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Abstract: Imprinting polymerization is an exciting technique since it leads to specific binding sites,
which are the basis of a variety of applications, such as sensors, detectors, and catalysts. The specific
binding sites are created using templates and then fixing the structure of the binding site with
crosslinking. The literature review of imprinting polymerizations shows that the crosslinking density
governs the physical properties of the resulting molecularly imprinted polymer (MIP). It is also a
factor governing the capacity and the selectivity of MIPs. Reviewing polymer science data and theory,
the crosslinking density commonly used in MIP synthesis is unusually high. The data reviewed here
suggest that more research is needed to determine the optimal crosslinking density for MIPs.
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1. Introduction

Imprinting polymerization is an exciting technique: By just adding one additional
step to the synthesis of a common polymer, a material can be made specific to a chemical.
Basically, that chemical, the template, is added to the synthesis solution. The monomers
will surround the template automatically and form the strongest bonds possible, since
thermodynamically that happens to be the lowest energy state and thus is preferred. The
monomers will then be polymerized and crosslinked, and with that the three dimensional
structure with the strongest bonds to the template will be conserved. The additional step is
to remove the template. This results in a pocket ideal for rebinding the template [1].

How useful specific binding is can be seen in biochemistry. A cell contains a large
number of compounds and intermediates, but despite that, enzymes choose one specific
compound to react without any side products, simply by providing a very specific binding
site. In organic chemistry that is only possible in very few cases with complicated, many-
step syntheses resulting in low yields. Another example are antibodies that recognize one
specific compound on the surface of pathogenic bacteria to then destroy those bacteria
and thus prevent a possible deadly infection. Imprinting polymerization promises specific
binding to allow for analogous applications in technology.

Early proof-of-concept for the specific binding with imprinting polymerization came
from Mosbach’s group [2,3]. One of the earliest applications that implemented molecularly
imprinted polymers (MIPs) was the separation of chiral compounds using chiral solid
phases in column chromatography [4,5]. At this point, MIPs are used in many different
applications. Broadly, they can be grouped into two categories: Detection and sensing for
a variety of compounds, from contaminants to proteins in cells [6–18] and extraction and
purifications of compounds from environmental and biological samples [19–25].

The crosslinking density of a material determines its physical properties, such as the
porosity of the material. In imprinting polymerizations, the porosity determines access
to internal binding sites and thus the capacity of the imprinted material. The aim of this
work is to analyze the effect of the commonly used crosslinking density in imprinting
polymerization for a variety of applications. This will be accomplished by selecting current
examples of imprinting polymerization and correlating the details of their syntheses with
MIP capacity and polymer science data. This will not be a comprehensive review of
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imprinting polymerization. In fact, only a small number of studies of the vast imprinting
polymerization literature will be used.

2. Common Syntheses for Imprinting Polymerizations

Imprinting polymerization generally uses a similar synthesis: A “functional monomer”
is selected that is effective in binding the template, the “structural monomer”, which is the
crosslinker, is chosen to match the polarity needed for the reaction and possibly also to
bind to the template. A solution with the template and monomers is given time to bind
to each other, then the initiator is added to the mixture and the polymer is formed. After
isolating the polymer, the template is removed [1]. This results in specific binding sites that
allow for the specific binding that differentiates imprinted polymers from non-imprinted
resins [1–26].

Most commonly, imprinting polymerization is based on non-covalent forces, but cova-
lent and semi-covalent imprinting has also been reported [27]. There are variations in where
the imprinting occurs (bulk imprinting or surface imprinting [28]), as well as what materi-
als are used (polymeric materials, inorganic materials [29] or hybrid materials [30,31]). In
this work, the focus is on either bulk or surface imprinting in polymeric materials.

