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Abstract: DJ-1 is an abundant and ubiquitous component of cellular proteomes. DJ-1 supposedly
exerts a wide variety of molecular functions, ranging from enzymatic activities as a deglycase,
protease, and esterase to chaperone functions. However, a consensus perspective on its molecular
function in the cellular context has not yet been reached. Structurally, the C-terminal helix 8 of DJ-1
has been proposed to constitute a propeptide whose proteolytic removal transforms a DJ-1 zymogen
to an active hydrolase with potential proteolytic activity. To better understand the cell-contextual
functionality of DJ-1 and the role of helix 8, we employed post-mitotically differentiated, neuron-like
SH-SY5Y neuroblastoma cells with stable over-expression of full length DJ-1 or DJ-1 lacking helix
8 (∆H8), either with a native catalytically active site (C106) or an inactive site (C106A active site
mutation). Global proteome comparison of cells over-expressing DJ-1 ∆H8 with native or mutated
active site cysteine indicated a strong impact on mitochondrial biology. N-terminomic profiling
however did not highlight direct protease substrate candidates for DJ-1 ∆H8, but linked DJ-1 to
elevated levels of activated lysosomal proteases, albeit presumably in an indirect manner. Finally, we
show that DJ-1 ∆H8 loses the deglycation activity of full length DJ-1. Our study further establishes
DJ-1 as deglycation enzyme. Helix 8 is essential for the deglycation activity but dispensable for the
impact on lysosomal and mitochondrial biology; further illustrating the pleiotropic nature of DJ-1.

Keywords: PARK7; parkinson disease; neurodegenerative disease; protease; glycase; TAILS; pro-
teomics; degradation; lysosome; cathepsin b

1. Introduction

Loss-of-function mutations in the gene PARK7, encoding the 20-kDa protein DJ-1, are
associated with autosomal recessive, early-onset Parkinson‘s disease (PD) [1]. The assumed
neuroprotective functions of DJ-1 have been attributed mainly to its effect on mitochondrial
maintenance and anti-oxidant properties [2]. However, the biochemical mechanism how
DJ-1 protects cells against oxidative stress and mitochondrial damage is still unclear. In
numerous studies, different DJ-1 activities have been reported, including: transcriptional
regulation by protein stabilization [3–5], RNA binding and translational repression [6],
cellular redox sensor (reviewed in [7]), peroxidase [8], chaperone [9–11], glutathione-
independent glyoxalase [12], esterase [13], deglycase [14] and protease activity [15–18].
DJ-1 is a 189 amino acid, dimeric, evolutionary conserved protein (reviewed in [19]). It
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shares sequence homology with the PfpI family of bacterial intracellular proteases and
with heat shock protein 31 (Hsp31), an Escherichia coli chaperone with protease activity. The
crystal structure shows that DJ-1 contains a putative catalytic nucleophile Cys-106 (C106),
which has the potential to form a Cys-His catalytic diad with His-126 [20,21]. However, the
C-terminal alpha helix H8 appears to block access of substrates to the putative catalytic site.
Weak C106-dependent proteolytic activity of purified DJ-1 was reported using casein as a
substrate [18]. In vitro casein cleavage was higher in a DJ-1 truncation mutant lacking the
C-terminal 15 amino acid peptide containing alpha helix H8, and the authors concluded
that DJ-1 converts from a zymogen to an active protease by cleavage of H8 [15]. DJ-1
also showed C106-dependent catalytic activity when incubated with a peptide library
with a clear preference for valine in P1 and alanine in P1’ at the cleavage site [17]. Two
substrates, c-abl oncogene 1 product and kinesin family member 1B, were suggested in this
study. In cells, in contrast to biochemical in vitro systems, protease activity and access to
substrates is tightly regulated to prevent fatal damage to proteins. The identification of
natural protease substrates is crucial to understanding the role of a protease in a specific
physiologic context. Here we aimed to identify natural neuronal DJ-1 proteolytic substrates
in human neuron-like cells using N-terminomics [22] as well as to probe the deglycase
activity of DJ-1. We did not observe protease substrates that appear to be directly cleaved
by DJ-1. However, our findings implicate DJ-1 in the regulation of lysosomal proteolysis.
In addition, we confirm that DJ-1 protects cells from protein glycation. Helix 8 is essential
for the deglycation activity but dispensable for the impact on lysosomal biology.

