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Leveraging deep phenotyping 
from health check‑up cohort 
with 10,000 Korean individuals 
for phenome‑wide association 
study of 136 traits
Eun Kyung Choe1,2,7, Manu Shivakumar1,7, Anurag Verma3, Shefali Setia Verma3, 
Seung Ho Choi4, Joo Sung Kim4,5,8* & Dokyoon Kim1,6,8*

The expanding use of the phenome‑wide association study (PheWAS) faces challenges in the context 
of using International Classification of Diseases billing codes for phenotype definition, imbalanced 
study population ethnicity, and constrained application of the results in research. We performed a 
PheWAS utilizing 136 deep phenotypes corroborated by comprehensive health check‑ups in a Korean 
population, along with trans‑ethnic comparisons through using the UK Biobank and Biobank Japan 
Project. Meta‑analysis with Korean and Japanese population was done. The PheWAS associated 
65 phenotypes with 14,101 significant variants (P < 4.92 × 10–10). Network analysis, visualization 
of cross‑phenotype mapping, and causal inference mapping with Mendelian randomization were 
conducted. Among phenotype pairs from the genotype‑driven cross‑phenotype associations, we 
evaluated penetrance in correlation analysis using a clinical database. We focused on the application 
of PheWAS in order to make it robust and to aid the derivation of biological meaning post‑PheWAS. 
This comprehensive analysis of PheWAS results based on a health check‑up database will provide 
researchers and clinicians with a panoramic overview of the networks among multiple phenotypes and 
genetic variants, laying groundwork for the practical application of precision medicine.

From the healthcare perspective, the key concept of precision medicine generally refers to incorporating genetic, 
lifestyle, environmental, and cultural factors into one’s health status to provide personalized  healthcare1,2. The 
phenome-wide association study (PheWAS) is one tool able to fulfill this  purpose3. PheWAS explores associations 
among genetic variants and a wide range of traits, including clinical outcomes and lifestyle, and  environment4.

However, PheWAS, to date has encountered several challenges in practice. First, most PheWASs defined 
phenotypes using International Classification of Diseases (ICD) terms such as billing codes or phecodes (a type 
of ICD code grouping). These billing codes can bring an underlying bias into healthcare  practices5,6. Second, 
most genetic association studies have been done in limited, non-Asian  populations6. A PheWAS performed on 
a homogeneous population from a singular nation can be more powerful as the pools of cases and controls are 
divided across the same populations. Though recent studies have involved Asian populations, such as a PheWAS 
study in the Japanese  population7 and construction of an Asian reference genome  dataset8, only a few studies 
have been conducted in Asian populations, and no PheWAS has compared the ethnical differences. Third, in 
general, the final reports of a PheWAS are mainly comprised of data-driven analysis and its results, including a 
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multitude of phenotypes and statistical numbers; as a consequence, expanded application of the results through 
post-PheWAS secondary analysis is essential. While PheWAS incorporates a variety of phenotypes and the asso-
ciations are provided in a collectively integrated manner that provides good perspective on the holistic view of 
a system, it is difficult to understand the meaning for particular diseases or phenotypes.

In this study, we addressed these challenges by performing a PheWAS in a Korean population based on the 
deep phenotyping of a health check-up database. This comprehensive health check-up database merged with a 
biobank and specific to a Korean population is an unprecedented and unique database, making our PheWAS dif-
ferent from those previously. We compared our PheWAS results with results from the UK Biobank (UKBB)9 and 
Biobank Japan project (BBJ)7. We also leveraged cross-phenotype associations to perform systematic analyses of 
the PheWAS results. To ensure the robustness of the results, we further dissected them to expand its application 
and lay groundwork to derive the biological meaning post-PheWAS (Fig. 1).

The results of this work will provide researchers and clinicians with a panoramic overview of the connections 
among phenotypes based on genetic associations and allow them to understand healthcare in the perspective 
of precision medicine.

Subjects and methods
Gene‑environment of interaction and phenotype (GENIE) cohort. In this study, we used data from 
the Gene-Environment of Interaction and phenotype (GENIE) cohort, and the Health and Prevention Enhance-
ment (H-PEACE) cohort, at the Seoul National University Hospital Healthcare System Gangnam Center, where 
comprehensive health check-ups and screening are done in Korean populations. The details of the cohort have 
been described  previously10, and is shown in Supplementary Appendix. Definitions of the phenotypes are shown 
in Table S1.

Ethics statement. The Institutional Review Board (IRB) of the Seoul National University Hospital approved 
the biorepository with informed consent (IRB number 1103-127357, Seoul National University Hospital Health-
care System Gangnam Center human Biorepository project). We retrospectively collected the clinical and genetic 
data, for which the IRB approved this study protocol (IRB number 1706-055-858, Genome-phenome wide asso-
ciation study (PheWAS) using health check up clinical information—genetic database) and waived additional 
informed consent. All the methods were performed in accordance with relevant guidelines and regulations.

Genotype data quality control and imputation. At the time of this study, a total of 10,349 individuals 
had been genotyped using the Affymetrix Axiom KORV 1.0–96 Array (Thermo Fisher Scientific, Santa Clara, 
CA, USA) by DNA Link, Inc. See the Supplementary Appendix, Table S2, and Figs. S1, S2, S3 for a detailed 
description of the quality control and imputation process.

Phenotype data. From the comprehensive health check-up database, we manually collated 65 phenotypes 
as categorical case/control outcomes and 71 phenotypes as continuous numeric outcomes. Tests corroborative 
of the 136 phenotypes were abdominal/coronary CT scan, brain MRI/MRA, abdominal ultrasonography, esoph-
agogastroduodenoscopy, fundoscopy, tonometry, electrocardiography, bone mineral densitometry (dual-energy 
x-ray absorptiometry, DEXA), blood/urine test, spinal X-ray, body composition analyzer (InBodyⓡ), and ques-
tionnaire interview (participant reported phenotypic data). The phenotypes were systematized into 13 biologi-
cal categories according to the body system involved: anthropometric measure (AM), cerebro-cardio-vascular 
(CV), digestive system (DS), endocrine and metabolism (EM), hematologic system (HS), lifestyle (LS), mental 
and emotional (ME), minerals (MN), musculoskeletal (MC), ophthalmic system (OS), pulmonary system (PS), 
renal system (RS), and tumor marker (TM). Detailed information on the phenotypes, such as their definitions, 
categories, associated data formats, and associated tests, are provided as a glossary in Table S1. An overview of 
the phenotypes is given in Table 1.