Looking at bulk imprinting of polymeric materials in more detail, the ratio between the
template, functional monomer, and crosslinker is important [32]. The amount of functional
monomer is directly related to the amount of template since there has to be sufficient
functional monomer to interact with all of the template molecules. The crosslinker then
fixes the three-dimensional structure that binds the template most effectively. An effective
ratio between template:functional monomer:crosslinker has been identified as 1:4:20 [32].
This has been used in the following syntheses as the starting point for optimization of the
system and the application in question [33].

Surface imprinting was developed due to two common problems that were found with
bulk imprinting, the difficulty to remove all templates after MIP synthesis, and the difficulty
to access internal binding sites [34]. In surface imprinting, the MIP is commonly prepared as
a coating onto a hard particle. The starting ratio of template:functional monomer:crosslinker
is also 1:4:20 [34].

3. The Effect of Porogen and Crosslinking on Imprinted Materials

In this work, specifically the ratio between the functional monomer and crosslinker is
highlighted since that determines the physical properties of the resulting MIP. That ratio
also determines the number of accessible binding sites. Table 1 lists the ratio and the total
capacity for a variety of examples in recent literature. A large majority is based on the 1:5
ratio described in the preceding section.

Table 1. Functional monomer ratio and total capacity for MIPs for a variety of applications cited in selected recent literature.

Monomer:Crosslinker
Molar Ratio

Template
Crosslinker

Maximum
Capacity
(mg/g)

Comments Reference

1:2.7 UO2
2+

EGDMA 2 125

Bulk imprinting
BET A2 670 m2/g, pore vol. 1.439

mL/g, avg. pore Ø 2.2 nm 1

Adsorption dependent on pH,
initial conc., regeneration

[35]

1:5 Cu(II)
Pentaerythrol triacrylate 3 2.16

Bulk imprinting
BET A2 6.7 m2/g, pore vol. 0.0088

mL/g, avg. pore Ø 5.2 nm 1
[36]
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Table 1. Cont.

Monomer:Crosslinker
Molar Ratio

Template
Crosslinker

Maximum
Capacity
(mg/g)

Comments Reference

1:4.5
Extracellular matrix

peptides
Pentaerythrol triacrylate 3

49.55 Bulk imprinting
Most templates trapped [37]

1:3, 1:5
Serotonin reuptake

inhibitors
EGDMA 2

27.3
Bulk imprinting

BET A2 193.8 m2/g, pore vol. 0.37
mL/g, pore Ø 7.7 nm 1

[38]

1:3, 1:4, 1:5 Sarafloxacin
EGDMA 2 58.6

Bulk imprinting
Several functional monomers

More crosslinking, less capacity
[39]

1:4 to 1:20 Sialic acid
EGDMA 2 24.7

Bulk imprinting
Specialized acrylates
1:4 highest capacity

[40]

1:2.5 Sulfonylurea pesticides
Divinylbenzene 1.6 Bulk imprinting

BET A2: 409.7 m2/g 1 [41]

1:4

2-(3,4-
dimethoxyphenyl)ethylamine

Trimethylopropane
trimethacrylate 3

24.5
Bulk imprinting

Optimized crosslinker and
porogen

[42]

1:0.38 Atrazine
EGDMA 2 3.45

Bulk Imprinting
Investigating porogen

BET A2 237.5 m2/g, pore vol.
0.0268 mL/g, pore Ø 0.57 nm 1

[43]

1:5
4-Hydroxy-3-

nitrophenylacetic acid
EGDMA 2

0.106
Bulk Imprinting

Porogen, pore structure, and
sorption investigation

[44]

1:5 Chloramphenicol
EGDMA 2 64.3 Surface imprinting, hollow

rods 1–3 µm long, Ø 50–180 nm 1 [45]

1:4.5 Peptide
EDMA 4 76.9 Surface imprinting, hollow [46]

1:1.2 Cytidine
EGDMA 2 33.39 Surface imprinting, magnetic MIP

BET A2: 980 m2/g 1 [47]

1:2.5, 1:5 Cd(NO3)2
EGDMA2 32

Membrane
Less crosslinking, more

adsorption
Less imprinting molecule, less

adsorption

[48]

1:1 Acteoside
EGDMA2 62.83 Surface imprinting, membrane [49]

1:1.3 Cd(NO3)2
Ethylene diamine 250.7

Surface imprinting
Surface crosslinking only

BET: A2 192.2 m2/g, pore vol.
0.052 cm3/g, pore Ø 113 nm 1

[50]

1: 0.68 Sulfa-methoxasole
EGDMA 2 20.0 Surface imprinting, magnetic MIP

Computational study [51]
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Table 1. Cont.

