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Background: Bone is the most common metastatic site of Breast invasive carcinoma
(BRCA). In this study, the bone metastasis-specific regulation network of BRCA was
constructed based on prognostic stemness-related signatures (PSRSs), their upstream
transcription factors (TFs) and downstream pathways.

Methods: Clinical information and RNA-seq data of 1,080 primary BRCA samples (1,048
samples without bone metastasis and 32 samples with bone metastasis) were
downloaded from The Cancer Genome Atlas (TCGA). The edgeR method was
performed to identify differential expressed genes (DEGs). Next, mRNA stemness index
(mRNAsi) was calculated by one-class logistic regression (OCLR). To analyze DEGs by
classification, similar genes were integrated into the same module by weighted gene co-
expression network analysis (WGCNA). Then, univariate and multivariate Cox proportional
hazard regression were applied to find the PSRSs. Furthermore, PSRSs, 318 TFs
obtained from Cistrome database and 50 hallmark pathways quantified by GSVA were
integrated into co-expression analysis. Significant co-expression patterns were used to
construct the bone metastasis-specific regulation network. Finally, spatial single-cell RNA-
seq and chromatin immunoprecipitation sequence (ChIP-seq) data and multi-omics
databases were applied to validate the key scientific hypothesis in the regulation
network. Additionally, Connectivity Map (CMap) was utilized to select the potential
inhibitors of bone metastasis-specific regulation network in BRCA.

Results: Based on edgeR and WGCNA method, 43 PSRSs were identified. In the bone
metastasis-specific regulation network, MAF positively regulated CD248 (R = 0.435, P <
0.001), and hallmark apical junction was the potential pathway of CD248 (R = 0.353, P <
0.001). This regulatory pattern was supported by spatial single-cell RNA sequence, ChIP-
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seq data and multi-omics online databases. Additionally, alexidine was identified as the
possible inhibitor for bone metastasis of BRCA by CMap analysis.

Conclusion: PSRSs played important roles in bone metastasis of BRCA, and the
prognostic model based on PSRSs showed good performance. Especially, we
proposed that CD248 was the most significant PSRS, which was positively regulated
by MAF, influenced bone metastasis via apical junction pathway. And this axis might be
inhibited by alexidine, which providing a potential treatment strategy for bone metastasis
of BRCA.
Keywords: breast invasive carcinoma, bone metastasis, apical junction, MAF, CD248, mRNA stemness index
(mRNAsi), weighted gene co-expression network analysis (WGCNA), spatial transcriptome
INTRODUCTION

Breast Invasive Carcinoma (BRCA) was the most common
tumor in female, which originated from ducts and acinar
epithelium at all levels of the breast, and most patients suffered
frommalignant epithelial tumor. And the BRCA can be classified
into several types according to the state of progesterone receptor
(PR), estrogen receptor (ER), and ERBB2 receptor (HER2) in
histological stratification, which was applied in clinical practice
(1). Estimated by American Cancer Society (ACS), there were
279,100 new cases, and 42,690 new death BRCA patients in 2020
(2). Besides, the five-year survival rate for BRCA in stage I, II, III,
and IV were 98, 92, 75, and 27% according to the statistic from
2009 to 2015, respectively (3). Although the five-year survival
rate of primary BRCA was high, the five-year survival rate of
bone metastasis was only 20%, and patients were trapped in a
vicious cycle between osteolytic degeneration and proliferation of
cancer cells (4). Besides, the osteolytic lesions like pain in bone,
fractures, spinal compression and hypercalcemia leaded to poor
survival quality and death (4).

Machine learning based on high-throughput data played an
important role in prognosis of cancer, and new characters
defined by algorithm like mRNA stemness index (mRNAsi)
and stemness-related gene provided a new way for analysis (5).
Recently, analysis on triple-negative breast cancer were launched
to explore the key gene related to the stemness and find the target
for further therapy (6). Therefore, molecules participated in the
bone metastasis required to be explored, and corresponded
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biomarkers and possible mechanism needed to be drug for
clinical strategy and therapy.

In this study, data of RNA-seq in BRCA were identified by
edgeR, and differential expressed genes (DEGs) were performed by
machine-learning algorithm to define the mRNAsi. Then, the
profiling of DEGs were integrated into weighted gene co-
expression network analysis (WGCNA) to classify similar genes
intomultiplymodules and outline the phenotypic characteristics of
modules. Besides, the mRNAsi and Hallmark gene sets were
qualified to annotate modules. Then, the key module and genes
most associated with mRNAsi were selected. Univariate and
multivariate Cox regression analysis were applied to access the
prognostic value of genes. What is more, based on the Pearson
analysis for TF, genes, and Hallmark gene sets, a bone metastasis-
specific network was constructed. The scientific hypothesis was
determined by the correlation coefficient. Moreover, the CMap
analysis was applied to find potential inhibitors for signal axis.
Finally, spatial single-cell RNA sequence and chromatin
immunoprecipitation sequence (ChIP-seq) data and multi-omics
online databases were applied to validate the key scientific
hypothesis in the regulation network. The bone metastasis-
specific regulation network and inhibitors provided potential
treatment strategy for bone metastasis of BRCA.
METHODS