Statistical and computational analyses. Phenome‑wide association study. We used  PLATO11 to run 
logistic regression analysis on 65 categorical outcomes and linear regression analysis on 71 continuous out-
comes, incorporating 6,860,342 genetic variants in an additive model. We included age, sex, and the first three 
principal components to adjust for any potential confounding bias due to these variables. To identify significant 
results, we implemented multiple test correction through LD-aware Bonferroni correction. The conventional 
Bonferroni test assumes that the association tests for all SNPs are independent and thus divides the alpha by 
the total number of tests. For our study, instead of correcting p-values with the total number of SNPs, we use 
LD pruning to identify independent  SNPs12. The threshold we used for association between SNPs was  r2 = 0.3, 
which is provided by Sobota et al. for the East Asian  population13. We established genome-wide significance at 
P < 4.92 ×  10–10.

Further exploratory analyses were performed using the associated 260,923 loci with a less stringent P < 1 ×  10–4. 
Though we used the LD pruning method for Bonferroni correction, the p-value was still stringent. Thus, in addi-
tion to analyzing associations with a stringent p-value cutoff, this exploratory threshold allowed us to further 
expand the boundaries of research by involving a much wider PheWAS  landscape12.

To perform systematic analysis of the PheWAS results, we leveraged cross-phenotype associations, in which 
one locus is associated with multiple  phenotypes14. Such associations include polygenic inheritance, where a phe-
notype is influenced by more than one  gene15 (Fig. S4A); and pleiotropy, where a locus or a gene affects more than 
one  phenotype16 (Fig. S4B). To further explore and understand polygenicity and pleiotropy, we constructed two 
networks: a bipartite phenotype network, connecting phenotypes that shared at least one  locus14 (Fig. S4C) and 
a bipartite gene network, connecting genes that shared at least one  phenotype14 (Fig. S4D). In these connections 
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or networks, the degree property indicates the number of direct connections between one core component and 
other components. For each core gene/phenotype, the number of genes associated or connected with it is defined 
as its gene degree, and the number of phenotypes associated or connected is its phenotype degree.

We used the cross-phenotype association information to construct a phenotype-phenotype network and a 
phenotype-genotype network in order to find hidden relationships among phenotypes or genotypes and also 
to identify hub genes or hub phenotypes. The Gephi software (https:// gephi. org/) was used to visualize the 
 network17.

Figure 1.  Overview of the study design. (A) We utilized a health check-up cohort on comprehensive health 
check-up. Sub-cohorts of this cohort are the Gene-EnvironmeNtal IntEraction and phenotype (GENIE) cohort, 
which includes biobank data, and the Health and Prevention EnhAnCEment (H-PEACE) cohort, which 
includes an EHR database of the health check-up results. (B) Phenome wide association study (PheWAS) 
was performed for 136 phenotypes adjusting for age, sex, and PC1-PC3. (C) We leveraged cross-phenotype 
associations to perform systematic analysis of the PheWAS results, which were polygenicity, pleiotropy, a 
bipartite gene network, and a bipartite phenotype network. The details are described in Fig. 4. (D) To ensure 
robustness of the PheWAS results, we further dissected the results to suggest applicable interpretations, the 
heritability for each phenotype; Correlation between phenotype heritability and the effect of the loci on genes 
and protein sequences associated with phenotypes. (E) Using cross-phenotype association information, we 
constructed phenotype-phenotype and phenotype-genotype networks. (F) We visualized the comparison 
of obesity indices (body mass index, waist circumference, visceral adipose tissue, and total adipose tissue 
amount). (G) We constructed cross-phenotype mappings, which have a core phenotype (Pheno-1 in the 
figure) and branches of connected phenotypes that share loci. These were partitioned by color according to the 
biological system involved. (H) We estimated causal inferences in the phenotype pairs from cross-phenotype 
associations using Mendelian randomization and constructed a causal inference map. (I) We performed trans-
ethnic and trans-nationality analysis among Korean, European, and Japanese populations. (J) We compared 
phenotype-phenotype pairs generated from SNP-based cross phenotype-association in the Biobank analysis 
with those generated from correlation analysis in the EHR-based H-PEACE cohort. We evaluated the overlap or 
exclusiveness of pairs for each phenotype by phenotype degree.

https://gephi.org/
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Category Phenotype Significant loci count (p < 1 ×  10–4)
Significant loci count 
(p < 4.916 ×  10–10)

Significant gene count 
(p < 1 ×  10–4) Heritability  (h2)

AM Anthropometric measure

AM Height 2415 5 257 0.3221

AM Weight 995 0 132 0.2292

AM Body mass index 886 0 142 0.2375

AM Skeletal muscle mass 1479 0 192 0.2769

AM Body fat mass 1135 0 144 0.1995

AM Body fat percent 1324 0 149 0.2142

AM Waist circumference 841 0 129 0.1781

AM Total adipose tissue area 1251 0 128 0.1505

AM Visceral adipose tissue area 981 0 131 0.1082

CV Cerebro-cardio-vascular

CV Heart rate 1318 40 130 0.1681

CV Axis on EKC 959 0 142 0.1496

CV EKG: Sinus bradycardia 862 40 99 0.1062

CV EKG: Right bundle branch block 786 0 141 0

CV EKG: 1st degree atrioventricular 
block 894 0 156 0.0119

CV EKG: Myocardial infarction 853 0 160 0.0915

CV EKG: Myocardial ischemia 1459 0 276 0.2081

CV Coronary CT: Coronary calcium 
score 2688 19 629 0.1278

CV Coronary CT: Coronary vascular 
plaque 1241 0 114 0

CV Coronary CT: Coronary vascular 
stenosis 654 0 102 0

CV Coronary CT: Aortic dilatation 619 0 127 0.1247

CV Brain unidentified bright object 
(UBO) 519 0 92 0.1272

CV Brain small vessel disease 789 0 117 0.0202

CV Brain vascular atherosclerosis 521 0 105 0.1204

CV Brain vascular stenosis 901 0 182 0.1987

CV Brain aneurysm 720 0 111 0.147

CV Brain atrophy 1246 0 166 0.2294

CV Diagnosed of hypertension 1039 0 138 0.1024

DS Digestive system

DS Gall bladder adenomyomatosis 817 0 140 0.0733

DS Pancreas IPMN 873 0 164 0.0875

DS Liver hemangioma 714 4 121 0.0003

DS Gall bladder cholecystitis 836 1 156 0.0232

DS Gall bladder stone 765 0 135 0.0276

DS Gall bladder polyp 904 1 122 0.1163

DS Fatty liver 849 144 111 0.1332

DS Atrophic gastritis 610 0 103 0.015

DS Intestinal metaplasia of stomach 1074 0 151 0.1527

DS Duodenal ulcer 833 54 106 0

DS Gastric ulcer 1000 0 200 0.0315

DS Gastroesophageal reflux disease 565 0 101 0.0143

DS Serum total protein 945 52 203 0.1993

DS Serum albumin 1310 21 231 0.2325

DS Serum total bilirubin 2570 1151 137 0.274

DS Alkaline phosphatase 2631 299 203 0.1203

DS Glutamic oxaloacetic transaminase 2209 8 462 0.0334

DS Glutamic pyruvic transaminase 1266 6 255 0.0609

DS Gamma-Glutamyl Transferase 2716 78 512 0.0818

DS Gastric cancer 982 0 207 0.1719

DS Hepatitis B virus surface antigen 3762 324 252 0.1679

DS Hepatitis C virus antibody 1119 0 231 0.0809

Continued
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Category Phenotype Significant loci count (p < 1 ×  10–4)
Significant loci count 
(p < 4.916 ×  10–10)