2. Materials and Methods
2.1. Vectors and Cell Transduction

Human DJ-1 (Ensembl: ENSG00000116288, MIM:602533) I.M.A.G.E. cDNA clone
IRATp970A044D was used for site directed mutagenesis and generation of the following
four different DJ-1 constructs: full length DJ-1 with wild-type C106; full length DJ-1 with
active site mutated C106A; DJ-1 lacking helix 8 (C-terminal 15 residues) with wild-type
C106; DJ-1 lacking helix 8 (C-terminal 15 residues) with active site mutated C106A. DJ-1
variants were cloned into a bicistronic pMIG expression vector containing an internal
ribosomal entry site (IRES) and GFP allowing stoichiometric expression of untagged DJ-
1 variants. A three plasmid system was used for the generation of high titer retroviral
particles for SH-SY5Y transduction [23]. Successfully transduced cells were selected with
800 µg/ml G418 for three weeks. Subpopulations of each new cell line expressing the
four different DJ-1 variants or harboring the empty vector were selected by GFP-based
fluorescence-assisted cell sorting (FACS) using a BD Biosciences FACS Aria flow cytometer.
To confirm successful genomic integration of the respective DJ-1 constructs, genomic DNA
(gDNA) of the established cell lines was isolated using a gDNA extraction kit (Qiagen),
DJ-1 gDNA was amplified by PCR with a forward primer binding the vector backbone
after the 5′LTTR: TACACCCTAAGCCTCCGCCT and a reverse primer binding in the
DJ-1 sequence: AGGCCCCCGGCTTGTAAGA and sequenced with the sequencing primer:
CCCTTGAACCTCCTCGTTCGACC.

2.2. Cell Culture and Differentiation

SH-SY5Y cells were purchased from LGS standards. Cells were grown in standard
Dulbecco’s Modified Eagle Medium DMEM/F12, Gibco, Thermo Fischer) supplemented
with 10% fetal calf serum, 1% L-glutamine and 1% penicillin/streptomycin on standard
plastic cell culture dishes in a sterile incubator (37 ◦C, 5% CO2). For differentiation a
previously published protocol for the generation of a homogenous population of fully
differentiated, neurotrophic factor-dependent human neuron-like cells [24] was used with
minor modifications: SH-SY5Y cells were seeded at an initial density of 10ˆ4 cells/cm2

on Advanced cell culture dishes (Greiner). On the following three days 10 µM all-trans
retinoic acid (RA) was added in standard medium every 24 h. After three days in the
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presence of RA, the cells were washed twice with DPBS and grown in serum-free medium
supplemented with 50 ng/ml Brain Derived Neurotrophic Factor (BDNF) for four days.

2.3. Cell Proliferation Measurement

Real-time cell proliferation was assessed using the xCelligence® System (Roche, Basel
Switzerland). Two thousand cells per well were seeded in E-plates and differentiated as
described above. Proliferation was measured in 1 h intervals during the course of differen-
tiation. A BrdU ELISA (Roche Basel Switzerland) was used to determine proliferation after
7 days of differentiation according to the manufacturer‘s protocol. Briefly, 1 × 104 cells
per well were seeded in a 96 well plate and differentiated as described above. At day
6 of the differentiation protocol BrdU was added for 24 h before fixation of the cells and
immuno-detection and quantification of BrdU incorporation after 30 min incubation with
anti-BrdU-POD solution and 30 min incubation with substrate solution. The absorbance of
the samples was measured at 370 nm (reference wavelength: 492 nm).

2.4. Sample Preparation for Quantitative Proteomics

Sample preparation for liquid chromatography–tandem mass spectrometry (LC-MS/MS)-
based proteome comparison was essentially performed as described previously [25] in-
cluding denaturation and alkylation, trypsin digestion, stable isotopic labeling and pre-
fractionation via strong cation exchange chromatography (SCX, replicates 1 and 2) or high
pH reversed phase chromatography (hpH-RP, replicate 3).