Data Acquisition
Based on the Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/), RNA-seq data of 1,080 primary BRCA
samples were downloaded, including 1,048 samples without
bone metastasis and 32 samples with bone metastasis. And the
bone metastasis was diagnosed by imaging examinations like CT
or PET-CT. Besides, demographics like age and gender, tumor
information like TNM stage and grade, and follow-up data of all
patients were also obtained from the TCGA database. Besides,
samples without follow-up information were excluded.

Differentially Expressed Genes
Identification
The edgeR package was used to screen the RNA-seq data to
define DEGs between primary BRCA patients with and without
January 2021 | Volume 10 | Article 613333
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bone metastasis, and the criteria must fit following two points at
the same time: the absolute value of log Fold Change (log FC)
must more than 1, and the False Discovery Rate (FDR) must less
than 0.05. Then, Gene Oncology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis were
utilized to annotate DEGs.

mRNAsi
The mRNAsi was calculated by the one-class logistic regression
(OCLR) machine-learning algorithm (7) based on the RNA-seq
data of 1,080 primary BRCA samples.

Weighted Gene Co-Expression Network
Analysis
With the aim to holistically analyze DEGs, modules were
classified by WGCNA (8) R package (http://www.r-project.
org/), every single module gathered highly similar DEGs. Then
based on RNA-seq profiling, the Pearson correlation analysis was
utilized to construct the gene co-expression network.
Additionally, the power function was applied to build a
weighted adjacency matrix:

aij =   sij
�
�

�
�b

Sij represented the Pearson correlation between gene i and j, aij
represented the weighted network adjacency between gene i and j.
Andb equaled to 4was the soft-threshold parameter set by pickSoft
Threshold fromWGCNAR package.What’s more, the application
of soft-threshold parameter ofweightednetworkmake it possible to
show the continuous variety of co-expression information in [0,1],
and it might promote the idea of scale-free co-expression network
come true. In addition, the correlation coefficients were utilized to
construct hierarchical clustering, and a topological overlapmethod
wasperformed toclassifyDEGswith the similar expressionpatterns
into samemodule. Besides, the capacity of modulemust more than
20genes, andwhena certainmodulewith less than20genes, similar
modules will be merged.

Based on the H Collection of Molecular Signatures Database
(MSigDB) v7.0 (https://www.gsea-msigdb.org/gsea/msigdb/
genesets.jsp?collection=H) (9), 50 Hallmark gene sets were
qualitied by the computational approach named Gene Set
Variation Analysis (GSVA). And these Hallmark gene sets
were related to biological process and states. Then, with the
aim to annotate the specific phenotypic traits for module, 50
Hallmark gene sets and mRNAsi were defined as phenotypes for
a co-analysis with modules. Besides, gene significance (GS)
coefficients and p values were illustrated the correlation
between DEGs and phenotypes. Similarly, module significance
(MS) coefficients and p values showed the correlation between
modules and phenotypes, and the MS was calculated from the
average absolute GS for all genes in every single module.
Moreover, the first principle component of module genes
showed the gene expression level in the certain module, and
module eigengenes (MEs) represented the first principle
component. And module membership (MM) represented the
correlation between gene to MEs. Next, mRNAsi was the key
phenotype to choose the stemness-related module, and the
Frontiers in Oncology | www.frontiersin.org 3
largest MS with p value less than 0.05 were applied to
determine the key module for next exploration. What’s more,
the Hallmark gene set significantly related to the key module and
p value less than 0.05 was selected as the key Hallmark gene set,
and the key Hallmark gene set was defined as the key pathway for
stemness-related signatures (SRSs). Besides, SRSs with MM
>0.300 and GS >0.300 were obtained from the key module for
further analysis.

Multivariate Prognosis Model Construction
The univariate and multivariate Cox proportional hazard
regression were applied to find prognostic stemness-related
signatures (PSRSs). SRSs with p value <0.001 in univariate Cox
proportional hazard regression were defined as PSRSs. Then, the
LASSO regression analysis was applied to avoid the over-fitness.
Then, residual PSRSs were integrated into the multivariate Cox
regression model, and risk score for each BRCA patient was
calculated by the formula:

Risk   scorem = b1 � gene1 + b2 � gene2 +   b3 � gene3 …… + bn� genen

In the formula, “m” represented the number of each patient,
“n” represented prognostic PSRS, and “b” represented the
coefficient of each prognostic PSRS. Then, patients with BRCA
were divided into low- and high-risk groups according to risk
score. And the efficiency of risk score of the model was detected
by Kaplan-Meier survival analysis. What’s more, and accuracy
was detected by the Receiver Operating Characteristic Curve
(ROC) curve and C-index. Finally, the demographic
information, TNM stage and risk score were applied for
correction, and univariate and multivariate Cox regression
were performed to validate the independent prognostic value.

