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Abstract

Objectives

Healthy people have a slight leftward bias of spatial attention as measured on the Landmark

task. Former studies indicated that lateralisation of brain activation contributes to this atten-

tional bias. In this study we hypothesised that if the spatial bias was consistent over several

measurements there would be structural background of it.

Methods

Reproducibility of the spatial bias of visuo-spatial attention was measured in twenty healthy

subject in a Landmark task over three consecutive days. In order to evaluate the correlation

between the spatial attentional bias and the white matter microstructure high angular resolu-

tion diffusion MRI was acquired for each subjects. The Track Based Spatial Statistics

method was used to measure the hemispheric differences of the white matter micro-

structure. Probabilistic tractography was used to reveal the connection of the identified

regions.

Results

The analysis showed correlation between the behavioural scores and the lateralisation of

the white matter microstructure in the parietal white matter (p<0.05, corrected for multiple

correlations). Higher FA values on the left are associated to rightward bias. The parietal

cluster showed connectivity along the superior longitudinal fascicle on one end to posterior

parietal cortex and anteriorly to the putative frontal eye field. From the frontal eye field some

of the fibres run towards the nodes of the dorsal attention network to the intraparietal suclus,

while some of the fibres travelled toward to ventral attention network to the temporo-parietal

junction.
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Conclusions

These results indicate that the structural integrity dorsal fronto-parietal network and the con-

nection between the dorsal and ventral attention networks are responsible for the attentional

bias in normal healthy controls.

Introduction

Lateralised brain functions are thought to increase the brain capacity by processing the infor-

mation parallel and complementary [1, 2]. Since the early work of Broca and Wernicke show-

ing left sided brain damage being associated with problems of language production and

comprehension, the functional and structural asymmetries of the brain are in the centre of

research [3, 4]. Lesion-symptom mapping studies found similar lateralisation for example for

visuo-spatial attention [5] and emotional expression [6]. With the rapid development of non-

invasive brain imaging approaches our understanding of the hemispheric lateralisation

increased enormously. Series of studies described the detailed functional anatomy of the lan-

guage system [7], and lateralised motor functions [8]. It was also hypothesised that functional

lateralisation is related to structural hemispheric differences. Consequently, structural imaging

investigations shed light on the innate or acquired lateralised grey matter structure behind

handedness [9, 10] and language [11–14]. While lateralised grey matter structure is unques-

tionable, it cannot fully explain the functions [14, 15]. Variation of the micro and macrostruc-

tural measures of the white matter connecting the functional network nodes might account for

at least some of the functional asymmetries [16]. Hence, lateralised white matter organisation

was shown in the language system as well as in the motor system [11, 17–19].

One of the interesting lateralisation in the brain is related to the visuo-spatial attention. It is

well known in clinical practice that right-sided brain damage frequently causes spatial neglect

syndrome [5]. Patients with hemineglect have a reduced capacity to pay attention to the left

visual field and neglect the left side of the space. Voxel-based lesion symptom mapping studies

attempting to find the region responsible for hemispatial neglect concluded that right perisil-

vian cortical regions such as the right temporo-parietal junction, superior temporal cortex,

inferior parietal lobule and insula are the most common substrate of neglect [20–23]. Further-

more, neglect may develop because of the damage of the inferior and middle frontal gyrus, the

ventral premotor cortex on the right [24]. Not surprisingly, further studies indicated that the

damage of the right perisilvian white matter, the superior longitudinal fasciculus and the infe-

rior occipito-frontal fasciculus connecting the above mentioned frontal and parietal regions

are key factors in developing neglect [25]. Creating a virtual lesion in the right posterior parie-

tal cortex by transcranial magnetic stimulation Fierro and colleagues not only reproduced the

attentional deficit but demonstrated that it is crucial in the processing of spatial information

150ms after the stimulus presentation.