Differentiated SH-SY5Y DJ-1WT∆H8 and SH-SY5Y DJ-1C106A∆H8 cells were washed
three times with phosphate buffered saline (PBS), harvested with a cell scraper, and lysed
on ice in lysis buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1% NP-40, 1% sodium deoxy-
cholate, 0.02% SDS, 1 mM EDTA) with protease inhibitors (10 µM E64d, 1 mM PMSF
and 5 mM EDTA) added fresh to avoid protein degradation during lysis. Lysates were
heat incubated for five min at 95 ◦C prior to ultra-sonication for 10 × 30 s. For protein
precipitation, cell lysates were incubated with nine volumes of ice-cold acetone and one
volume of ethanol for one hour at −80 ◦C. After centrifugation at 4500 g, protein pellets
were washed three times with ice-cold ethanol and reconstituted in 100 mM NaOH using
ultra-sonication, followed by pH adjustment to 8.0 with HEPES. For the proteome compar-
ison, samples were labeled by reductive dimethylation of primary amines either “light”
(formaldehyde CD2O + sodiumcyanoborohydrid NaBH3CN) or “heavy” (formaldehyde
13CD2O + sodium cyanoborodeuteride NaBD3CN). The label was switched in the second
experiment. Samples were pre-fractionated on C18 Hypersep columns using 15%, 25% and
60% acetonitrile in 1% ammonium hydroxide as elution buffers respectively.

2.5. Sample Preparation for N-Terminomics

The Terminal Amine Isotopic Labeling of Substrates (TAILS) protocol was modified
from [26,27]. Cells were lysed using 5 mM TCEP, 0.1% RapiGest, 100 mM HEPES pH
8.0 and samples were immediately heat denatured for 10 min at 95 ◦C. Subsequently,
DNA was sheared using ultra-sonication for 10 × 30 s. Iodoacetamide (20 mM) was
added for alkylation of cysteines and incubated for 30 min at room temperature in the
dark. α- and ε-amines were labeled for 18 h at room temperature by adding tandem
mass tag (TMT) 11 plex reagents (Thermo), which were resuspended in acetonitrile with
a protein to TMT reagents mass ratio of 1:8. Following pooling of samples, sequencing
grade trypsin (Worthington) was added for digestion in a trypsin to protein mass ratio
of 1:50 and the sample was incubated for 2 h at 50 ◦C. The same amount of trypsin was
added again and the sample was incubated for 18 h at 37 ◦C. Internal peptides were then
coupled to an aldehyde-functionalized polymer in the presence of 50 mM NaBH3CN
and removed from TMT-blocked N-terminal peptides by ultrafiltration through a 10 kDa
MWCO filter (Millipore, Burlington, MA, USA). The flow-through, containing TMT-blocked
N-terminal peptides, was desalted using C18 columns (Hypersep, Thermo, Waltham, MA,
USA). The sample was pre-fractionated on C18 Hypersep columns using 15%, 25% and
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60% acetonitrile in 1% ammonium hydroxide as elution buffers, respectively. For exact
ratio determination of Cathepsin B propeptide cleavage in four independent TAILS pilot
experiments was analyzed, which were performed as described previously [28].

2.6. LC-MS/MS

LC-MS/MS of the global proteome comparison was performed with a Q Exactive
PLUS System (Thermo Fisher) coupled to an Easy nLC 1000 (Thermo Fisher) as described
previously [29].

LC-MS/MS of the TMT TAILS experiment was measured on an Orbitrap Eclipse mass
spectrometer (Thermo Fisher) coupled to an Easy nLC 1200 (Thermo Fisher). Pre-columns
with 100 µm ID were self-packed with 3µm C18 AQ (Dr. Maisch) to a length of 2 cm. A
75 µm Picofrit column (New Objective) was self-packed with 1.9 µm C18 AQ (Dr. Maisch)
to a length of 20 cm. Buffer A consisted of 0.1% formic acid, buffer B consisted of 80%
acetonitrile in 0.1% formic acid. The samples were separated using a 70 min linear gradient
from 10% to 38% B followed by a 5 min linear gradient from 38% to 47% buffer B. The
mass spectrometer was operated in data dependent acquisition mode with a TMT MS2
quantitation method. A survey scan from 400–1600 m/z at 120 K resolution was followed
by MS2 events up to 2 s. Standard precursor filter options from the TMT MS2 method editor
node were used. For MS2 scans, peptides were fragmented using higher energy collision
dissociation (HCD) with CE 38, maximum injection time 54 msec at 30 K resolution with
TMT and TMTpro resolution enhancement activated.

