interaction also
should be consistent. However, because the condensed
model is represented as instantaneous reactions with no inter-
mediate steps, the time it takes from the initial interaction to
the eventual release of products (which is included in the
detailed model) is not represented in the condensed model.

As usual, let G = (C, R) be a detailed reaction network and
G = (C, R) the corresponding condensed representation (see
§3). A condensed reaction is 7 = (A, B) where A and B are mul-
tisets of resting macrostates from C. Let R be the set of all
detailed slow reactions with reactants in resting macrostate(s)
A. For example, if A is a multiset of two resting macrostates
A= { A1, A, }, then R is given by all detailed bimolecular
reactions that satisfy

RA = {1’:({] ay, dy I},B)ZI’ER,Q] EA1,a2 EAZ},

with arbitrary products B. In order to predict the rate con-
stant k; of a condensed reaction, recall that we assume the
system to be in steady state relative to the fast reactions.
That means the rate constant for a condensed reaction
depends on the steady-state probability of a reactant
complex in its resting macrostate, IP’[al-:Ai], and the decay
probability that product complexes B react to complexes
that represent resting macrostates B, P[T;_js]. The approxi-
mate condensed rate constant k; for our bimolecular
example can, therefore, be calculated as

k= Z P [al 112\1] X P[ﬂz 1A2] X ky % P[TBHB}'

r:({]al,azl},B)ERA

where k, represents the rate constant for the defailed reaction r.
The sum is over all detailed reactions which consume one
complex from each resting set in A. Hence, if r produces pro-
ducts B which can never be converted to the resting
macrostates in B, then this term will be 0. This example is
illustrated in figure 13.
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notation:
detailed reaction: 7= (4,B) A= {|ai|}
condensed reaction: 7 = (A, B) A= {|4;|}

given: A :{|A1,A2|} B ={|BlaB2|}

define: R ; = {r = ({la1,a2l}, B) :a; € Al,ag IS 1212}

then the condensed rate is:

kp = >

r= ({‘(ll ,(L2|},B)ERA

P [al : Al} -P [02 : AZ} k- P [TB%B]

microstate (complex)
fast (1,1) reaction

slow (1,1) reaction

fast (1,2) reaction
slow (2,1) reaction
resting macrostate

transient macrostate

{} setof fates

Figure 13. Reaction rate condensation summary. In order to calculate the condensed rate ¥ = (ﬁ,l?), we define R; as the set of detailed reactions leaving A
(to some species B). The condensed rate can be calculated from all reactions in Rj, given that we have also calculated the steady-state probability of reactants,

the detailed reaction rates and the probability that B decays into B.

The general form including the unimolecular and bimole-
cular case is given by

k=Y (k, x P[Ty_s) x [] [P’[u,»:fliD. C8)
r=(ABER; aEA
To calculate P [a,v :A,}, and P[T,_;], it is helpful to think of
each transient or resting macrostate as an individual, irredu-
cible CTMC. The remainder of this section derives P [a; :A,}
for resting macrostates, and P[T, ;] for transient
macrostates.

Resting macrostates. We can treat a single resting macro-
state A={ay, a,...,a;} to be a continuous-time Markov
process, continually transitioning between each of the L
states. The dynamics of this process can be written as a
matrix T € R, where the elements Tj; are the rates (poss-
ibly zero) of the reaction from state j to state i, which we
denote p(j — i), and each diagonal element is the negative
sum of the column

T = L o
=21 Lii i i=].

(Cc9

Let s(t) = (sq, Sy, ...)T be an L-dimensional vector giving the
probabilities, at time t, of being in any of the L states. The
continuous-time dynamics of this process obeys
% = Ts(t).

For a resting macrostate, we assume that the system has
reached steady state, and so s is not changing with time.
We therefore find the stationary distribution s of this process
by setting ds/dt=0, and recognizing that s is the right-
eigenvector of T with eigenvalue zero. Given the stationary
distribution § = (31, &, ..., 81)7, we recognize that

Pla:A] =s. (C10)

Transient macrostates. To calculate the decay probability
P[T,_ 5] that complexes in B react to complexes that represent
B, we cannot use the stationary distribution since there are
outgoing fast reactions that exit this macrostate. However,
we can include the e outgoing reactions, using an (L +e)-
state Markov process, where each of the e states is absorbing.

This enables us to calculate the probability that, having

entered the macrostate in some state i€ {1,..., L}, it will
leave via some reaction j€{L+1, ..., L +¢}. Hence, outgoing
reactions and complexes are discussed consistently as states
in the same Markov process. We first derive how to calculate
the decay probability of a single complex P[x — F] and then
express the decay probability of multiple species to a given
fate F as a combination of all pathways whose fates sum up
to F. Note that here, we are using a discrete-time Markov pro-
cess because we are not concerned with how long it takes for
B to reach B, but just the probability that B is reached.
Assume the macrostate is again given by A=1{ay, a5, ...,
ar). Let Q € RE*L be the matrix of transition probabilities
within the macrostate, such that Q;; is the probability that, at
a given time the system’s next transition is from state i to
state j, where i, j€{1, ..., L}
k:
Q=

> =1 kij’

Now let us use the same principle to define a matrix
R € R', where R; represents the probability that the
system in state i€ ({1, ...,L} transitions directly to absorbing
state je{L+1,...,L +e}. Based on transition probabilities Q;
we calculate the fundamental matrix N, which contains the
expected number of visits to state j, starting from state i as

(C11)

N=0Q=0-07, (C12)
k=0

where I, is the L xL identity matrix. In combination with
exit probabilities R, the absorption matrix is calculated as
B=NR, such that entries B; are the probability of exiting
via state j after entering through state i. Let S(x) be the
macrostate containing complex x; we can compute the prob-
ability that a single complex x decays into a given fate F (see
definition 3.1) as

Plx — F]=
1 if S(x) is a resting macrostate and F(x) = {F}
> BiiP[rj — F] if S(x) is a transient macrostate
0 if F & F(x),
(C13)
where B = [B;;] is the absorption matrix for S(x), i represents the

index of complex x in S(x), j is the index of the reaction that exits
S(x), and P[r; — F] is the probability that the products of the
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reaction r; decay to complexes that represent F. We can calculate
the reaction decay probability for a reaction r;=(C, D) as the
joint probability that products D = {dy, d>, ..., d,]} decay to
their respective target fates

P[V]—>F]: P[d1—>F” XP[dzHF,ﬂ
{F}+F,+--F,=F}

x - x P[d, — F,]. (C14)

The sum is taken over all combinations where the fates of pro-
duct complexes {[F} ]} sum to the overall target fate F. This can
be computed efficiently alongside equations (3.3) and (3.4),
where we compute the set of fates of a reaction using the
Cartesian sum. First, take the Cartesian product of all pro-
duct complex fates {Fil[le{ Fld) x F(dy) x---:dy €D [},

second, take every combination where } ;g  =F. Finally, we E

can write an expression for our quantity of interest. We want
to know the probability P[T; ;] which can be computed
using equation (C 14)

P(Ty_5) = P[r —B], (C 15)
where r is the original, detailed bimolecular reaction.

Now we have shown how to efficiently compute all the
terms to compute a rate constant k; for each condensed reac-
tion using equation (C 8). The structure of our arguments has
mirrored the algorithm for deriving the condensed reactions,

for which we provide pseudocode in electronic supplementary
material, §1, Alg. 2.
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