The lateralised spatial-attention system is also supported by the bias seen in linebisection or

in Landmark tasks in healthy subjects, known as pseudoneglect. In the former, the subject is

asked to bisect a horizontal line in the middle. Neurologically intact subjects tend to err slightly

to the left [26]. In the latter, perceptual version, the longer segment have to be identified of a

horizontal line bisected close to the middle and normal healthy tend to overestimate the size of

the leftward segment [27, 28].

To account for these observations two alternative hypotheses are competing in the litera-

ture: (i) According to the hemispatial theory right hemisphere directs attention to both visual
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hemifields, whereas left hemisphere deals with the right hemifield only [29–31]. This constella-

tion could explain the more frequent occurrence of neglect syndrome with right hemisphere

damage. (ii) The interhemispheric competition theory states that each hemisphere directs

attention to the contralateral visual field that is under reciprocal inhibition and the strength of

this attentional bias is stronger in the left hemisphere [32].

Functional imaging studies of spatial attention revealed two interacting networks [33, 34]:

(i) the largely bilateral dorsal fronto-parietal network including the frontal-eye-field and the

intraparietal sulcus and the (ii) right lateralised ventral attentional system including the tem-

poroparietal junction and the ventral frontal cortex. As regarding the function of these two sys-

tems the bilateral dorsal is responsible for goal directed, endogenous, top-down modulation of

lower level centres, while the ventral right lateralised system is detecting salient stimuli and

stimulus driven shifts of attention.

Functional magnetic resonance imaging and event related potential studies showed that

lateralised activation can be found in a Landmark task in a similar right lateralised fronto-pari-

etal network [34–38]. Szczepanski and her colleagues showed that regions within this fronto-

parietal network generate spatial bias and the sum of that attentional weights constitute the

overall bias [39]. In an fMRI task the sum of these attentional weights contributed to the indi-

vidual’s bias on the line bisection task [40]. This later, and also some former studies call atten-

tion to the interesting fact that while most of the normal healthy subject has a leftward bias on

spatial attention tasks, a minority of people have no bias or even to the opposite direction.

While there is detailed information about the brain function behind the pseudoneglect phe-

nomenon, the information on the structural background is sparse. Since the attentional bias of

an individual seems to be highly consistent over time [41], it is indeed likely that there is a

hemispheric lateralisation of the brain structure behind this feature. It is known that function

is deeply rooted in the anatomical structure, and behavioural performance is strongly influ-

enced by the properties of the underlying brain structure. It was shown that correlation

between the individual structural variability and behavioural performance can identify the

involved neuroanatomical structures [42]. The microstructural integrity of the white matter as

defined by diffusion tensor imaging is capable of revealing the coupling of structure and func-

tion [43–45]. Accordingly, Thiebaut de Schotten showed that the relative size of the right supe-

rior longitudinal fasciculus is correlated with the behavioural bias on the line-bisection task

[46], which results were later replicated by Cazzoli and colleagues [47].

While the merit of the above mentioned studies is unquestionable there are factors that

needs further investigation. These two studies investigated the motor version of the line bisec-

tion task. It was formerly showed that the motor and perceptual versions (line bisection vs.

Landmark) generally yield different results and activates different networks [35, 48–50].

Hence in the current experiment we used the perceptual version of the task.

Furthermore, the above mentioned two studies restricted their analysis to prespecified

white matter tracts and correlated the tract volume and average diffusion property (hindrance

modulated orientation anisotrophy) with the attentional bias. While, based on the results of

former investigations it is certainly reasonable to investigate the various branches of the supe-

rior longitudinal fascicle, a whole brain analysis could further strengthen the results. Hence, in

the current study we considered all the white matter fibres, but to avoid the registration bias

we restricted the analysis to the alignment-invariant white matter skeleton representing the

middle of the fibre tracts [51].

In this study we set out to find lateralisation of the integrity of the white matter fibres that

underlines the pseudoneglect phenomenon in a perceptual Landmark task. As a first step we

investigated the reproducibility of the pseudoneglect in a Landmark task, to see if it is a suitable

measure to identify the structural background of the phenomenon. In a second diffusion
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tensor MRI study we correlated the lateralisation of the white matter integrity and the direc-

tion of the spatial bias in a Landmark task.