Significant gene count 
(p < 1 ×  10–4) Heritability  (h2)

EM Endocrine and metabolism

EM Fasting blood glucose level 1842 0 212 0.1116

EM Uric acid 3977 1261 284 0.2186

EM Triglycerides 2676 333 258 0.1385

EM HDL cholesterol 2036 442 171 0.2471

EM Hemoglobin A1c 1861 0 245 0.1084

EM Free T4 1652 2 194 0.1547

EM Thyroid-Stimulating Hormone 15,064 741 2549 0.1016

EM Total cholesterol 1061 17 151 0.0678

EM LDL cholesterol 1279 63 142 0.0367

EM Metabolic syndrome 811 2 132 0.1583

EM Thyroid cancer 836 0 225 0.0023

EM Breast cancer 952 0 210 0.0522

EM Diagnosed of diabetes 1507 0 187 0.0824

EM Diagnosed of dyslipidemia 1103 2 150 0.1251

HS Hematologic system

HS White blood cell count 1629 143 153 0.1454

HS Platelet count 3040 185 278 0.2375

HS Neutrophil percent among WBC 2080 250 200 0.1423

HS Lymphocyte percent among WBC 1978 247 190 0.1524

HS Monocyte percent among WBC 1948 18 194 0.2067

HS Eosinophils percent among WBC 3109 11 343 0.2822

HS Basophils percent among WBC 4043 293 373 0.2941

HS Red blood cell count 1997 209 181 0.2582

HS Hemoglobin 1707 12 199 0.1854

HS Mean corpuscular volume 3270 250 251 0.2444

HS Mean corpuscular hemoglobin 3077 134 358 0.2204

HS Mean corpuscular hemoglobin 
concentration 4982 1266 979 0.1389

HS Plateletcrit 2747 68 299 0.2023

HS Mean Platelet Volume 3843 188 591 0.1353

HS Prothrombin time 4515 227 846 0.061

HS Activated Partial Thromboplastin 
Time 2092 691 181 0.1725

HS Hematocrit 962 0 170 0.1544

HS Red blood cell distribution width 2489 146 244 0.1575

LS Life style

LS Smoking history 939 0 99 0.062

LS Alcohol consumption 2158 612 156 0.0908

LS Exercise amount 1657 1 357 0

LS Education level 558 0 134 0.0264

LS Marital status 0 0 0 0.0048

LS Coffee consumption 680 17 109 0.0317

LS Nocturia per night 652 0 98 0.0339

ME Mental and emotion

ME Sleep onset latency 503 0 112 0.0931

ME Wake Time After Sleep Onset 869 0 121 0.066

ME Depressed mood 1043 0 163 0.1041

ME Appetite change increase 808 0 114 0

ME Diminished cognitive functioning 918 0 152 0.0769

ME Worthlessness or guilty feeling 1033 0 104 0.0399

ME Suicidal ideation 1334 0 285 0.2812

ME Loss of interest or pleasure 993 0 160 0.169

ME Fatigue 888 0 158 0.046

ME Psychomotor retardation 869 0 149 0.0698

ME Psychomotor agitation 1093 0 188 0.0663

Continued
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Gene annotations. We mapped the variants to genes using Ensembl Variant Effect Predictor (VEP)18 annota-
tions (RefSeq). By default, VEP annotates variants in 5000 bp upstream and downstream. So, the variants in 
5000 bp regions were mapped to the nearest genes.

Functional annotations (p value < 1 ×  10–4). We mapped genetic associations using  VEP18 in order to annotate 
the functional relevance of significant loci. Using the VEP annotation, we classified the biological consequences 
of loci in coding regions (stop-gained variant, slice acceptor variant, splice donor variant, and missense variant) 
and in non-coding regions. We also annotated UKBB and BBJ variants with VEP to conduct trans-ethnic and 
trans-national comparisons as described in a later section.

Category Phenotype Significant loci count (p < 1 ×  10–4)
Significant loci count 
(p < 4.916 ×  10–10)

Significant gene count 
(p < 1 ×  10–4) Heritability  (h2)

ME Depression score 839 0 141 0.0614

MN Minerals

MN Calcium level 3792 597 763 0.2503

MN Phosphorus level 1461 1 177 0.106

MN Sodium level 3992 776 821 0.1384

MN Potassium level 632 0 94 0

MN Chloride level 763 3 213 0.0967

MN CO2 level 759 0 116 0.0499

MN Vitamin D3 1271 8 117 0.0743

MC Musculoskeletal

MC Bone density by DEXA 799 0 88 0.2982

MC Spondylosis 419 0 73 0

MC Spondylolisthesis 939 0 147 0.4245

MC Compression fracture 1189 0 229 0.4589

MC Intervertebral disc space narrowing 529 0 97 0.0603

OS Ophthalmic system

OS Cataract 865 0 98 0.0214

OS Drusen 842 0 124 0

OS Macular change 881 0 137 0.0347

OS Optic disc cupping 755 0 133 0.0856

OS Optic nerve fiber loss 886 0 144 0.1659

OS Intraocular pressure, right 1468 30 263 0.156

OS Intraocular pressure, Left 1451 4 175 0.1074

PS Pulmonary system

PS Forced vital capacity (L) 1519 0 188 0.2408

PS Forced vital capacity (%) 1524 0 192 0.2426

PS First second of forced expiration 
(L) 1474 0 182 0.2895

PS First second of forced expiration 
(%) 2066 0 168 0.2876

PS FEV1/FVC 1611 86 228 0.2055

PS Pulmonary function test category 563 0 95 0.081

RS Renal system

RS Blood Urea Nitrogen 2551 123 450 0.1825

RS Renal stone 824 0 143 0.1145

RS Creatinine 2059 29 399 0.2535

RS Estimated glomerular filtration rate 1353 34 207 0.2791

RS Urine pH 3432 651 772 0.1166

RS Urine albumin 1388 0 212 0.1625

TM Tumor marker

TM Cancer Antigen 125 7923 145 1508 0

TM Carbohydrate antigen 19–9 27,140 936 4624 0.0312

TM Alpha Fetoprotein 4244 119 654 0.1803

TM Carcinoembryonic antigen 1835 202 375 0.0356

TM Prostate-Specific Antigen 12,999 279 2559 0.1082

Table 1.  Overview of the studied phenotypes.
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Estimated heritability. To determine the contributions of genetic variants to the risk of certain phenotypes, we 
estimated the heritability of each phenotype. We estimated heritability using LD Score regression with LDSC 
(version 1.0.1)19 on summary statistics from the PheWAS for all phenotypes. For this analysis, we used the East 
Asian LD Scores from 1000 Genomes as reference LD Score, which served as the independent variable in the 
LD Score regression (ref-ld-chr) and regression weights (w-ld-chr). General instructions and the East Asian LD 
Scores from 1000 Genomes are provided here: https:// github. com/ bulik/ ldsc.