2.7. Proteomic Data Analysis

For proteome comparisons, raw files were analyzed using the default settings of
MaxQuant [30] Version 1.6.0.16 except for the following parameter changes: The labels
DimethylLys4, DimethylNterm4 and DimethylLys8, DimethylNterm8 were set. iBAQ and
no variable modifications were chosen and protein quantification was allowed for label min
ratio count 1. The data were compared to a complete human reviewed database without
isoforms downloaded from UniProt in June 2017 containing 20188 entries. For proteome
comparisons the parameters: enzyme Trypsin, digestion mode specific (0 missed cleavages)
and “re-quantify” were chosen.

For the TMT TAILS analysis MaxQuant Version 1.6.12.0 was used. Reporter ion MS2
with TMT11 plex and semi-tryptic enzyme specificity (ArgC) were chosen. TAILS data were
analyzed by filtering semi-tryptic peptides, more specifically, no lysine or arginine prior
to the peptide sequence were allowed and initiator methionines were also excluded. Sub-
sequently, data were z-score normalized and linear models for microarray data (LIMMA
package from R) was used to detect differentially abundant peptides. Cleavage motif
analysis was performed using an online tool for protease specificity characterization [31].
The Dimethylation TAILS experiments were analyzed using MaxQuant Version 1.6.14.0.
Standard Quantitation with appropriate multiplicity was chosen depending on the experi-
mental design: DimethNterm0, 4 or 8 and DimethLys0, 4 or 8 and semi-tryptic enzyme
specificity (ArgC) was chosen.

Downstream analyses were performed using Perseus [32] and R, employing linear
models and differential expression for microarray data (LIMMA) [33] for the detection
of differentially abundant proteins and peptides. Gene ontology enrichment analyses
were performed using topGO [34]. Visualizations were created by using tidyverse [35]
RColorBrewer [36] GraphPad Prism, or PVD [37].

2.8. Western Blot

Whole cell lysates were prepared as described for quantitative proteome comparison.
Cell lysates were centrifuged at 15000 g for 2 min, and protein concentration in the su-
pernatant was determined with a bicinchoninic acid protein assay (BCA, Pierce). Equal
amounts of protein extracts (5 to 40 µg depending on the antibody used) were resolved
by SDS-PAGE and transferred onto polyvinylidene fluoride (PVDF) membranes using a
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semi-dry blotting system (Bio-Rad, Hercules, CA, USA). For immune detection of proteins,
membranes were probed with the following antibodies: DJ-1 (R&D Systems 3668, Min-
neapolis, MN, USA), GAP43 (Böhringer 1379011, Ingelheim, Germany), β3-Tubulin (Sigma
T8660, Kavasaki, Japan), Cathepsin B (R&D Systems AF953), methylglyoxal (MGO, Cell
Biolabs Inc. STA-011, San Diego, CA, USA). β-Tubulin (Sigma Aldrich T6199) or GAPDH
(abcam 9484) were used as loading control. Methylglyoxal (MGO) immunoblots were
stripped by incubating the membrane with pre-heated stripping buffer (2% SDS, 62.5 mM
Tris-HCl pH 6.8, 1:125 v/v ß-mercaptoethanol) at 50 ◦C for 45 min, followed by rinsing
for 1–2 h with water and 5 min with TBST before they were blocked and re-probed with
GAPDH antibody. Signal intensity was analyzed with ImageJ [38].