We hypothesised that we would find asymmetric organisation of the white matter tracts

that correlated with the behavioural bias on the Landmark task.

Methods

Subjects

Twenty healthy subject participated in the studies (mean age = 25.85±2.94 years). All subjects

were right handed according to the Edinburgh handedness inventory (mean score = 9.21

±2.08). None of them suffered from any neurological or psychiatric diseases. All of them had

normal or corrected-to-normal (20/20) visual acuity and good colour vision. The study was

approved by the ethical committee of the University of Szeged (Ref. no.: 87/2009) and all study

participants gave their written informed consent in accordance with the Declaration of

Helsinki.

Stimulus presentation and experimental paradigm

The Landmark task was presented on a Tobii Pro TX300 23” Eye Tracker TFT monitor with

1920x1080 maximal screen resolution to achieve accurate fixation during the task. The cus-

tom-made Landmark-task was programmed in Matlab R2012b, with Psychophysics

Toolbox Version 3.0.10 (PTB-3) and consisted of 1mm thick black horizontal lines presented

on the middle of the screen. The horizontal lines were transsected with a 10 mm high black

vertical bar. The vertical line was set at the centre of the screen. In the task five different lines

were used with different lengths (Fig 1): (i) bisected exactly in the middle, (ii-iii) left elongated,

(iv-v) right elongated, iii. and v. being more extreme.

The participants were seated in a chair in front of the monitor. The distance of the partici-

pant’s eyes from the screen was 55–60 cm. The correct fixation during the task was controlled

with the Tobii Pro TX300 Eye Tracking system (gaze sampling rate: 300 Hz; operating dis-

tance: 50–80 cm; binocular and dark pupil tracking technique). Before stimulus presentation

the participants were asked to fixate a central fixation dot in the middle of the screen. The fixa-

tion was checked for 400 ms. In case of correct fixation the fixation dot disappeared and the

stimuli were presented for 50 ms duration. The stimuli were followed by a white blank screen

for 4000 ms intertrial interval after which the next fixation dot appeared. After the stimulus

presentation the participants were asked to make forced-choice decision about the respective

length of the two segments of the bisected lines with three keyboard button response possibili-

ties: left–left longer, down–equal lengths and right arrow key–right longer. They were asked to

judge which segment of the previously bisected line is longer and press the appropriate button.

The performance of the subjects was evaluated according to Fierro as follows: 0 = correct

response; 1 and 2 = rightward errors due to left under-evaluation; -1 and -2 = leftward errors

due to right under-evaluation [28] (Table 1).

The five different lines were presented in random order.

In the reproducibility experiment 50 stimuli were presented all five lines repeated 10 times.

The measurements were repeated in three consecutive days.

Statistical analysis of the reproducibility experiment

Statistical analyses were performed using the Statistical Package for Social Sciences (SPSS

20.0.0 for OS X, SPSS Inc., http://www.spss.com). Intraclass correlation coefficient (ρ) analysis
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was used for the reliability measures:

r ¼
MSBS � MSWs

MSBS þ ðk � 1ÞMSWS

Fig 1. Landmark task. Fixation dot appeared for 400ms, during which fixation was monitored. The stimuli (bisected

line) were presented for 50ms. The interstimulus interval was 4000ms, during which the subject had to indicate which

segment of the bisected line was longer by pressing left or right arrow keys or the down key for equal segments. Line1:

mid-bisected (each segments 75 mm), Line2: right bisected (left segment: 75mm, right segment: 70mm), Line3:

extreme right bisected (left segment: 80mm, right segment: 75mm), Line4: left bisected (left segment: 70mm, right

segment: 75mm), Line5: extreme left bisected (left segment: 75mm, right segment: 80mm).

https://doi.org/10.1371/journal.pone.0216032.g001

Table 1. The scoring system of the attentional bias in the Landmark task. The second column depicts the length of

the left and right segment of the stimuli. The scores associated with the response in the various line length are shown in

column 2–4.