Comparison in different populations. To compare results across diverse populations, we performed a trans-
ethnic comparison utilizing PheWAS results from a European population and a trans-national comparison uti-
lizing results from a Japanese population. For European population, data from the UK Biobank (UKBB)9 was 
used; for the Japanese population, data from the Biobank Japan Project (BBJ)7 was used. We downloaded the 
summary statistics and estimated heritability results of the phenotypes of these results from the following URLs: 
http:// www. neale lab. is/ uk- bioba nk/ and http:// jenger. riken. jp/ en/ result. We tabulated lists of the phenotypes in 
the UKBB and BBJ and searched for those that were most similar to phenotypes in our database. The manually 
curated overlapping phenotypes among GENIE, UKBB, and BBJ are given in Table S3.

Mendelian randomization. To better understand the causal inferences in cross phenotype mapping, we per-
formed Mendelian randomization (MR) analysis on the phenotype pairs connected in the bipartite phenotype 
network. To avoid potential bias due to sample overlap between exposure and outcome, we split our dataset 
into two equal sets by random assignment of samples. PheWAS was conducted on each dataset separately to 
generate the summary statistics that were used as input to MR. Additionally, significant SNPs (P < 1 ×  10–4) from 
the initial PheWAS with all samples were used as instrument variables (IV). Furthermore, all IVs that were sig-
nificant in outcome (P < 0.01) were removed, as IVs should not be directly associated with outcome. The SNPs 
were LD-clumped using very strict cutoff of clump kb = 10,000 and r2 = 0.001. We calculated p-values using the 
inverse-variance weighted (IVW) method from the MendelianRandomization package in  R20. We adjusted for 
multiple testing using FDR correction. We also performed sensitivity analysis using MR-egger and the median-
based method.

Meta‑analysis of PheWAS. We performed meta-analysis using our PheWAS results and the BBJ results for all 
phenotypes that were available in both datasets. The BBJ summary statistics came from different studies, requir-
ing harmonization of the files. Phenotype matches between GENIE and BBJ are listed in Table S3. Some of the 
phenotypes from GENIE matched to multiple phenotypes in BBJ; in such cases, we carried out meta-analysis 
separately for each BBJ phenotype. The meta-analysis was implemented using  METAL21. The overall scheme of 
our study is shown in Fig. 1.

Results
After QC, the study population of the GENIE cohort included 9742 participants, comprising 5696 males and 4046 
females, with average age 50.7 + / − 10.0 years. The characteristics of the study population are given in Table S4.

See the Supplementary Appendix for detailed description of the results.

Phenome‑wide association analysis. From the PheWAS on 136 phenotypes, we found significant asso-
ciations for 65 phenotypes and 14,101 SNPs (P < = 4.92 ×  10–10). The counts of significant loci and genes associ-
ated with each phenotype are given in Table S5 and most significant variants are shown in Tables S6, S7 and 
Fig. S5. Approximately 1% of variants were in coding regions and 98.885% were in non-coding regions (Fig. S6, 
Tables S8, S9).

We systematically compared the significant associations of loci and their genes with phenotypes (P < 1 ×  10–4) 
to results from the BBJ and UKBB to determine if our results were replicated in other populations and also to 
look for novel findings (Fig. S7, Tables S10, S11). In the comparison between Korean and UK populations, fewer 
overlapping loci were identified, with the highest overlap ratio being 9.15% in fatty liver disease; 42 phenotypes 
did not have any overlap (Fig. 2, Fig. S8).

Population comparisons were further investigated for body mass index (BMI) in particular. 34 genes were 
unique in our populations relative to both Japanese and European populations (Table S12, Fig. S9). Of those 
unique genes, 23 have previously reported associations with obesity or body weight; the corresponding literature 
review and references are given in Table S13. The other 11 genes have not been previously reported as associ-
ated with obesity in humans, and could be candidate novel genes for BMI or obesity. The details of the genes are 
described in the Supplementary Appendix.

Systematic analysis of the PheWAS results. To perform a systematic analysis of the PheWAS results, 
we leveraged cross-phenotype associations, where one locus is significantly associated with multiple phenotypes. 
For this analysis, significant loci were filtered by a less-stringent threshold, P < 1 ×  10–4. The schematic structure 
for this analysis is shown in Fig. S4. Possible polygenicity (Fig. S4A, Table S14); possible pleiotropy (Fig. S4B, 
Table S15); bipartite phenotype network (Fig. S4C, Table S16); and a bipartite gene network (Fig. S4D) were 
drawn from PheWAS results.

The bipartite phenotype network comprised 23,580 loci (2902 genes) with 135 phenotypes. There were 1926 
distinct pairs of phenotypes. We calculated the degree properties of core phenotypes in this network (Table S17), 
where core phenotypes were those nodes connected to several phenotypes by shared variants (Fig. S4C). Notably, 
phenotypes in the tumor markers category had relatively high degree of phenotype connection. Meanwhile, the 

https://github.com/bulik/ldsc
http://www.nealelab.is/uk-biobank/
http://jenger.riken.jp/en/result
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highest possible polygenicity was observed for mean corpuscular hemoglobin concentration (MCHC), with 
782 genes.

The bipartite gene network comprised 14,907 genes, which were connected through sharing associations 
with the same phenotypes. Table S18 give the gene degree and phenotype degree values for this network. The 
three genes with the highest phenotype degrees were; CUB and Sushi Multiple Domains 1 Protein (CSMD1), 
RNA-binding Fox-1 Homolog 1 (RBFOX1), and Protein Tyrosine Phosphatase Receptor Type D (PTPRD); this 
could be due to possible pleiotropy.

We compared the bipartite phenotype networks of the GENIE (Korea), BBJ (Japanese), and UKBB (Euro-
pean) cohorts. Fig. S10 visualizes the phenotype-phenotype pairs observed in each population; 288 pairs were 
simultaneously observed in all three populations (Table S19). Notably, these included the pairing of red blood 
cell count (RBC) and brain vascular atherosclerosis. There are reports of RBC having relation to coronary artery 
 disease22 and stroke  mortality23, but not directly to brain vascular atherosclerosis .

Secondary analysis of the PheWAS results. Heritability analysis. Heritability was calculated for each 
of the 136 phenotypes by regression of LD scores (Table S20). The top heritability values were obtained for com-
pression fracture, spondylolisthesis, and height. In terms of biological categories and body systems, the highest 
heritability value was obtained for the musculoskeletal system (Table S21).