Potential Signal Axis Identification
Based on the Cistrome database (http://cistrome.org/) (10), the
list of 318 Translate factors (TFs) were downloaded. And edgeR
was utilized to find differential expressed TFs. Then co-
expression analysis for TFs and PSRSs by Pearson correlation
analysis, and the significant paired TF-PSRSs were selected.

Aim to identify the significantly co-expressed pathway, the
absolute quantification of 50 Hallmark gene sets between non-
metastasis and metastasis patients was screened by GSVA. And
to explore the up- and down-regulated pathways between non-
metastasis and metastasis patients, Gene Set Enrichment
Analysis (GSEA) was conducted based on the 50 gene sets of
Hallmark (11). In addition, the intersection of GSVA, GSEA, and
module phenotypic traits was defined as the key pathway. Then,
the Pearson correlation analysis was utilized to analysis the
interaction between Hallmark gene sets and PSRSs.

Eventually, thenetworkbasedonTFs, PSRSs andHallmark gene
sets was constructed. And String database (12) was applied to plot a
protein-protein interaction (PPI) network. Besides, the criteria for
TF-PSRSpairedwas the absolute value of the correlation coefficient
more than0.400 and p value less than0.05, for PSRS-Hallmark gene
set was the absolute value of correlation coefficientmore than 0.300
and p value less than 0.05.
January 2021 | Volume 10 | Article 613333

http://www.r-project.org/
http://www.r-project.org/
https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp?collection=H
https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp?collection=H
http://cistrome.org/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Huang et al. Bone Metastasis-Specific PSRSs in BRCA
Connectivity Map Analysis
To expend the application of potential signal axis, inhibitors of the
signal pathway were selected by the Connectivity Map (build 02)
(CMap) (https://portals.broadinstitute.org/cmap/) (13). Then,
inhibitors for BCRA were identified. Besides, the information like
chemical structural formula and biologic function of inhibitor
compounds were available from the mechanism of actions (MoA)
(http://clue.io/) (14). Ultimately, the key inhibitor was found
according to the TF, PSRS, and Hallmark gene set.

Assay for Targeting Accessible-Chromatin
With High-Throughout Sequencing-Seq
and Chromatin Immunoprecipitation
Sequence Validation
Assay for Targeting Accessible-Chromatin with high-throughout
sequencing (ATAC-seq) and ChIP-seq data were used to
validated the regulation mechanism of the network. ATAC-seq
and ChIP-seq data were obtained from TCGA GDC (https://gdc.
cancer.gov/about-data/publications/ATACseq-AWG) and
Cistrome database (http://cistrome.org/), respectively (10, 15).
WashU Epigenome Browser and Gviz package were used to
visualize the binding peaks (16, 17).

Spatial Transcriptome Validation
The regulatory relationship between TF and PSRS, PSRS and
Hallmark gene set required to be validated the direct mechanism
in the molecular experiment. When linked with single-cell RNA
sequence data, spatial transcriptome data can validate the cell
subtype localization of the key genes (https://support.
10xgenomics.com/spatial-gene-expression/datasets/1.1.0/V1_
Breast_Cancer_Block_A_Section_1). For quality control, only fit
the following standards at the same time can be selected: genes
must express in more than 3 single cells, gene counts more than
1, cell transcripts range from 1,500 to 100,000.

To integrate data analysis, the Seuratmethodwas performed (18).
Then, the “sctransform” algorithmwas utilized for normalization. In
addition, to identify variable genes and spatial-specific genes, “vst”
and “markvariogram” method were utilized, respectively. Next, the
principal component analysis (PCA) was performed based on
variable genes (18). In addition, the jackstraw analysis was utilized
to select the principal components (PCs), and p value must less than
0.05. Then, the further t-distributed Stochastic Neighbor Embedding
(t-SNE), Haematoxylin and Eosin (HE) and UMAP (Uniform
Manifold Approximation and Projection) were applied to identify
the cell sub-cluster based on the PCs (resolution = 0.50) (19). And in
sub-cluster,DEGswerefilteredwhen the absolute value of log FC less
than 0.5 and FDR more than 0.05. Moreover, the location and
expression of DEGs were demonstrated in feature plots and violin
plots, respectively. Besides, every cluster was annotated by scMatch
(20), singleR (21), and CellMarker (22) databases. Aim to annotate
single cells, 50 hallmark gene sets were performed to absolutely
quantify the signaling pathway activity in each single cell.