Length of Left/Right segments Response

Left longer Equal Right longer

Line 1 75/75mm -1 0 1

Line 2 75/70mm 0 1 2

Line 3 80/75mm 0 1 2

Line 4 70/75mm -2 -1 0

Line 5 75/80mm -2 -1 0

https://doi.org/10.1371/journal.pone.0216032.t001
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where MSBS is the between subject mean of squares and MSWS is the within subject mean of

squares and k is the number of observations. With the interpretation of the reproducibility we

followed Cicchetti’s guideline.

MRI acquisition

Neuroimaging data acquisitions were carried out on a 1.5 T GE Signa Excite HDxt MR Scan-

ner (GE Healthcare, Chalfont St. Giles, UK) within one month of the behavioural testing.

Three-dimensional spoiled gradient echo images (FSPGR: echo time [TE]: 4.1 ms; repetition

time [TR]: 10.276 ms; matrix: 256x256; field of view [FOV]: 25cmx25cm; flip angle: 15˚; in-

plane resolution: 1mmx1mm; slice thickness: 1mm) and 60-direction diffusion-weighted

images with 6 non-diffusion-weighted reference volumes (TE: 93.6 ms; TR: 16.000 ms; matrix:

96x96; FOV: 23cmx23cm; flip angle: 90˚; in-plane resolution: 2.4mmx2.4 mm; slice thickness:

2.4mm; b: 1000 s/mm2; number of excitations [NEX]: 2; array spatial sensitivity encoding tech-

nique [ASSET]) were acquired.

Correlation of diffusion parameters with behavioural measures

Diffusion data were corrected for eddy currents and movements artefacts by twelve degree of

freedom affine linear registration to the first non-diffusion-weighted reference image. An algo-

rithm included in FMRIB’s Diffusion Toolbox (FDT) of FSL (v.4.0) fit diffusion tensors at

each voxel [52]. Fractional anisotropy (FA) was computed for the whole brain. In order to

reduce the possible errors arising from misalignment of the images, we used the Tract Based

Spatial Statistics (TBSS) method [53]. All subjects’ FA images were aligned into a common

space, using the non-linear registration tool, FNIRT, which use a b-spline representation of

the registration warp field. A mean FA image was created and the threshold set at FA = 0.2,

deriving a mean FA skeleton that represented at the centres of all tracts common to the group.

In order to test for asymmetries in diffusion characteristics we projected the data to a symmet-

ric skeleton with FSL’s tbss_sym algorithm. According to this algorithm the original asymmet-

ric skeleton is thickened than the mean FA image is flipped along the y axis and flipped and

non-flipped images are averaged. This averaged, symmetrised mean FA image is fed into the

skeletonisation program and then masked by the dilated original skeleton. Finally, this skele-

ton is flipped along the y axis also and masked by the original non-symmetrised skeleton. The

prelaligned FA data are projected onto the symmetrised skeleton, left-right flipped and the

resulting images are subtracted from the non-flipped. Since the same information present on

the two sides of the images the right side is masked out and only the left side is subjected to fur-

ther voxel-wise cross-subject statistics and presented in the results. Modelling and inference

using standard general linear model (GLM) design set-up was accomplished using permuta-

tion-based cluster analysis (n = 5000) as implemented in FSL software package [54]. The

design encoded for the average spatial bias scores across the three measurements on consecu-

tive days. Age and gender was used as nuisance variables. Statistical thresholding was carried

out with Threshold Free Cluster Enhancing and all results were corrected for multiple compar-

isons (family-wise error).