The Ensembl variant effect predictor (VEP) provides information regarding the effect of loci on genes and 
protein sequences (https:// useast. ensem bl. org/ Help/ Gloss ary? id= 535). We divided the significant loci (1 ×  10–4) 
into two groups according to their annotated impacts, namely “modifier low” vs. “moderate, high”, and evaluated 
the correlation between impact group and heritability in each phenotype. A significant correlation was observed 
(P = 0.001, correlation (r) = 0.281, 95% CI = 0.117–0.429).

We further compared the heritability in our population with that in the Japanese and European populations 
(Table S20). Comparisons to each of the Japanese and UK populations are shown in Fig. S11, while the three-way 
comparison among Korean, Japanese, and UK populations is shown in Fig. S12. The prothrombin time (PT) and 
activated partial thromboplastin time (aPTT), which are biomarkers of coagulation function, showed similar 

Figure 2.  Trans-ethnic, trans-nationality comparison of PheWAS. We compared PheWAS results among 
Korean, Japanese, and European populations. Phenotypes existing in all datasets were used. We evaluated 
loci significantly associated only in Koreans (black bar), in both populations (gray bar), and only in the other 
population (bright gray bar). The colored bar at the top indicates phenotype categories. The Y axis denotes the 
ratio (%) of loci in each classification, with 100% being the total significant in the compared populations. (A) 
PheWAS result comparison between Korean and Japanese populations. (B) PheWAS result comparison between 
Korean and European populations.

https://useast.ensembl.org/Help/Glossary?id=535
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trends in the Korean and Japanese populations, but manifested relatively high heritability in Koreans relative 
to the UK population.

Network analysis. Using cross-phenotype association information, we constructed phenotype-phenotype and 
phenotype-genotype networks.

First, a network representation of gene-phenotype associations related to metabolic syndrome was constructed 
(Fig. 3A). 132 genes associated with metabolic syndrome and 128 phenotypes sharing 102 genes with metabolic 
syndrome were used to construct the network. In the metabolic syndrome sub-network, five genes had high 
degrees of connection and could be considered hub genes: PTPRD, DCC Netrin 1 Receptor (DCC), Proprotein 
Convertase Subtilisin/kexin Type 6 (PCSK6), Unc-13 Homolog C (UNC13C), and Contactin 4 (CNTN4). The 
phenotypes in this network comprised: of cardiovascular diseases, of metabolic diseases, used as markers for 
obesity, and other various disease. The phenotypes in this network comprised: of cardiovascular diseases, of 
metabolic diseases, used as markers for obesity, and other various disease. The phenotype nodes included tri-
glyceride (TG), HDL cholesterol (HDL), hypertension, diabetes, and waist circumference (WC). These results 
give a genetic rationale for the definition of metabolic syndrome in the PheWAS perspective.

Figure 3.  Post-PheWAS analysis. (A) Network analysis A network representation of gene-phenotype 
associations related to metabolic syndrome was constructed from 102 genes associated with metabolic 
syndrome and 128 phenotypes sharing those genes. Each edge is a phenotype-gene association, with genes for 
significant loci (P <  10–4) being annotated by VEP. Node size is proportional to degree, which is the number 
of connections. Pink nodes correspond to phenotypes and green nodes to genes. (B) Relationships among 
obesity indices We visualized the comparison among the obesity indices such as body mass index (BMI), waist 
circumference (WC), visceral adipose tissue (VAT) and total adipose tissue (TAT) amount by drawing a the 
venn-diagram for cross phenotype association of phenotypes or genes. (C) Cross‑phenotype mapping Cross-
phenotype mappings were generated based on the bipartite phenotype network, in turn constructed from the 
connections among phenotypes sharing at least one locus. Coffee consumption, which is one of the lifestyle 
phenotypes, had 31 phenotype degrees in the bipartite phenotype network. (D) Causal inference mapping 
We estimated causal inferences in phenotype pairs based on cross-phenotype associations using Mendelian 
randomization (MR), and constructed a causal inference map. The direction of the arrow is the causality result 
from MR (Blue arrows, skeletal muscle mass as outcome; Red arrows, skeletal muscle mass as exposure; Green 
arrows, bidirectional). Pairs observed in the bipartite phenotype network but insignificant in MR have straight 
black lines without arrows.
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We also constructed a phenotype-phenotype network using 1,926 phenotype pairs based on shared loci 
(P < 1 ×  10–4). Fig. S13 shows the phenotype-phenotype network for the whole dataset, and an interactive visu-
alization tool of the phenotype-phenotype network is available (https:// hdpm. biome dinfo lab. com/ ddn/ genie/).

Relationships among obesity indices. Obesity is a disease entity, which the interest in and research into, has 
been  growing24,25. However, definitions of pathological obesity make inconsistent use of variable traits such as 
body mass index (BMI), waist circumference (WC), total adipose tissue area (TAT), and visceral adipose tissue 
area (VAT). The defining parameter for obesity also varies between researchers and with respect to the target 
disease. We  visualized26 the overlap or exclusiveness among BMI, WC, TAT, and VAT based on the bipartite phe-
notype network and pleiotropy potential of genes. As shown in Fig. 3B, connections were observed as quadrant 
intersections among BMI, WC, TAT, and VAT for seven phenotypes: CA19-9, GOT, GPT, body fat mass, body 
fat percent, weight, and metabolic syndrome. There were 15 phenotypes connected exclusively with VAT and 
WC, of which, most were crucial intermediate phenotypes that link obesity with diseases. Accordingly, it can 
be postulated that when defining obesity, VAT or WC would better represent the characteristics of pathogenic 
obesity. The two genes that are exclusively overlapped between VAT and WC (Fig. S14) could be candidate genes 
for explaining the pathogenic role of obesity (Table S22).

Cross‑phenotype mapping. Cross-phenotype mappings were generated based on the bipartite phenotype net-
work, in which the connected phenotypes shared at least one locus.

First, we constructed a cross-phenotype mapping focused on tumor markers. Table S23 shows the respective 
connected phenotypes we obtained for tumor markers. Fig. S15 shows the cross-phenotype mapping for CEA, 
which could be considered during oncological practice in order to take into consideration all the possible effects 
of phenotypes other than colorectal cancer progression itself.

Second, we constructed a cross-phenotype mapping focused on lifestyle factors. In this study, we visualized 
the cross-phenotype mapping for the coffee consumption. Coffee consumption had 27 phenotypes connected 
through sharing of significant loci (Fig. 3C). The results of these cross-phenotype mappings could provide the 
genetic background to explain interactions between environmental factors and disease, and might further provide 
basic knowledge necessary to conduct gene-environment interaction analysis.