Multidimension Validation
To decrease the inherent defects of analysis in silicon, multiply
online databases were utilized to validate the scientific hypothesis
Frontiers in Oncology | www.frontiersin.org 4
in several aspects. And top five genes in the key pathway selected
by GeneCard (https://www.genecards.org/) were also validated
with TFs and PSRSs.

Gene Expression Profilling Interactive Analysis (GEPIA) (23),
Oncomine (24), PROGgeneV2 (25), UALCAN (26), Linkedomics
(27), SurvExpress (28), cBioportal (29), Genotype-Tissue
Expression (GTEx) (30) and UCSC xena (31) validated in gene
level based, Cancer Cell Line Encyclopedia (CCLE) (32) validated
in cancer cell line level, The human protein altas (33) validated in
tissue level in BRCA patient. Finally, String database (12) was
utilized to construct the Protein-Protein Interaction network.

Statistics Analysis
The R software (www.r-project.org; version 3.6.1; Institute for
Statistics and Mathematics, Vienna, Austria) was applied in all
statistics analysis in our study, and two-sided p value <0.05 was
determined as statistically significant.
RESULTS

Differentially Expressed Genes
Identification
The expression profiling of 1,048 primary BRCA samples
without bone metastasis and 32 primary BRCA samples with
bone metastasis were obtained from TCGA database, and all
patients’ demographics information was summarized in Table 1.
And all analysis processes were illustrated in Figure 1.
TABLE 1 | Baseline information of 813 patients diagnosed with breast
invasive carcinoma.

Variables Total Patients (N = 813)

Age, years
Mean ± SD 57.54 ± 12.66
Median (Range) 58 (26–90)

T stage
T0 0
T1 222 (27.31%)
T2 477 (58.67%)
T3 88 (10.82%)
T4 26 (3.20%)

N stage
N0 670 (82.41%)
N1 0
N2 92 (11.32%)
N3 51 (6.27%)

M stage
M0 798 (98.15%)
M1 15 (1.85%)

Stage
Stage I 152 (18.70%)
Stage II 468 (57.56%)
Stage III 178 (21.89%)
Stage IV 15 (1.85%)

Metastasis
Bone metastasis 5 (0.62%)
Other metastasis 10 (1.23%)
No metastasis 798 (98.15%)
January 2021 | Vo
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RNA-seq data from TCGA database was screened by edgeR to
filter DEGs, and the information of BRCA (Figure 2A), the
heatmap of RNA expression level in BRCA samples (Figure 2B)
and volcano plots of DEGs and non-DEGs (Figure 2C) were
launched. And 31 DEGs were founded. Besides, GO (Figure 2D)
enrichment analysis for DEGs was performed, and cell-cell
adhesion via plasma-membrane adhesion molecules (BP,
GeneRatio = 0.048, p = 0.001, count = 21), contractile fiber
(CC, GeneRatio = 0.045, p < 0.001, count = 20), receptor ligand
activity (MF, GeneRatio = 0.066, p = 0.007, count = 27) were the
most significant GO items. And KEGG (Figure 2E) enrichment
analysis for DEGs showed Neuroactive ligand-receptor
interaction (GeneRatio = 0.125, p = 0.001, count = 23) was the
most significant KEGG item.
WGCNA
Based on WGGCNA package, seven modules were defined
(Figures 3A, B). Aim to annotate the phenotype of modules,
50 Hallmark gene sets and mRNAsi were co-analysis with
Frontiers in Oncology | www.frontiersin.org 5
modules in the heatmap plot (Figure 3C). Module turquoise
(MS = 0.550; p < 0.001) was the module most relevant to
mRNAsi (MS = 0.670; p < 0.001) and 125 SRSs in turquoise
were integrated into the further analysis. In addition, three
Hallmark gene sets were highly correlated with module
turquoise: hallmark apical junction (MS = 0.670; p < 0.001),
hallmark myogenesis (MS = 0.66; p < 0.001), and hallmark
IL6-JAK-STAT3 signaling (MS = 0.660; p < 0.001)
(Figure 3D).
Multivariate Prognostic Model
Construction
The heatmap (Figure 4A) and volcano plot (Figure 4B)
demonstrated the results of DEG analysis of 125 SRSs. And
univariate Cox regression analysis was utilized to find the
prognostic genes, and 43 PSRSs were identified. In addition,
forest plot (Figure 4C) showed CD248 (HR = 1.00004, 95%CI
(1.00001-1.00006), p = 0.007) was significantly associated with
prognosis of BRCA. Then, the PSRSs were integrated into
FIGURE 1 | Flow chart of analysis.
January 2021 | Volume 10 | Article 613333
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multivariate Cox regression analysis, and a prognostic model
was constructed. The scatter plot (Figure 5A) and risk line
plot (Figure 5B) were drawn to illustrated the risk distribution
of each patient. In addition, in term of model diagnosis, area
under curve (AUC) of ROC curve was 0.711 (Figure 5C).
Based on the median risk score calculated by multivariate
model, low- and high-risk groups were accessed by Kaplan-
Meier survival analysis (Figure 5D), and the result displayed a
significant difference (p < 0.001). Finally, the risk score was co-
analysis with age, T stage, N stage, M stage, stage, the
univariate (Figure 5E) (HR = 167.019, 95%CI (39.677–
703.066), p < 0.001) and multivariate (Figure 5F) (HR =
1.050, 95%CI (1.033–1.067), p < 0.001) Cox regression,
suggesting that the risk score was an independent
prognostic factor.
Frontiers in Oncology | www.frontiersin.org 6
Potential Signal Axis Identification
The expression levels of Hallmark gene sets were shown in
heatmap plot (Figure 6A), and differential expressed gene sets
showed in volcano plots (Figure 6B). A total of 47 significant
expressed Hallmark gene sets were identified by GSVA (Figure
6C), and five up-regulated and 15 down-regulated Hallmark
gene sets were identified by GSEA (Figure 6D). What’s more,
Hallmark gene sets were co-analyzed with PSRSs by the Pearson
correlation analysis.