Structural connectivity

Connectivity of the regions showing significant correlation with attentional bias was defined

by probabilistic tractography (FDT, part of FSL: www.fmrib.ox.ac.uk/fsl/fdt). A Multifibre dif-

fusion model was fitted that estimates probability distribution on the direction of 1 or more

fibre populations at each voxel [55]. Probabilistic tractography was then performed from any

brain voxel by tracing streamline samples through these probabilistic distributions of fibre

White matter microstructure associated with pseudoneglect
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direction. For tractography, we generated 5000 streamline samples from each seed voxel to

build up a connectivity distribution. The number of these samples passing through each brain

voxel is interpreted as proportional to the probability of connection to the seed voxel. By fitting

a multifibre model to our diffusion data, we were able to trace pathways through regions of

fibre crossing [55]. Seed masks were the binary masks of the suprathreshold clusters of the

TBSS analysis. The result of the tractography was standardised by the total number of gener-

ated tracts (waytotal), thresholded at 10% probability. Finally to reveal a group level connectiv-

ity map the individual standardised, thresholded maps were registered to standard space,

binarised and summed over subjects.

Results

Reproducibility

In our Landmark task, on average the subjects judged the left segment of the line slightly lon-

ger (mean score: -4.48), similarly to the findings of Fierro and co-workers [28].

The reproducibility of the attentional bias as measured with Landmark task was evaluated

by repeating the task on three consecutive days. The intraclass correlation was ICC = 7.44 (CI:

0.547–0.879), which according to Cicchetti is good-excellent reproducibility (Fig 2).

Correlation of white matter integrity and attentional bias

In our analysis we tested if the lateralisation of the white matter microstructure correlates with

the subjects’ personal spatial attentional bias as measured on the Landmark task in three

Subjects
0 2 4 6 8 10 12 14 16 18 20
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co

re
s

-25

-20

-15
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0

5

10

15

Fig 2. Reproducibility of the spatial bias. The bias scores of the three consecutive measurements plotted for all twenty subjects. The subjects are ordered

according to the spatial bias. Where there are only two data points, scores from two measurements were virtually inseparable.

https://doi.org/10.1371/journal.pone.0216032.g002
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consecutive days. In order to do so we calculated the hemispheric differences of fractional

anisotropy in a symmetric white matter skeleton and correlated the difference with the average

spatial bias scores. In our symmetrised-flipped-subtracted images higher values represented

higher values on the left in the original space. Positive correlation means higher FA values on

the left comes along with more positive spatial bias scores (rightward bias/neglecting the left

side of the space). Looking at it from the other direction leftward bias (neglecting the right side

of the space) correlate with higher FA values in the right hemisphere (negative values in the

subtracted FA image).

Our analysis showed that there was a cluster of positive correlation in the parietal white

matter (peak p-value = 0.04, x = -29mm, y = -44mm, z = 36mm, 49 voxels). There was no nega-

tive correlation (Fig 3).

Connectivity of the correlations

The parietal cluster showed connectivity along the superior longitudinal fascicle on one end to

posterior parietal cortex and anteriorly to the putative frontal eye field at the junction of the

superior frontal sulcus and the precentral sulcus. In the posterior parietal lobe the tracks run

under the bottom of the intraparietal sulcus. Connection travelled to the lateral and medial

bank of the intraparietal sulcus and towards the inferior parietal lobule and to the temporopar-

ietal junction (Fig 4).

Discussion

On average, our subjects showed a leftward attentional bias on the Landmark test. In the

reproducibility study we showed that this distribution of spatial attentional bias is consistent

over three measurements. This lead us to hypothesis that this spatial attentional bias is hard-

wired in the brain. Consequently, we found lateralisation of microstructural integrity in the

parietal white matter. More organised white matter in the right parietal white matter correlated

with a leftward spatial bias (judging the right segment of the line longer). The tractography ini-

tiated from this particular seed region identified white matter tracks between the dorsal frontal

region and the posterior parietal cortex, regions which are consistently reported as key hubs of

attentional network.