Mendelian randomization analysis. We estimated the causal inferences in phenotype pairs based on cross-
phenotype associations using Mendelian randomization (MR) (Table  S24). As shown in Fig.  3D, we drew a 
causal inference mapping centered on skeletal muscle mass. The Mendelian randomization analysis yielded nine 
significant phenotypes, of which one was causal for skeletal muscle mass, two phenotypes were outcomes from 
skeletal muscle mass, and six had bidirectional relationships with skeletal muscle mass. This analysis revealed 
that skeletal muscle mass was a significant causal factor for metabolic syndrome and alcohol consumption.

We also performed Mendelian randomization with a focus on lifestyle factors that were causal exposures in 
cross-phenotype associations, such as alcohol consumption, coffee consumption, exercise amount, and smoking 
history (Table S25). Alcohol consumption was a significant causal exposure for ten phenotypes, coffee consump-
tion for three phenotypes, exercise amount for six phenotypes, and smoking history for two phenotypes. Coffee 
consumption was also a significant causal exposure for three anthropometric measurements: body fat mass, 
visceral adipose tissue area, and waist circumference.

Comparison of the phenotype‑phenotype pairs between PheWAS‑driven versus EHR‑driven. “Penetrance” in 
genetics is the proportion of those individuals carrying a certain genetic variant who also exhibit the associ-
ated phenotype, while “expressivity” measures the proportion of individuals that are carriers of a certain variant 
and show the associated phenotype to a certain  extent27. As an indirect method to investigate the penetrance or 
expressivity of the significant loci identified in our study, we repeated bipartite phenotype network construction 
using an electronic health records (EHR)-driven method in H-PEACE cohort. Among the phenotypes used in 
PheWAS analysis, 76 phenotypes were also recorded for this cohort. PheWAS-driven pairs (1164 pairs) were 
selected based on shared SNPs with association P < 1 ×  10–4, and EHR-driven pairs (1938 pairs) were selected 
based on correlation analysis with multi-test corrected P < 0.05. We compared these phenotype-phenotype pairs 
(Table S26) and evaluated the overlap or exclusiveness of the pairs for each phenotype. Of the 1164 pairs identi-
fied in the PheWAS-driven approach, 834 (71.65%) also manifested significance in the EHR-driven analysis. As 
shown in Fig. 4 and Table S27, high ratios of overlap were identified for skeletal muscle mass (95%) and alkaline 
phosphatase (93.48%), and low ratios for thyroid cancer (0%) and alpha fetoprotein (8%). When viewed in 
terms of biological category, the highest average % replication was obtained for anthropometric measurement 
(86.43%).

Meta‑analysis of PheWAS from Korean and Japanese populations. We performed a PheWAS meta-analysis by 
incorporating our data with the BBJ data (Japanese population). The results are given in Table S28, Figs. S16 and 
S17. All 51 phenotypes used in the meta-analysis had an increased number of significant variants in the Korean 
population, while 37 phenotypes had variants uniquely significant in the meta-analysis. Furthermore, height, 
diabetes and body mass index had more than 100 variants that were uniquely identified as significant in the 
meta-analysis.

https://hdpm.biomedinfolab.com/ddn/genie/
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Discussion
With the advancements in healthcare research that are being driven by big data, increasing efforts are being 
made to carry out data-wide association studies. PheWAS is one of the tools in that paradigm. However, previ-
ous studies faced major challenges in terms of deep phenotyping due to generally using ICD codes, which have 
limited clarity in their definitions; making the results robust by expanding its application; and the characteristics 
of population genetics, being highly affected by race and ethnicity. Here, we carried out PheWAS in a Korean 
population using comprehensive health check-up data linked with genotype data, and furthermore aimed to 
derive the biological meaning by performing secondary analysis of the PheWAS results. We also compared the 
results of PheWAS studies conducted in different populations to evaluate trans-ethnic differences. Finally, our 
bipartite phenotype network analysis of phenotypes using shared genetic association revealed hidden patterns 
between phenotypes.

The deep phenotypes we used in our studies were corroborated during comprehensive health check-up by 
various confirmatory methods such as laboratory tests, endoscopy, CT scans, MRI, interview questionnaires, 
and so on. For each participant, all tests were done in the same institute and on the same day. This process of 
generating deep phenotypes makes for data quality that is well controlled and consistent when compared to 
results from phenotypes based on ICD codes, which can be discrepant with actual clinical diagnoses due to 
biases in billing  pattern28. As we were able to use the raw data produced by the test, our analysis included a lot 
of endophenotypes. Endophenotype (intermediate phenotype) is a quantitative biological  trait29 that is reported 
to reliably reflect the function of the categorical biological  system29,30 and has reasonable  heritability31. As such, 
an endophenotype could be more closely related to the genetic basis and cause of a clinical trait than would be 
a broad clinical phenotype such as an ICD  code32.

We compared our PheWAS results with studies done in European (UK Biobank) and Japanese (Biobank 
Project Japan) populations and found several novel loci, replicated loci, replicated phenotype-phenotype pairs. 
We furthermore compared estimated heritability among the populations. Significant variants in the Korean 
population were partly replicated in both European and Japanese populations, though the replication rate was 
higher in the Japanese population. We also identified SNP-phenotype associations that were unique to the 
Korean population when compared to not only the European but also the Japanese population. Noticeably, in 
the comparison of significant variants associated with body mass index (BMI), the Korean population had novel 
unique variants (Fig. S8) associated with TERF2IP, ATRNL1, and BANF1. The results from these trans-ethnic and 
trans-nationality comparisons seemingly emphasize the importance of considering genetic differences among 
ethnicities, and also race. Koreans are generally included in the East Asian population; however, study of the 
human Y-chromosome33 suggests that compared to other populations from Asia, the Korean population has char-
acteristics of a distinct, mostly endogamous ethnic group, and living in a confined peninsula area has preserved 
these monogenic nationality traits. In a study comparing genetic structure and divergence among Han Chinese, 
Japanese, and Korean populations those three East Asian populations were shown to have distinct genetic make-
up and could be distinguished based on their genetic  characteristics34. In the meta-analysis of our population 
and the Japanese population, 72.5% of phenotypes had variants that were uniquely significant in the meta-
analysis. Our study shows that the common and exclusive genetic associations of phenotypes should be taken 
into consideration when performing a population-based clinical study. Furthermore, meta-analysis of PheWAS 
studies in populations of the same ethnicity but different nationalities can discover uniquely significant variants.