Based on data of 318 TFs from the Cistrome database, a series
of analysis on expression launched, and heatmap plot (Figure
7A) and volcano plot (Figure 7B) were applied. Moreover, 96
TFs were significantly differential expressed. Then, the Pearson
correlation analysis was utilized to find the relation between TFs
and PSRSs.
A

B

D E

C

FIGURE 2 | The summary of mRNAsi (A), heatmap plot (B), volcano plot (C), GO (D), and KEGG (E) enrichment analysis of differential expressed genes. Cell-cell
adhesion via plasma-membrane adhesion molecules, contractile fiber, receptor ligand activity were the most significant GO items, and Neuroactive ligand-receptor
interaction was the most significant KEGG item.
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In addition, the intersection between co-analysis Hallmark
gene sets in GSVA and significant Hallmark gene sets in GSVA
was illustrated in Venn plots (Figure 7C), 22 Hallmark gene sets
were found.

Next, the network (Figure 7D) of TFs, PSRSs and Hallmark
gene sets were constructed based on the coefficient correlation
of the Pearson correlation analysis. Therefore, key TF-PSRS
paired was MAF-CD248 (Correlation coefficient = 0.435, p <
0.001, positive), and PSRS-Hallmark gene set paired was
CD248-apical junction (Correlation coefficient = 0.353, p <
0.001) (Figure 7E).

In sum, the scientific hypothesis was defined: MAF positively
regulated CD248, promoting apical junction pathway in BRCA,
which might play a role in bone metastasis.
Cmap Analysis
To find the latent inhibitor of the bone metastasis-specific
regulation network and proposed signal axis, the CMap
analysis was utilized, and alexidine (enrichment = 0.6393, p =
0.046), clomipramine (enrichment = 0.654, p = 0.034),
trifluoperazine (enrichment = 0.434, p = 0.003), thioridazine
(enrichment = 0.337, p = 0.016) and valinomycin (enrichment
=-0.639, p = 0.041) were significant compounds in BRCA
Frontiers in Oncology | www.frontiersin.org 7
(Figure 8A). Based on the clue database, the detail information
of trifluoperazine (Figure 8B), clomipramine (Figure 8C) and
thioridazine (Figure 8D) were found, and trifluoperazine was
most related to metastasis BRCA according to literature
review results.
Spatial Transcriptome and Chromatin
Immunoprecipitation Sequence Validation
With the aim to further explore the location of key genes in
subtype cell clusters, the profiling of scRNA-seq and spatial
transcriptome were co-analyzed. Fourteen clusters were
identified in UMAP and t-SNE, and pare-carcinoma, invasive
ductal carcinoma and intraductal carcinoma in situ were
illustrated in HE-stained section (Figure 9A). For validation,
the feature and spatial feature plots of MAF, CD248, GJA1,
LAMA3, TJP1, LAMC2, and COL17A1 demonstrated to show
the location in BRCA samples, and they were highly-expressed in
the invasive ductal carcinoma tissue (cluster 2, 4, 7, 9, 12)
(Figures 9B, C). Besides, a series of analysis based on cell cycle
indicated that genes in cluster 4 and 7 of invasive ductal
carcinoma and 10 of intraductal carcinoma highly related to
phase G2M and S (Figure 9D). In addition, tumor inhibited
pathways like apoptosis, p53 pathway and TNFa signaling via
A