Our study has replicated the results of Fierro et al. [28] showing overestimation of the left-

ward segment of a bisected line on average in a healthy population. Most of the studies

Fig 3. Correlation of the lateralisation of white matter microstructure with the behavioural spatial bias. Statistical

Images are overlaid on the FMRIB58_FA standard image. The mean FA skeleton, thresholded at 0.2, is depicted in

green shades. Significant cluster is indicated in red-to-yellow (p<0.05, corrected for multiple correlations). A

thickened version of the significant cluster is used to facilitate visualization. Positive correlation in the parietal lobe

indicates leftward bias correlating with higher FA in the right hemisphere.

https://doi.org/10.1371/journal.pone.0216032.g003
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Fig 4. The connectivity of the cluster showing correlation between FA and behavioural data. In the upper section

axial slices at standard space coordinates z = 46mm, 36mm, 26mm and 16mm are shown. In the lower section the

White matter microstructure associated with pseudoneglect
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reported leftward spatial bias, classically known as pseudoneglect [28, 56–58]. However, there

are several studies, which reported a rightward overall bias of their study population [40, 59].

Importantly, the spatial bias is dependent on the task (line bisection vs. Landmark) [35, 48–50]

and even the task instruction has a significant effect [60]. Similarly to former studies, our

results point out that direction of spatial bias is more of a spectrum. Szczepanski and col-

leagues showed that the individual variation of attentional bias is in close correlation with the

lateralisation of brain activation in the strategic regions of the fronto-parietal network [40].

Importantly, the attentional bias was consistent over several days in our study, which suggests

that it is not an immediate result of a constantly changing cerebral activity, but at least partially

hardwired in our brain. Indeed, our DTI study proved our hypothesis, higher white matter

integrity in the fronto-parietal white matter comes along with attentional bias to the contralat-

eral side. These results speak for the validity of the interhemispheric competition model. Our

results indicate that a more integrated structure, which might provide a base for a more coher-

ent functional activation, is overdriving the function of the contralateral hemisphere.

As regarding the spatial location of the correlation we found attentional bias correlating

with the white matter integrity in the parietal lobe, in the tracks connecting the posterior parie-

tal lobe and the putative frontal eye field. Former studies of spatial attention revealed two inter-

acting networks: (i) the largely bilateral dorsal fronto-parietal network including the frontal-

eye-field and the intraparietal sulcus and the (ii) right lateralised ventral attentional system

including the temporoparietal junction and the ventral frontal cortex. As regarding the func-

tion of these two systems the dorsal is responsible for goal directed, top-down modulation of

lower level centers, while the ventral system is detecting salience stimuli. According to the

hypothesis of Corbetta and Shulman there is a delicate interaction between these two systems

[34]. In terms of connection between these regions segregated branches of the superior longi-

tudinal fascicle were implicated [46]. The most dorsal branch (SLF I) connects the nodes of the

dorsal attention network, while the projections of the most ventral part (SLF III) is a link

between the nodes of the ventral attention network. A third branch (SLF II) of the superior

longitudinal fascicle partially overlaps with the dorsal and the ventral attention network, con-

necting the inferior parietal lobule/temporo-parietal junction and the frontal eye-field. This

structural link might suggest a communication between the two systems, with redirection of

the goal-directed attention mediated by the dorsal network to the events identified as salient

by the ventral network [34, 46]. In our investigation the tracks running from our seed connects

the frontal eye-field and the intraparietal sulcus, however a minority of fibres travels down

towards the temporo-parietal junction. It is also important to note that the spatial coordinates

of SLF II as presented by Thiebaut de Schotten coincide with our tracks. These indicate that

the dorsal fronto-parietal network (SLF I) and the connection between the dorsal and ventral

attention network (SLF II) is the responsible for the attentional bias in normal healthy

controls.