In the comparison of the estimated heritability among different populations, the heritability in the Korean 
population of biomarkers for coagulation function, such as PT and aPTT, showed similar trends with that of 
the Japanese population, but manifested relatively high heritability when compared to the UK population. This 

Figure 4.  Comparison of phenotype-phenotype pairs between PheWAS driven and EHR-driven analysis. There 
were 76 phenotypes also recorded in the EHR-driven cohort (H-PEACE cohort). PheWAS-driven pairs (1164) 
were based on shared SNPs with association P < 1 ×  10–4, and EHR-driven pairs (1938) on correlation analysis 
with multi-test corrected P < 0.05 (Table S26). Skeletal muscle mass (95%) and alkaline phosphatase (93.48%) 
had high ratios of overlap, while thyroid cancer (0%) and alpha fetoprotein (8%) had low ratios. In terms of 
biological categories, the average replication % was highest for anthropometric measurement (86.43%) Of the 
1164 pairs from the PheWAS-driven approach, 834 (71.65%) also manifested significance in the EHR-driven 
analysis.
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indicates that the contribution of genetic variants to variation in coagulation traits is affected by ethnical differ-
ences. Evaluating heritability difference by ethnicity will be important supportive information in the development 
of drugs as an aspect of precision medicine.

We also leveraged the cross-phenotype association results to provide a panoramic overview of the network 
connections among multiple phenotypes and genetic variants. Specifically, we generated a phenotype-genotype 
network focused on metabolic syndrome (Fig. 3A). Metabolic syndrome is a cluster of metabolic abnormali-
ties that are known to be associated with visceral adipose  obesity35. A large number of epidemiological studies 
have been conducted on metabolic syndrome because it is a crucial target for healthcare, imposing an increased 
risk of developing conditions such as cardiovascular  disease35, malignant  disease36,  depression37, and metabolic 
 disease35. Early diagnosis is important to prevent the negative consequences of metabolic and this may be done 
by modifying the lifestyle and risk factors. The network we constructed provided a rationale for defining meta-
bolic syndrome by phenotypes of TG, HDL, hypertension, diabetes, and WC, and for using the characteristics of 
metabolic syndrome to collectively integrate heterogeneous and complex disease status. The network included 
phenotypes of cardiovascular disease (coronary calcium score, cardiac ischemia, brain atherosclerosis, malignant 
disease (thyroid cancer, gastric cancer), and depression and metabolic disease (fatty liver, uric acid), which are 
known to be complications of metabolic syndrome. Other phenotypes in the network related to obesity, specifi-
cally visceral obesity indicator and visceral fat amount; obesity is a well-known cause of metabolic  syndrome35. 
Furthermore, lifestyle factor phenotypes such as alcohol consumption, smoking habit, and exercise amount were 
also part of the network. These suggest modifiable targets for preventing the complications of metabolic syn-
drome. Finally, the network suggested hub genes associated with metabolic syndrome. Similar network analysis 
of PheWAS results might provide genotype-based evidence of connections among phenotypes or variants, which 
to date have been assumed from epidemiological research, and can also provide novel insights into connections 
that have not been previously reported or recognized.

We additionally used the bipartite phenotype network to perform cross-phenotype mapping. Table S23 shows 
the cross-phenotype mapping constructed for tumor markers. Tumor markers are highly used in clinical practice 
for tasks such as oncological screening and monitoring recurrence after treatment. The marker carcinoembryonic 
antigen (CEA) is recommended by the National Comprehensive Cancer Network (NCCN) guidelines for colon 
cancer and American Society of Clinical Oncology (ASCO) to test a diagnosis of colon cancer as a baseline for 
monitoring and then to regularly monitor for recurrence or metastasis of the colon  cancer38,39. Testing for the 
marker PSA is recommend by the American Cancer Society (ACS) for men aged > 50 years, after an informed 
decision-making  process40. Regular testing for another marker, serum alpha-fetoprotein (AFP), is recommended 
by the NCCN guideline in the follow-up of hepatocellular  carcinoma41.

However, while testing for tumor markers is essential in the surveillance of malignant disease, their usage 
faces problems in the form of low sensitivity and specificity and the potential that they could be affected by fac-
tors other than the cancer itself. Thus, providing a cross-phenotype mapping for tumor markers could support 
an oncologist in interpreting the results of each tumor marker test. For instance, hemoglobin was included in 
our CEA cross-phenotype mapping. Thus, if a colorectal cancer patient has severe anemia, we should be cau-
tious about interpreting a change in CEA; the anemia could attenuate or exaggerate its reflection of the patient’s 
cancer  status42. There are several reports that have used not only one tumor marker but a combination of tumor 
markers to monitor  malignancies43–45. In Table S23, each tumor marker has pairs with multiple other tumor 
markers, which provide supporting evidence for combining tumor markers as a means to improve their utility 
in malignancy surveillance.

We also built cross-phenotype mappings for environmental factors. Figure 3C shows the cross-phenotype 
mapping for coffee consumption in particular. Similar visualization of the correlations between environmental 
factors and other phenotypes could provide insight into which disease should be considered for the investigation 
of the benefits or hazards of given environmental factors, and what also connections could provide a candidate 
model for gene x environment interactions.

In our study, we applied Mendelian randomization analysis to cross-phenotype networks in order to generate 
corresponding causal inference networks. To the best of our knowledge, this is the first approach to utilize MR 
in network-based analysis. MR enables the estimation of causal inference by evaluating the relationship between 
genetic susceptibility to the causal factor and the outcome in  question22. As shown in Fig. 3D, we specifically drew 
a causal inference map for skeletal muscle mass. We visualized this map because skeletal muscle mass is regarded 
as an endocrine and paracrine organ, and is also suggested as a marker in diseases such as metabolic syndrome, 
diabetes, and  more46. The analysis revealed skeletal muscle mass as having significant causal inference for meta-
bolic syndrome. In the network, Skeletal muscle mass had six bidirectional associations. Bidirectional associa-
tion means the “A” phenotype could cause “B”, and at the same time “B” phenotype could cause “A”, whether is 
in forward or reverse  way47,48. Skeletal muscle mass had a bidirectional association with pulmonary function 
(FEV1, FVC). There are several epidemiological studies for this  association49–51. In one of the studies, individu-
als with reduced skeletal muscle mass amount have caused a decrease in FVC and FEV1, because of weakened 
ability to inflate and deflate their  lungs49. In another study, patients with chronic obstructive pulmonary disease 
(COPD) are a risk factor for skeletal muscle atrophy by complex combination of various pathophysiological 
alteration leading to suboptimal muscle  work50. Though the effect of sarcopenia on pulmonary function is mainly 
emphasized in clinical practice, muscle recovery measures in poor pulmonary function patients should also be 
well understood. By the information provided by the bidirectional association network, it will raise alerts for 
researchers to focus on the reversed direction of causality, which is not well reported, by referring to our results. 
Thus, by performing MR, we can suggest which phenotype could be causal or an outcome in relation with a trait 
and also begin to elucidate the mechanism or pathophysiology for a disease of interest.