B

D
C

FIGURE 3 | Heatmap of sample (A), Cluster dendrogram of WGCNA (B), co-expression heatmap of modules and phenotypes (C), and the correlation between the
mRNAsi and the module (D). Module turquoise and hallmark apical junction was the key module and phenotype.
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NF-kB were down-regulated while tumor genesis related
pathways G2M checkpoint and E2F targets were up-regulated
(Figure 9E). In ChIP-seq analysis, binding peaks were illustrated
in CD248 sequence (Figure 10). Moreover, genes in our
hypothesis were validated in ATAC-seq (Figure 11), and they
were all regulated in BRCA samples. Therefore, patterns of direct
transcriptional regulatory between TF-PSRS interaction pairs
were identified.
Multidimensional Validation
The correlation of key genes in signal axis based on cBioportal
database was summarized in Table S1. And top five genes in
apical junction were GJA1, LAMA3, TJP1, LAMC2, and
Frontiers in Oncology | www.frontiersin.org 8
COL17A1. Several databases were applied to validate the
expression level (Table S2) and prognosis value (Table S3) of
key genes in hypothesis signal axis. Besides, details were
demonstrated in Figure S1-12. MAF showed down-regulated
in BRCA, and CD248, GJA1, LAMA3, TJP1, LAMC2, and
COL17A1 showed up-regulated in primary BRCA. Besides,
MAF was highly-expressed in the metastasis sample. What’
more, MAF (Figure S3C, p = 0.013), CD248 (Figure S3B, p =
0.036), GJA1 (Figure S3A, p = 0.005; Figure S6B, p = 0.003),
LAMA3 (Figure S3A, p = 0.008; Figure S6B, p = 0.006), TPJ1
(Figure S6B, p = 0.019) and LAMC2 (Figure S3B, p = 0.018)
showed significantly related metastasis; MAF (Figure S3C, p =
0.002; S6C, p = 0.048), CD248 (Figure S3D, p = 0.021; S6C, p =
0.015), GJA1 (Figure S3E, p = 0.001; S6A, p < 0.001), LAMA3
A B

C

FIGURE 4 | The heatmap (A), volcano plot (B), and forest plots (C) of key genes from key module.
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(S6A, p = 0.047),TJP1 (Figure S3D, p = 0.031; Figure S6A, p =
0.044; Figure S7A, p = 0.027), LAMC2 (Figure S5F, p = 0.038)
and COL17A1 (Figure S1R, p = 0.014; Figure S3D, p = 0.007;
Figure S5G, p = 0.001; Figure S6A, p = 0.048) showed
significantly related prognosis; LAMC2 (Figure S7C, p =
0.047) and COL17A1 (Figure S7C , p = 0.001) were
significantly related to progression free.
DISCUSSION

BRCA was a common tumor in female, and patients with bone
metastasis suffered from the pain and the risk of fracture and
Frontiers in Oncology | www.frontiersin.org 9
even death (4). What’s worse, tumor genesis and osteolytic
damage could be mutually reinforcing (4). As consequence, the
mechanism of bone metastasis must be expounded for early
diagnosis and precise therapy.

In the recent study, a total of 813 primary BRCA samples
were analyzed. Based on WGCNA method and univariate Cox
regression analysis, several modules were annotated by mRNAsi
and Hallmark gene sets to find the key module and correspond
PSRSs. And the multivariate Cox model was constructed. In
addition, multivariate Cox model and risk score were accessed by
ROC curve and Kaplan-Meier survival analysis. And the risk
score was an independent predict factor. Then, a metastasis-
specific regulation network was constructed by the Pearson
analysis, and MAF, CD248 and apical junction were
significant. Moreover, the regulatory pattern was supported by
A B

D

E F

C

FIGURE 5 | The scatter plot (A), risk line plot (B), ROC curve (AUC = 0.711) (C), and Kaplan-Meier plot (p < 0.001) (D) for multivariate prognosis model. And
univariate (E) and multivariate (F) Cox regression analysis for risk score. And the risk score was the independent predict factor.
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spatial single-cell RNA sequence and ChIP-seq data and multi-
omics online databases. Based on CMap analysis, trifluoperazine
was identified as the possible inhibitor for bone metastasis
of BRCA.

MAF was MAF basic leucine zipper transcription factor,
which belonged to AP-1 super family, and it regulated the
terminal differentiation (34). Besides, MAF was crucial in
promoting osteoblast differentiation of bone marrow stromal
cell (35). What’ more, MAF directly regulated osteoblast-
specifical promoter Bglap1, and co-regulated the osteoblast
differentiation with RUNX2 (35). In addition, Milica Pavlovic
et al. found that high-expressed MAF was significant related to
bone metastasis instead of visceral metastasis based on Genomic
copy number distortion analysis and immunohistochemistry,
and MAF was also correlated to overall survival (36). Moreover,
MAF played a role in promoting bone metastasis rather than
cancer cell proliferation in vivo (36), which was consistent with our
scientific hypothesis. Additionally, MAF also potentially controlled
biological processes like migration, adhesion, and osteoclast
differentiation in bone metastasis (36).
Frontiers in Oncology | www.frontiersin.org 10
CD248 highly-expressed in tumor tissue, especially in BRCA,
and it was related to the prognosis of patients (37). And the
transcription product of CD248 was endosialin, which expressed
on the cell surface offibroblasts and pericytes in tumor instead of
tumor endothelium (38). Further, Carmen Viski et al. found
CD248 played a pivotal role by promoting the step of infiltration
from primary to circulatory system via pericytes in metastasis,
which affected on tumor microenvironment (39). Besides,
CD248 enhanced the adhesion to the extracellular matrix, and
activated the matrix metalloproteinase 9 (MMP9) in tumor
metastasis (40). Moreover, CD248 expressed in osteoblast
instead of osteoclast, and it has negative effects on osteoblast
maturation and ossification (41).