Monomer:Crosslinker
Molar Ratio

Template
Crosslinker

Maximum
Capacity
(mg/g)

Comments Reference

1:0.44 Sulfonamides
EDMA 4 0.559 Surface imprinting, magnetic MIP

Hybrid with silicon [52]

1:4 Pseudohepericin
EDMA 4 450

Hollow particle
Prepared by emulsion

polymerization
Inner Ø ca. 30 µm 1

[53]

1:5 Estrogens
EGDMA 2 12.1 Hollow particle

Ca. 250 nm inside Ø 1 [54]

1:5 Celecoxib
EGDMA 2 43.29 Hollow particle [55]

1:0.2
Cr(VI)

Trimethylopropane
trimethacrylate 3

66.6
Bulk imprinting

BET: A2 4.78 m2/g, pore vol.
0.00554 cm3/g, pore Ø 2.35 nm 1

[56]

1:0.0079 (S)-Naproxen
EGDMA 2 127 Surface imprinting, magnetic MIP

Enantioselectivity 4:1 [57]

1:2.5
Quinine

Trimethylopropane
trimethacrylate 3

15.38

Start with colloidal silica crystal
microsphere

Coat MIP on porous crystal, then
remove crystal

BET: A2 216 m2/g, pore vol. 0.66
cm3/g, avg pore Ø 12.2 nm

[58]

1:1.05
Artimisin

3-
Aminopropyltriethoxysilane

45.89

Start with polydopamine as the
core

Coat imprinted Si around by the
sol-gel method

Phase inversion, then cast as
membrane

[59]

1:0.005 Cd(II)
EGDMA 2 950

Bulk Imprinting
Increased porosity by bubbling N

through the reaction
[60]

1 A2: Surface area; Ø: Diameter. 2 Ethylene glycol dimethacrylate. 3 Trifunctional crosslinker. 4 Ethylene dimethacrylate.

Only studies that report the total capacity of their MIPs and the monomer:crosslinker
ratio were selected for Table 1. The cited studies use templates as small as metal ions to as
big as peptides and any size in between.

It is common to use porogens to increase the surface area and with that the capacity
of the imprinted polymers [42–44,61–65]. Most porogens are solvents or solvent mixtures.
The solubility of the template, monomer(s), and crosslinker is one of the major factors
determining the surface area [44,63,65]. Using a solvent or co-solvent that is a non-solvent
can lead to phase separation. If the phase separation leads to precipitation of the complex
or the polymer, that generally leads to reduced surface area [42,44,63]. If the non-solvent
creates an emulsion, that can lead to cracks or pores, which often increase the surface
area [42]. An effective way to increase the surface area is to use a solid porogen, usually a
salt particle that can later be dissolved and washed out [61,62]. Insoluble polymers have
been reported as porogens, as well [61].