There are a couple of limitations for the Mendelian randomization (MR) analysis results. First, since there was 
high dimensional degree of significant association pairs (1767 significant pairs by threshold FDR < 0.05), we were 
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not able to provide externally replicated analysis results. For increased confidence, all the significant results in 
the networks warrants further examination and replication in an external cohort. However, it was difficult to find 
a cohort with various deep phenotypes, especially those uniquely measured in comprehensive health check-up. 
For instance, in Fig. 3D, the core phenotype of the network is skeletal muscle amount. Though there are genetic 
studies regarding sarcopenia52, we couldn’t find any cohort that simultaneously had skeletal muscle mass sum-
mary statistics as well as pulmonary function or bone mineral density test summary statistics results. But, as our 
study utilized a comprehensive health check-up cohort, we were able to evaluate the association between various 
phenotypes from apparently unrelated body systems. Second, there were several MR associations, difficult to 
be explained by currently reported epidemiological studies. We were able to provide epidemiologic evidence 
for some of the associations in Fig. 3D, such as skeletal muscle amount with metabolic syndrome46; pulmonary 
function49-51; liver function53; and bone mineral density54. But there were several MR associations, which 
are not biologically explainable. For instance, causal associations between PSA and gastric cancer; right and left 
intraocular pressure; exercise and hepatitis C virus carrier; skeletal muscle amount and alcohol consumption. 
There should be several reasons for these findings. First, in the analysis, end-phenotypes, endo-phenotypes and 
environmental phenotypes are altogether incorporated in the MR analysis. Gene by environmental interaction 
was not considered in the analysis. Second, our cohort is from the health check-up cohort, which could contain 
samples with positive morbidity relatively few. Third, we did not have an external validation population but 
analyzed in one sample population. This could have led to spurious correlations between phenotypes that are 
unrelated to genetics. These limitations should be further analyzed by performing gene by environment interac-
tion; future analysis in a larger set of study population; and in an external validation study population.

Though the MR analysis results are not validated in other cohorts and several significant associations were not 
biologically reasonable, it could raise a necessity to validate certain associations by other researchers to focus on 
certain pairs of phenotypes and organize a cohort for that purpose. In our study, we provide an openly accessible 
web-based phenotype-phenotype network for the whole dataset (Fig. S13), which is an interactive visualization 
tool of the phenotype-phenotype network (https:// hdpm. biome dinfo lab. com/ ddn/ genie). This tool will allow 
other researchers to easily access our results and pick up where the unreported associations or limitations are 
and build up future research.

Our study has several advantages. First, to the best of our knowledge, this is the first PheWAS study performed 
in the Korean population. As described above, several loci in this population differ from the Japanese popula-
tion. We were also able to carry out trans-nationality analysis for the PheWAS. Second, we defined phenotypes 
directly using results from health check-ups and questionnaire responses from personal participants. This makes 
the resolution, clarity, and reliability of this study’s results better than those of a PheWAS based on ICD codes or 
personal self-reports. These billing codes or personal memory can bring an underlying bias into the data registry. 
So, the phenotypes are objectively and precisely defined by these check-ups. Third, since all tests were performed 
in the same institute, under the same conditions, and by using the same machines, protocols, and chemicals, 
the produced data is consistent and its quality is highly controlled. Fourth, we performed secondary analysis of 
the PheWAS results in ways to derive the biological meaning, so that the results could be highly applicable and 
utilized more practically. We constructed a phenotype-phenotype network using all the phenotypes in our study 
(Fig. S13). Similarly constructing a phenotype-phenotype network based on comprehensive, deep phenotypes 
could provide clinicians and researchers with a detailed landscape of the interconnections between phenotypes 
and enable better understanding of their underpinnings. Furthermore, the phenotype-phenotype network not 
only includes disease status but also contains information on genes, environment, and lifestyle. Precision medi-
cine pursues prevention and treatment strategies that take individual  variability1, such as in genes, environment, 
and lifestyle, into  account2. Accordingly, the networks generated by PheWAS would provide fundamental infor-
mation for realizing precision medicine. Fifth, we provide summary statistics, which are significant. This will 
help other researchers to explore the phenotypes for making headway in further study.

Our study has several limitations. First, we did not have a set of Korean replication population because it was 
not possible to find such datasets with the variety of deep phenotypes incorporated in our study. However, we 
instead introduced the UKBB and BBJ as replication sets, and consequently identified multiple replicated loci. We 
also replicated the phenotype-phenotype pairs using a larger EHR-driven database of Korean samples to inves-
tigate whether the genetic connection was reflected at the actual phenotype level. Second, the study population 
was collected from those who had regular health check-ups, and therefore samples with positive morbidity were 
relatively few. Accordingly, the significance of the loci was low for some phenotypes. We tried to overcome this 
lack of statistical power by performing a meta-analysis with the UKBB and BBJ summary statistics, in which we 
were able to pick up additional significant loci. In a future study, we will incorporate diverse disease cohorts from 
the Korean population to increase the study power. Third, phenotype-phenotype networks were constructed from 
a single sample, because it was not possible to find an external set of population. This might have led to spurious 
correlations between phenotypes that are unrelated to genetics. Further, for most of our analysis we used sug-
gestive p-value cutoff of  10–4, and there were 260,922 variants that passed the threshold across the phenotypes. 
However, if FDR < 0.05 cutoff is considered, the number is lower with 114,677 passing the threshold (Table S5), 
which could have led to inclusion of more false positive associations. Forth, in network analysis, it was based on 
a permissive p-value threshold, which can be associated with false-positive associations.

In conclusion, our study highlights the capacity for understanding the biological insights post-PheWAS by 
comprehensively exploiting the results. With the information generated by PheWAS, we attempted to provide 
a landscape that integrated an individual’s genetic, lifestyle, and environmental factors along with health status. 
We provided several samples of actionable applications such as constructing a gene-phenotype association net-
work related to metabolic syndrome; constructing cross-phenotype mappings; and visualizing causal inference 
mappings. Through analysis in the context of differences in ethnicity and nationality, our study shows that some 
phenotypes are common or exclusive in their genetic associations, and this should be taken into consideration 

https://hdpm.biomedinfolab.com/ddn/genie


14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1930  | https://doi.org/10.1038/s41598-021-04580-2

www.nature.com/scientificreports/

when performing a population-based clinical study. The paradigm of PheWAS suggested in our study will eventu-
ally be the cornerstone for applying the core concepts of precision medicine to research and healthcare practice.

Data availability
Complete summary statistics of the GENIE cohort are not publicly available due to restrictions (institutional 
policy to protect the privacy of research participants), but are available from the corresponding author on rea-
sonable request. However, all other data are contained in the article and its supplementary information or are 
available upon reasonable request. The summary statistics from UK biobank and Biobank Japan are available at 
from the following URLs: http:// www. neale lab. is/ uk- bioba nk/ and http:// jenger. riken. jp/ en/ result.
The codes used in analysis for this paper is available at https:// github. com/ dokyo onkim lab.
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