2.9. Protein Glycation

Differentiated SH-SY5Y cells were incubated with 5 mM methylglyoxal (MGO) for 2 h
under normal cell culture conditions. Cells were washed with DPBS three times and whole
cell lysates were prepared as described for Western Blot. Protein glycation was probed by
immunoblotting for MGO as described above.

3. Results
3.1. In Vitro System of Differentiated SH SY5Y Neuron-Like Cells

To probe for putative, natural neuronal DJ-1 proteolytic substrates we overexpressed
different DJ-1 variants (Figure S1A) in the human neuroblastoma cell line SH-SY5Y with a
comparatively low background of endogenous DJ-1 (Figure 1A). The putative active protease
form of DJ-1, DJ-1WT∆H8, lacks the 15 C-terminal amino acid residues 175–189 forming helix
8 (H8), which can block substrate access to the catalytic site. In the inactivated form, DJ-
1C106A∆H8, the proposed catalytic nucleophile cysteine-106 (C106) was mutated to alanine
(Figure S1B). For comparison, full length DJ-1WT and DJ-1C106A and the empty vector were
overexpressed as well. All variants were expressed with an IRES-GFP. Subpopulations
of transduced cells with equal GFP signal intensity were selected using FACS, and five
different cell lines with stable overexpression of the different DJ-1 variants or the empty
vector were established. Although the same gates were used for the sorting of all cell
lines, higher protein expression of the full length variants in comparison to the truncated
variants was observed (Figure 1A). The different overexpression levels need to be taken
into consideration when directly comparing the impact of full length DJ-1 and DJ-1∆H8 on
cellular behavior.

We consider differentiated SH-SY5Y cells to be a more adequate model than non-
differentiated cells to investigate cell-physiological roles of proteins such as DJ-1; as high-
lighted by a proteome study comparing undifferentiated and differentiated SH-SY5Y cells,
which substantiated profound differences of their respective proteome biology [39]. To
this end, we differentiated the aforementioned transduced SH-SY5Y cell lines stably over-
expressing different DJ-1 variants, using a protocol adapted from [24] including three days
of sequential retinoic acid (RA) and subsequently four days of Brain Derived Neurotrophic
Factor (BDNF) treatment (Figure 1B). Untransduced differentiated SH-SY5Y cells displayed
formation and extension of neurite-like structures (Figure 1C) and dramatically reduced
proliferation as shown by real-time monitoring and BrdU incorporation (Figure 1D,E). We
observed a higher expression of the mature neuronal markers Growth-associated Protein
43 (GAP43) and β3-Tubulin following differentiation (Figure 1F). Hence, we refer to these
cells as neuron-like, post-mitotically differentiated cells. Each transduced cell line could be
differentiated into neuron-like cells with neurite-like structures (Figure S1C).
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cell proliferation over 7 days of RA + BDNF treatment depicted as cell index over time of three technical replicates was 
assessed by absorbance at 370 nm (E) BrdU incorporation of untreated and RA + BDNF treated SH-SY5Y cells measured 
as the absorbance at 370 nm wavelength. (F) Immunoblots of mature neuronal markers Growth-associated Protein 43 
(GAP43) and β-3-Tubulin with GAPDH as loading control. 
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and β-3-Tubulin with GAPDH as loading control.

3.2. Degradome Analysis

To detect putative proteolytic substrates of DJ-1 and to assess the influence of DJ-1 on
the cellular degradome, we performed TAILS, an N-terminomic technique for the identifi-
cation and quantification of native and proteolytically generated protein N-termini [22]. In
brief, protein N-termini and N-termini generated by proteolytic cleavage are chemically
protected and tagged with a tandem mass tag (TMT). Proteins are then subjected to tryptic
digestion. The thereby generated Neo N-Termini are not chemically protected and can
be depleted using an amine-reactive polymer. We compared differentiated SH-SY5Y cells
overexpressing the catalytically active form DJ-1WT∆H8 to cells overexpressing the catalyt-
ically inactive form DJ-1C106A∆H8 in three replicates. We chose an 11plex tandem mass
tag (TMT)-based labeling approach. We identified a total of 2223 peptides, which either
represent native protein N-termini or proteolytically generated N-termini (Supplementary
Table S1).