It has to be pointed out that the background of pseudoneglect in healthy and the pathologi-

cal processes leading to neglect not necessarily coincide; variable disturbance of the delicate

balance between regions and networks might lead to neglect. Corbetta and Shulman con-

cluded that hemispatial neglect is more likely to be the result of the dysfunction of the ventral

attention network [34]. Hattori and colleagues however, showed that various phenotypes of

cortical projections of the tracks are shown. FEF: frontal eye field, IPS: intraparietal sulcus. The binary cluster masks

were used as seed mask for each subject. Five thousand streamline samples from each seed voxel were drawn to build

up a connectivity distribution that was standardised by the total number of generated tracts, thresholded at 10% and

binarized. Population connectivity maps were derived for controls by adding these masks together and thresholding at

two (Pathways passing through the given voxel in at least two subjects).

https://doi.org/10.1371/journal.pone.0216032.g004
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neglect might come around after the damage of the ventral and dorsal attention networks or

the connections between these networks [61].

Function and structure are tightly interconnected. A higher FA in the corpus callosum was

related to a better bimanual coordination [62]. The integrity of white matter microstructure

around Broca’s area was related to the successfulness of artificial grammar learning [63].

Higher microstructural integrity in the fornix was found to be associated with better recollec-

tion memory [64]. The rate of visuo-motor adaptation was related to the microstructure of the

superior cerebellar peduncle, a structure containing fibres connecting the cerebellum and pre-

motor cortex [65]. We showed that audio-visual integration correlates with the microstruc-

tural integrity of fibres in the ‘where’ and ‘what’ visual pathways in low and high contrast

conditions respectively [45]. Motion detection threshold was found to be correlated with the

diffusion properties of the fibres connecting frontal and parietal association areas, putative

attention related regions [44].

The pre-existing structure, which is defining a behaviour [66] and the plasticity altering the

brain structure [67–69] is probably jointly responsible for the connection.

The exact histological properties that is leading to the variation in diffusion properties,

which has a relevance in certain behavioural performances is not yet clear, but nerve diameter

and myelination, which relate to the microstructure measurable by DTI, can relate to the con-

duction velocity and the dispersion of the neuronal signal [70, 71]. In particular, the precisely

paced activity of remote centres in large-scale networks is critical in the appropriate functional

performance. One crucial factor of such precise timing might well be the myelination that is a

property influencing our diffusion measures [72].

Limitation

Our study is clearly not without limitations. Direct comparison of the microstructural back-

ground of the line bisection and Landmark task could give further insight into the physiology

of pseudoneglect. While the effect most probably would not be significant, poststimulus masks

could have been used to avoid the aftereffect. The extension of the study to patient populations

with subtle white matter damage (eg. multiple sclerosis) could enhance the variability in the

data, that could strengthen the analysis. The tight interconnection of structure and function

could have been better elaborated by acquiring functional data during the behavioural task.

Conclusions

Our and former results indicate that two major factors, (i) the concomitant functional activa-

tions developing on the skeleton provided by the (ii) brain structure on the macroscopic as

well as on the microscopic scale contribute to the behavioural variation. The parallel investiga-

tion of this two levels of the function-structural integration is essential to understand the com-

plexity of brain function.
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1. Duboc V, Dufourcq P, Blader P, Roussigné M. Asymmetry of the Brain: Development and Implications.

Annu Rev Genet. 2015; 49:647–72. Epub 2015/10/06. https://doi.org/10.1146/annurev-genet-112414-

055322 PMID: 26442849.
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17. Saur D, Kreher BW, Schnell S, Kümmerer D, Kellmeyer P, Vry MS, et al. Ventral and dorsal pathways

for language. Proc Natl Acad Sci U S A. 2008; 105(46):18035–40. Epub 2008/11/12. https://doi.org/10.

1073/pnas.0805234105 PMID: 19004769; PubMed Central PMCID: PMCPMC2584675.

18. Hickok G, Poeppel D. Dorsal and ventral streams: a framework for understanding aspects of the func-

tional anatomy of language. Cognition. 2004; 92(1–2):67–99. https://doi.org/10.1016/j.cognition.2003.

10.011 PMID: 15037127.
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