Although none of the study reported the correlation of MAF
and CD248, we proposed that MAF positively regulated the
transcription of CD248: promoted the function of the transcript
in cell adhesion, invasion and migration, and regulated
osteoblast function (36, 40, 41).

Apical junction was a structure of apical domain of epithelial
cells, and it linked adjacent epithelial cells by tight and adherent
A B

DC

FIGURE 6 | The heatmap (A), volcano plot (B), GSVA (C), and GSEA (D) analysis of hallmark gene sets.
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FIGURE 7 | The heatmap (A) and volcano plot (B) of TFs. And the venn plot of hallmark gene sets (C). The network plot of TFs, DEGs and hallmark gene sets (D).
And the co-analysis result for TFs, DEGs and hallmark gene sets (E).
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junction, which was essential for maintaining the epithelial
barrier (42). And in type III epithelial–mesenchymal transition
(EMT), the apical junction was disrupted, the apical–basal
polarity lost, and the mesenchymal characteristics emerged,
finally cells migrated to vessels and traveled to multiply organs
and tissues (43). However, some epithelial characteristics were
retained, especially the E-cadherin, and the collective migration
was observed in metastasis BRCA (44, 45). What’s more, when in
the stage of transplanting to the bone, E-cadherin and E-
cadherin adherent junction formed between cancer cells, then
the E-cadherin and N-cadherin adherent junction formed
between cancer cells and osteoblasts, and cell-cell contact
promoted the tumor proliferation via activated mTOR
pathway in tumor microenvironment (46).

Up to date, few of study focused on the relationship between
CD248 and apical junction. We speculated that CD248 regulated
the apical junction by promoting the bone colonization in bone
metastasis (41, 46).

Trifluoperazine was a type of calmodulin blocker and
dopamine D2 like receptor antagonist, which could inhibit the
cancer cell metastasis in vitro, but the collective migration can be
promoted by knocking out MRP (47). However, trifluoperazine
might disturb the electrostatic surface potential (47). Besides, it
inhibited the differentiation of osteoclasts, tumor genesis,
metastasis and bone loss and promoted bone formation in
Frontiers in Oncology | www.frontiersin.org 12
breast cancer (48). Therefore, we proposed trifluoperazine
might target on the MAF-CD248-apical junction axis, and play
a role in inhibiting metastasis.

Last but not least, there were some limitations in our study.
Firstly, our analysis was only based on high-throughput
bioinformatic analysis rather than mechanism exploration.
Then, data and platform were also limited, and more
validations based on different data sets were needed (e.g. most
ChIP-seq samples were not BRCA). And verifications based on
clinical samples (with and without metastasis) were required.
Next, more function experiments and directly mechanism
needed to be verified. Therefore, gain/loss experiments based
on MAF-CD248, CD248-apical junction and MAF-apical
junction, rescue experiments on MAF-CD248-apical junction
axis in vivo and vitro and Co-Immunoprecipitation will be
lunched. Importantly, the MAF-CD248-apical junction axis in
bone metastasis BRCA was firstly reported, and our study
provided the idea of application on clinical prognosis and
precise therapy.
CONCLUSION

In summary, we proposed that MAF positively regulated CD248,
then promoted apical junction pathway in BRCA, which played a
A