To identify differentially abundant peptides, the LIMMA package from R was used.
As an initial step to identify enriched or underrepresented cleavage sites in connection
with overexpression of different DJ-1 types, we considered N-terminal peptides with a
non-adjusted p-value < 0.05. As shown in Figure 2A, we detected 71 peptides enriched
in DJ-1WT∆H8 overexpressing cells as compared to DJ-1C106A∆H8 overexpressing cells
that fulfill this criterion. However, none of these peptides fit to the previously described
sequence specificity of DJ-1: V↓A, valine in P1 and alanine in P1‘ (Supplementary Table S1,
sheet “enriched cleavage sites”). A summarized cleavage site motif is shown in Figure 2B,
which shows the occurrence of amino acids of differentially abundant cleaved peptides.
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We note that P2 mostly comprises aliphatic residues, whereas P1 and P1′ are predomi-
nantly composed of small amino acids. This motif is reminiscent of cysteine cathepsins;
e.g., cathepsins B and L [40]. To investigate a potential link to lysosomal biology we
probed for Cathepsin B (CTSB) activity by immunoblot. Cathepsin B is a potent lysosomal
protease whose activation includes removal of its 62 residue N-terminal domain. We
verified a higher amount of activated CTSB in DJ-1WT∆H8 overexpressing cells compared
to DJ-1C106A∆H8 or empty vector control cells (Figure 2C). Analysis of TAILS peptides
confirmed significantly more Cathepsin B propeptide cleavage in DJ-1WT∆H8 relative
to DJ-1C106A∆H8 overexpressing cells (Figure S2). A higher amount of the CTSB active
form was also found in cells overexpressing full length DJ-1WT compared to DJ-1C106A

or empty vector control cells (Figure 2D). In conclusion, the affected degradome of DJ-
1WT∆H8 overexpressing cells is dominated by cysteine cathepsin-type proteolysis when
compared to the degradome of DJ-1C106A∆H8 overexpressing cells. CTSB activation upon
DJ-1 overexpression is dependent on C106 but independent of H8.

3.3. Systemic Impact of DJ-1 ∆H8 on the Cellular Proteome

Some of the observed altered cleavage events that could not have been generated by
cysteine cathepsins, might be explained by a systemic effect of DJ-1WT∆H8 overexpression.
To approach this question, we conducted a quantitative proteome comparison of cells
overexpressing DJ-1WT∆H8 and cells overexpressing DJ-1C106A∆H8 (see methods). A
total number of 2334, 2933 and 4421 proteins were identified in the first, second and
third experiment, respectively. An overlap of 2053 proteins was consistently found in all
three experiments (Figure S3A). DJ-1WT∆H8/ DJ-1C106A∆H8 normalized ratios showed a
normal distribution in all three experiments (Figure S3B). Alterations of protein abundances
were calculated as log2 fold change (FC) values of DJ-1WT∆H8/DJ-1C106A∆H8 normalized
ratios. To define proteins with altered abundance, LIMMA was used. Only proteins with an
abundance change of more than 50% (FC> |log2(1.5)|) in two of three experiments and with
a non-adjusted p-value ≤ 0.05 were considered to be significantly altered (Supplementary
Table S2). We found 689 proteins with significantly higher abundance and 243 proteins
with significantly lower abundance in DJ-1WT∆H8 overexpressing cells compared to DJ-
1C106A∆H8 overexpressing cells (Figure 3A). To interpret the pronounced effect of DJ-
1WT∆H8 on the proteome of neuron-like cells, all proteins significantly altered in abundance
were clustered into gene ontology biological processes (GO BPs). The most significantly
enriched GO BP terms are shown in Figure 3B,C. Proteins with a lower abundance in
DJ-1WT∆H8 are involved e.g., in membrane raft organization, beta amyloid metabolism,
and integrin mediated signaling (Figure 3B). Proteins enriched in DJ-1WT∆H8 primarily
play a role in mitochondrial processes such as mitochondrial transcription, mitochondrial
translation, respiration, and mitochondrial metabolic processes including fatty acid beta
oxidation and mitochondrial RNA metabolism. Many studies have shown a role of DJ-1
in maintaining proper mitochondrial function (reviewed in [41]). Here we show that C-
terminally truncated DJ-1 lacking H8 affects mitochondrial processes in a C106-dependent
manner as well.
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For the investigation of a putative indirect effect of DJ-1WT∆H8 on the degradome
that we observed in the TAILS experiment, we reviewed the proteins significantly higher
or lower in the quantitative proteome comparison in detail. We found several proteases
with altered abundance (Figure 4). Seven mitochondrial proteases, such as Neurolysin and
Mitochondrial processing peptidase subunit beta, increased in DJ-1WT∆H8 overexpressing
cells. Also, two lysosomal proteases, namely Dipeptidyl peptidase 1 and Gamma-glutamyl
hydrolase, showed higher abundance in DJ-1WT∆H8 overexpressing cells. In conclusion,
the observed effect on the cellular degradome can partially be explained by the altered
abundance of other proteases, including non-cysteine-type lysosomal proteases and mito-
chondrial proteases.
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Figure 3. Systemic effect of DJ-1∆H8 on the proteome of neuron-like cells: (A) Volcano plot
representation of proteins identified in the quantitative proteome comparison of DJ-1WT∆H8 and
DJ-1C106A∆H8 overexpressing differentiated SH-SY5Y cells following LIMMA analysis of three inde-
pendent replicates, blue box: proteins significantly higher and red box: proteins significantly lower
in DJ-1WT∆H8 (log2 FC ≤ −0.58 or ≥ 0.58) in two of three experiments and p-value ≤ 0.05) (B) Gene
Ontology Biological Processes overrepresented by proteins significantly lower in DJ-1WT∆H8 over-
expressing cells (C) Gene Ontology Biological Processes overrepresented by proteins significantly
higher in DJ-1WT∆H8 overexpressing cells.