The properties of the crosslinker also make a difference in the surface area, pore size,
and binding capacity of the resulting polymer, as well as the structure of the prepolymeriza-
tion complex [36,42,44,66–74]. The intermolecular forces between the template, monomer,
crosslinker, and solvent drive the formation of the prepolymerization complex, as was
confirmed by several computational studies [66–71,73,74]. For stronger binding, it may
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require additional binding events occurring during oligomer formation, depending on the
exact system [75]. The strongest binding to the template occurs when the intermolecular
forces match between all compounds in the mixture. When properties such as polarity
differ, phase separation can occur, especially with compounds that easily crystallize, such
as methyl methacrylate [70,71]. As with porogens, that can cause phase separation, which
leads to denser structures and less surface area. Functional monomers and crosslinkers
participate in the prepolymerization according to their molar ratios and matching inter-
molecular forces [36,42,44,66–74]. This often results in a variety of structurally different
prepolymerization complexes, since the strength of binding with compounds of similar
properties can be similar [72,73]. The structure of the crosslinker is also important in an
additional way: Multifunctional crosslinkers result in fully-crosslinked materials with a
lower molar ratio than difunctional crosslinkers, since one molecule can connect more than
two polymer chains [36,37,42,56,58,59,72,76].

Some studies optimize for selectivity, enantioselectivity or detection limit (in the case
of sensors). All of these factors will introduce variability in the total capacity value. And
yet, there is an interesting trend in the data shown in Table 1: The capacity for MIPs made
by bulk polymerization and surface polymerization are similar, even most hollow MIPs
fall into the same capacity range. Both surface imprinting and hollow particle MIPs were
developed to allow for better access to the imprinted site and with that for increased
capacity. And yet, that is not seen in the data. This suggests that most binding in all cases
occurs on the surface.

There are four studies with an unusual high capacity in this selection. An’s group
used polymers grafted onto a particle surface, then crosslinks the graft polymers [50].
That results in much larger pore sizes and pore volume for easier access to the pores,
especially for metal ion templates that are comparatively small. Sarbu’s group used
emulsion polymerization to prepare hollow particles that are much larger than most, in the
range of 10s of micrometers, and thus allow easy access to a large number of imprinting
sites on the surface [53]. Mishra’s [57] and Mueller’s group [60] used a much lower amount
of crosslinker than the other studies. In fact, Mueller’s group achieves a very high capacity
with simple bulk polymerization.

In that study, the low crosslinker concentration was chosen based on data from
polymer science research. In polymer science, crosslinking is used to make a material
insoluble and reduce the amount of swelling [77]. Studies with a variety of different
polymer systems show that the “gel point”, i.e., the point a polymeric material becomes
insoluble, can be reached with a few percent of crosslinkers compared to the monomer.
The gel point is thought of as the point where all polymer chains are connected into a large
network by the crosslinking molecules. At that point, the whole polymer system is one
large molecule, and thus too big to be soluble. Theoretical calculations confirm that only 5
in 100 to as low as 5 in 1000 repeating units in a polymer chain have to be connected to
form one big network and thus a solid material [77]. In addition, a crosslinking density of
0.1 to 1% is sufficient to encapsulate gas into a polymeric material [78].

When more crosslinkers than monomers are used, each repeating unit of a polymer
chain is connected to its neighbors as well as to a repeating unit of a different polymer
chain. That allows for minimal free volume between each polymer chain, likely with a lot
of interspersed crystalline regions. That means that only imprinting sites on the surface are
accessible for binding, and trapped templates will not be able to be removed.

Several of the cited studies use the solvent or gas as porogens to increase the free
volume and pore size to allow for access of internal imprinted sites. Crosslinking, though,
is known to exclude the solvent from the polymer. There are many examples where
crosslinking of liquid crystalline phases leads to crystalline structures [75,79]. Another
example that demonstrates how effectively the solvent is excluded during crosslinking is
the shrinking of dental composites used for filling cavities [80]. There is a lot of research
with the goal of reducing shrinkage in that field, since a filling that is too small for its cavity
is ineffective.



Molecules 2021, 26, 5139 6 of 10

Another study that illustrates the exclusion of solvent during crosslinking measures
the amount of swelling with varying crosslinking densities [81]. Swelling of a material
is the result of the free movement of solvent into the polymeric material. Only 10% of
crosslinker was enough to stop most of the swelling.