B DC

FIGURE 8 | The heatmap of inhibitor and different cancers (A). The information of trifluoperazine (B), clomipramine (C), thioridazine (D) from clue database.
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FIGURE 9 | The UMAP, t-SNE plots, and pare-carcinoma, invasive ductal carcinoma and intraductal carcinoma in situ were illustrated in HE-stained section (A).
The feature and spatial plots of MAF, CD248, GJA1, LAMA3, TJP1, LAMC2, and COL17A1, showing that these key genes were highly expressed in the invasive
ductal carcinoma tissue (B, C). UMAP plot related to cell cycle, violin plots of phase G2M and S, and phase annotated section (D), and cluster 4 and 7 of invasive
ductal carcinoma and 10 of intraductal carcinoma highly related to phase G2M and S. The heatmap of Hallmark gene sets in cell clusters (E).
FIGURE 10 | Validation of the transcriptional regulation mechanisms of MAF-CD248 in ChIP-seq data available from Cistrome database.
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FIGURE 11 | Validation of seven key genes [MAF (A), CD248 (B), GJA1 (C), LAMA3 (D), TJP1 (E), LAMC2 (F), and COL17A1 (G)] in ATAC-seq data available from TCGA.
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role in bone metastasis. And it could be inhibited by
trifluoperazine. Besides, the MAF-CD248-apical junction signal
axis was verified by spatial single-cell RNA sequence and ChIP-
seq data and multi-omics online databases.
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(C), LAMA3 (D), TJP1 (E), LAMC2 (F), and COL17A1 (G) between tumor and
normal. The stage plot of MAF (H), CD248 (I), GJA1 (J), LAMA3 (K), TJP1 (L),
LAMC2 (M), and COL17A1 (N) in BRCA. The Kaplan-Meier survival analysis for
overall survival in MAF (O), CD248 (P), LAMA3 (Q), and COL17A1 (R), for Disease
free survival in MAF (S), CD248 (T), LAMA3 (U), and COL17A1 (V).

Supplementary Figure 2 | The expression level of MAF (A), CD248 (B), GJA1
(C), LAMA3 (D), TJP1 (E), LAMC2 (F), and COL17A1 (G) between tumor and
normal.

Supplementary Figure 3 | The Kaplan-Meier survival analysis for MAF, GJA1,
LAMA3, TJP1, LAMC2, COL17A1, and integrated genes in BRCAmetastasis in NKI
(A); MAF, CD248, GJA1, LAMA3, TJP1, LAMC2, COL17A1, and integrated genes
in BRCA metastasis in GSE2990 (B); MAF, CD248, GJA1, LAMA3, TJP1, LAMC2,
COL17A1, and integrated genes in BRCA metastasis in GSE11121 (C). The
Kaplan-Meier survival analysis for MAF, CD248, GJA1, LAMA3, TJP1, LAMC2,
COL17A1, and integrated genes in BRCA overall survival in GSE19783 (D); MAF,
CD248, GJA1, LAMA3, TJP1, LAMC2, COL17A1, and integrated genes in BRCA
overall survival in GSE3494 (E).

Supplementary Figure 4 | The expression level of MAF (A), CD248 (B), GJA1
(C), LAMA3 (D), TJP1 (E), LAMC2 (F), and COL17A1 (G) between tumor and
normal.

Supplementary Figure 5 | The Kaplan-Meier survival analysis of MAF (A),
CD248 (B), GJA1 (C), LAMA3 (D), TJP1 (E), LAMC2 (F), and COL17A1 (G)
between high- and low-expression groups. The positively (H) and negatively (I)
related genes of BRCA.

Supplementary Figure 6 | The Kaplan-Meier survival analysis for MAF, CD248,
GJA1, LAMA3, TJP1, LAMC2, COL17A1, and integrated genes in BRCA overall
survival in Van (A); MAF, CD248, GJA1, LAMA3, TJP1, LAMC2, COL17A1, and
integrated genes in BRCA metastasis in Van (B); MAF, CD248, GJA1,
LAMA3, TJP1, LAMC2, COL17A1, and integrated genes in BRCA overall survival in
TCGA (C).

Supplementary Figure 7 | The Kaplan-Meier survival analysis for MAF, CD248,
GJA1, LAMA3, TJP1, LAMC2, COL17A1, and integrated genes in BRCA overall
survival (A); MAF, CD248, GJA1, LAMA3, TJP1, LAMC2, COL17A1, and integrated
genes in BRCA disease free (B); MAF, CD248, GJA1, LAMA3, TJP1, LAMC2,
COL17A1, and integrated genes in BRCA progression free (C).

Supplementary Figure 8 | The expression level of MAF, CD248, GJA1, LAMA3,
TJP1, LAMC2, and COL17A1 in normal people tissue.

Supplementary Figure 9 | The expression level of MAF, CD248, GJA1, LAMA3,
TJP1, LAMC2, and COL17A1 in BRCA (A). The PCA plot of MAF, CD248, GJA1,
LAMA3, TJP1, LAMC2, and COL17A1 (B). The heatmap of MAF, CD248, GJA1,
LAMA3, TJP1, LAMC2, and COL17A1 (C).

Supplementary Figure 10 | The expression level of MAF (A), CD248 (B), GJA1
(C), LAMA3 (D), TJP1 (E), LAMC2 (F), and COL17A1 (G) in cancer cell lines.

Supplementary Figure 11 | The expression level of MAF (A), CD248 (B), GJA1 (C),
LAMA3 (D), TJP1 (E), LAMC2 (F), and COL17A1 (G) in normal and BRCA tissue.

Supplementary Figure 12 | The protein-protein interaction network of MAF,
CD248, GJA1, LAMA3, TJP1, LAMC2, and COL17A1.
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