3.4. Protective Effect of DJ-1 on Protein Glycation

A few years ago, DJ-1 deglycase activity was reported [14]. The authors suggested
that deglycation constitutes the primary cell-physiological function of DJ-1. However, this
concept has been challenged [42,43]. Using the in vitro model system of differentiated SH
SY5Y cells, we probed for the potential deglycation properties of the four different DJ-1
variants. Differentiated SH-SY5Y cells were exposed to 5 mM methylglyoxal (MGO) for 2 h
in culture. Immunoblots of whole protein extracts with an anti-MGO antibody showed a
significant decrease of protein glycation in cells overexpressing DJ-1WT compared to empty
vector control cells (Figure 5A), which was abolished in the DJ-1C106A mutant. These results
confirm a C106-dependent protective effect of DJ-1 on protein glycation in neuron-like
cells. In contrast, protein glycation was not decreased in DJ-1∆H8 overexpressing cells
compared to empty vector control cells (Figure 5B). Our findings corroborate that DJ-1
protects proteins from glycation and we show that the C-terminal Helix 8 (H8) is essential
for this protective effect.
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full length DJ-1 variants DJ-1WT and DJ-1C106A and (B) C-terminally truncated DJ-1 variants; left:
Immunoblots of whole cell lysates of untreated and MGO treated cells expressing different DJ-1
variants with anti-MGO antibody and GAPDH as loading control: right: quantification of signal
intensity of MGO-modified proteins relative to empty vector control (pMIG empty) with ImageJ
of three independent experiments for full length variants and two independent experiments for
C-terminally truncated variants (** p ≤ 0.01 by two tailed t-test on independent groups).
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4. Discussion

DJ-1 plays a role in tumor progression (reviewed in [44]) and DJ-1 loss-of-function
is associated with autosomal early-onset Parkinson’s disease [1]. DJ-1 protects cells from
oxidative stress [7], but its precise function remains elusive. The aim of the present
study is to further our understanding of the cell-physiological roles of DJ-1 and their
dependence on helix 8, which supposedly acts as a propeptide. Due to the suggested role
of DJ-1 in neurodegenerative diseases, we employed an in vitro model of post-mitotically
differentiated, neuron-like cells.