This demonstrates another problem that internal imprinted sites have in an MIP: For
a template to be able to reach the site, there has to be a continuous channel to that site,
as well as a flow of solvent with the template to be able to move into the site and rebind.
Especially with water as the solvent, the amount of water around a solute molecule has
to be large for an aqueous solution to be free-flowing [82]. Water has shown to be very
viscous due to its extensive hydrogen bonding, and around hydrophilic compounds water
can be strongly bound or even crystalline [82].

Which brings up another point: The kinetics of reaching binding sites that are on the
surface vs. inside a particle. Templates that bind to surface sites can bind quickly, since
the binding sites are readily accessible. Templates that bind to internal sites have to move
through a viscous solvent in likely bent channels to reach the binding sites. Therefore, the
kinetics of binding to internal sites will always be slower than the kinetics of binding to
surface sites. And yet, most studies using bulk imprinting report linear binding kinetics.

The combined evidence from polymer science suggests that when more crosslinkers
than functional monomers are used, the inside of the particle is extremely dense and the
internal binding sites will not be accessible. Essentially, bulk polymerization and surface
polymerization will result in the same outcome, as the data in Table 1 also suggested. In
fact, one has to go to very low crosslinking densities (0.5 to 5% of crosslinker) to create
materials with accessible internal binding sites.

One major reason why a high crosslinking density has been used in imprinting
polymerization is due to the fact that the imprint needs to be stable for the MIP to allow
for specific rebinding [32]. This is based on measurements of binding constants. The
strongest binding constants were found when the functional monomers were in optimal
alignment with the template. Therefore, that alignment has to be preserved to achieve the
highest selectivity, and that can only be done when there is no movement in the polymer
chains anymore.

There is recent work that studies enzyme-substrate binding, which suggests that might
not quite be true. Methods have been developed that can follow enzyme-substrate binding
in real time. The results show that binding is a dynamic process [83]. Initially, the active
site is a bit larger than the substrate. The substrate has room to move into the site easily but
initially only binds weakly. After the initial binding, the surrounding amino acids move
towards the template and bind strongly. In fact, more data in the field suggest currently
that strong binding is only possible with this two-step, dynamic process [84].

4. Summary and Future Outlook

This review looks at the imprinting polymerization literature asking the question:
How can the most accessible imprinted binding sites be generated in a material? The data
suggest that with a high crosslinking density, only surface imprinted sites can be accessed,
reducing the possible binding capacity.

There are always two major considerations when developing MIPs: The capacity and
specificity needed for the application in question. The requirements for each application
will be different in those two points.

The research reviewed here suggests that the lower crosslinking density can result in
higher capacity for MIPs. When using external and internal imprinting sites for maximum
capacity, large channels and solvent contents are needed. The disadvantage will be non-
linear binding kinetics. Moreover, some applications that use MIPs require that the material
will be pressure stable. Porous materials full of solvent generally do not withstand high
pressure, but there are simple methods beyond increasing the crosslinking density that can
be used to increase pressure stability [85].
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What determines the specificity of binding is the percentage of functional monomers
being part of imprinting sites and their alignment towards the template. Ideally, the
percentage is 100%. However, that percentage is based on how freely the functional groups
can move towards the template and bind strongly. That is why template binding is always
the first step of imprinting polymerization, and only after binding the crosslinker and
the initiator are introduced. Remember, though, that crosslinking polymerization will
exclude the solvent (and possibly other small molecules), and with that the structure of
the polymer chains, and with that any alignment, will change during polymerization [75].
Therefore, the exact structure of the imprinting sites will only survive if the binding of the
template is stronger than the force that excludes the solvent. Additionally, the higher the
crosslinking density, the stronger the exclusion force. Therefore, the lower crosslinking
density might result in more effective binding sites. Moreover, the strongest binding is
likely to be dynamic binding, where the functional repeating units within the polymer
require the possibility to move.

In conclusion, this work suggests that reducing the crosslinking density might im-
prove both the capacity, as well as the selectivity of imprinted materials. Therefore, more
research into the optimal crosslinking density for imprinting polymerization is needed for
many applications.
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