While our N-terminomic analysis revealed differences in the degradome between DJ-
1WT∆H8 and DJ-1C106A∆H8 overexpressing cells, we did not find quantitatively affected
N-termini that match the sequence specificity of proteolytically active DJ-1 (V↓A) that
was determined in vitro before [17]. We note that this finding does not refute DJ-1 acting
as an endoprotease in cellulo. It is possible that putative DJ-1 substrates were absent in
differentiated SH-SY5Y cells. Furthermore, it is possible that DJ-1 cleavage products are
prone to rapid degradation, hence escaping detection by N-terminomics.

Independent of direct DJ-1 substrates, we found increased levels of several other,
mainly mitochondrial and lysosomal, proteases and observed a pronounced, yet indirect
impact of DJ-1 on cysteine cathepsin-type proteolysis. This impact depends on the pres-
ence of C106 but is independent of H8. Of note, we do not postulate that DJ-1 directly
activates Cathepsin B but consider this an indirect, yet dominant effect whose mechanistic
underpinning remains beyond the findings of the present study. Our findings are in line
with previous reports that link the cell-physiological function of DJ-1 to lysosomal biology:
Gao and colleagues reported increased autophagy upon DJ-1 overexpression [45] and other
groups showed reduced autophagy upon loss of DJ-1 [46,47]. The link between DJ-1 and
autophagy awaits further mechanistic clarification.

The quantitative proteome comparison of DJ-1WT∆H8 and DJ-1C106A∆H8 overexpress-
ing cells showed an increase of mitochondrial proteins in DJ-1WT∆H8. The protective
function of DJ-1 on mitochondria and the reduction of reactive oxygen species was ob-
served before in several studies (reviewed in [41]). Proteins more abundant in DJ-1WT∆H8
overexpressing cells are involved in biological processes such as mitochondrial translation,
complex I assembly and transport into mitochondria, which are important for mitochon-
drial biogenesis. Hence it is conceivable that DJ-1 is not only linked to the maintenance but
also to the biogenesis of mitochondria.

Interestingly, we observed an effect on mitochondrial and lysosomal biology when
overexpressing the truncated form DJ-1WT∆H8. DJ-1 exists as a homodimer in cells, which
is its expected active form. Based on its crystal structure, a novel mode of dimerization
mediated by C-terminal helix H8 was suggested [21]. It remains to be determined whether
DJ-1 dimerization is dependent on H8 or whether it may also function as a monomer. We
observed lower protein amounts of the overexpressed truncated versions in comparison to
the DJ-1 full length versions despite an equal expression of GFP in the bicistronic system.
This could mean that the half live of DJ-1∆H8 is shorter than that of full length DJ-1.

The accumulation of glycated proteins and lipids, which represent so-called “advanced
glycation end products” (AGE), is a feature of neurodegenerative diseases. Proteins and
lipids become glycated by the exposure to reducing sugars such as MGO. The accumulation
of AGE may contribute to the development of neurodegenerative disease [48]. A protective
effect of DJ-1 against protein glycation has been shown in yeast, bacteria [49] and human
keratinocytes [50]. Whether DJ-1 detoxifies free MGO by acting as a glyoxalase [12,42,51]
or removes adducts formed by MGO on proteins by acting as a deglycase [14,52] is a matter
of debate. Here we confirm a C106-dependent protective effect of DJ-1 on protein glycation
in neuron-like cells and show that in our cellular system H8 is essential for this effect.

In summary, we used neuron-like SH-SY5Y cells to study the physiological role(s)
of DJ-1∆H8. We were unsuccessful in identifying DJ-1 proteolytic substrates, but our
findings strengthen the impact of DJ-1 on lysosomal and mitochondrial biology, as well as
its protective role against protein glycation. All of these activities depend on the presence
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of cysteine 106, while the C-terminal Helix 8 (H8) is dispensable for the link to lysosomal
biology.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073
-4409/10/2/404/s1, Figure S1: Cell system. Figure S2: Quantitative proteome comparison of
differentiated DJ-1WT∆H8 and DJ-1C106A∆H8 overexpressing SH-SY5Y cells. Table S1: 2020-11-23,
Table S2: 2020-11-30.
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