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Abstract

Mathematical models predict that the prevalence of infection in different communities where an 

infectious disease is disappearing should approach a geometric distribution. Trachoma programs 

offer an opportunity to test this hypothesis, as the World Health Organization (WHO) has targeted 

trachoma to be eliminated as a public health concern by the year 2020. We assess the distribution 

of the community prevalence of childhood ocular chlamydia infection from periodic, cross-

sectional surveys in two areas of Ethiopia. These surveys were taken in a controlled setting, where 

infection was documented to be disappearing over time. For both sets of surveys, the geometric 

distribution had the most parsimonious fit of the distributions tested, and goodness-of-fit testing 

was consistent with the prevalence of each community being drawn from a geometric distribution. 

When infection is disappearing, the single sufficient parameter describing a geometric distribution 

captures much of the distributional information found from examining every community. The 

relatively heavy tail of the geometric suggests that the presence of an occasional high-prevalence 

community is to be expected, and does not necessarily reflect a transmission hot spot or program 

failure. A single cross-sectional survey can reveal which direction a program is heading. A 

geometric distribution of the prevalence of infection across communities may be an encouraging 

sign, consistent with a disease on its way to eradication.
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1. Introduction

Trachoma is the leading infectious cause of blindness worldwide(Resnikoff et al., 2004). 

Mass, community-wide, oral azithromycin treatments have proven effective in reducing the 

prevalence of the causative agent, Chlamydia trachomatis(Schachter et al., 1999; 

Chidambaram et al., 2006; House et al., 2009; Lietman et al., 1999; Gebre et al., 2011). 

Hygiene programs and latrine construction are also thought to reduce transmission (Emerson 

et al., 2000). In some areas, infection is disappearing even in the absence of a dedicated 

treatment program (Chidambaram et al., 2006; Dolin et al., 1998; Hoechsmann et al., 2001; 

Jha et al., 2002). Infection may be going away because of mass antibiotic distribution, 

improved hygiene, or secular changes. Regardless of the mechanism, public health 

stakeholders need to assess whether their programs are a success or failure. Progressive 

reduction of the mean prevalence of infection in a region towards zero would certainly be an 

encouraging trend. However, monitoring large numbers of villages longitudinally can take 

up scarce resources, and has not been done consistently outside a few research programs. 

Programs would benefit if cross-sectional surveys alone could reveal whether infection was 

headed towards elimination.

Mathematical models of infectious disease transmission suggest that as a disease disappears, 

the only stationary distribution for the expected prevalence of infection occurs when 

elimination has been achieved in all communities(Brauer et al., 2008). However, the 

distribution of the prevalence in those communities where infection still remains may 

approach a quasi-stationary distribution (Cavender, 1978; Nåsell, 1999, 1996). In stochastic 

Susceptible-Infectious-Susceptible (SIS) models, this quasi-stationary distribution can be 

approximated by a geometric distribution (Cavender, 1978; Nåsell, 1999, 1996). 

Specifically, if we assume a reproduction number at invasion (R0) distinctly less than one, 

and a refuge of one permanently infected individual in each community, then the number of 

infections in a set of uniform, fixed-size communities approaches a geometric distribution as 

the population size of communities gets larger (Nåsell, 1996). Simulations suggest that even 

with moderate population sizes, the geometric distribution or its continuous analog, the 

exponential distribution, are excellent approximations (Nåsell, 1999, 1996; Ray et al., 2007). 

This has been found for models of infection disappearing due to low transmission or due to 

repeated mass antibiotic distributions (Nasell, 1999; Ray et al., 2007). Note that these 

models typically have assumed homogeneity within and between communities (Blake et al., 

2009; Ray et al., 2009). Thus, the geometric distribution may or may not fit well to field 

data, where these assumptions would likely not strictly hold.

Recent trachoma surveys have assessed the prevalence of infection in multiple communities 

biannually over several years. In each study, communities were participating in an intensive 

treatment program, and infection was documented to be decreasing over time. If the 

underlying conditions which promote transmission are similar enough in an area, then each 

community could be regarded as a separate sampling from a single distribution. Here, we 

test the hypothesis that a geometric distribution describes the prevalence of infection in 

different communities where infection is disappearing.
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2. Methods

We considered results from the TEF study in Gurage, Ethiopia, and the TANA study in 

Amhara Ethiopia; in each, children from 24 communities were longitudinally monitored for 

ocular chlamydial infection (House et al., 2009; Gebre et al., 2011; Holm et al., 2001; 

Lakew et al., 2009a; Porco et al., 2009). Children are considered a core-group for ocular 

chlamydia infection and are therefore the most important population to monitor (House et 

al., 2009). In the TEF study, 1–5 year-old children were monitored biannually from 

randomly selected communities treated biannually for 2 years (Lakew et al., 2009a). In the 

TANA study, 0–9 year-old children were monitored biannually from randomly selected 

communities treated annually or biannually for 42 months (Gebre et al., 2012). In order to 

characterize the distribution of infection when infection is disappearing, we included cross-

sectional visits after at least two mass antibiotic distributions and where the mean prevalence 

of infection was lower than seen 12 months previously (Chidambaram et al., 2006; Lakew et 

al., 2009b). For display purposes only, we produced an empirical distribution of each cross-

sectional survey by assuming that each community’s contribution was the Bayesian posterior 

derived from the observed prevalence and a non-informative, uniform prior (thus a beta 

distribution). To assess possible geographical clustering in TANA, where GPS coordinates 

were available, we conducted a permutation test of Moran’s I defining neighboring 

communities as those sharing a vertex in a Delaunay triangulation.

For each of the cross-sectional surveys of prevalence, we assessed the fit of 8 discrete 

distributions. Three had a single continuous parameter: the geometric, binomial, and Poisson 

distributions. Four had two continuous parameters, and with the appropriate shape parameter 

included the geometric distribution as a special case: discrete Weibull, negative binomial, 

beta binomial (at least asymptotically approaching a geometric distribution as the population 

size increases), the zero-inflated geometric, and the zero-inflated Poisson distributions 

(Johnson et al., 1993). Several cross-sectional surveys were available for each of the two 

studies. In order to combine data from the available visits, for each of the 2-parameter 

distributions we fitted a single overall shape parameter per study, but a different scale 

parameter for each available time point (of which there were 3 in TEF and 4 in TANA). Note 

that we chose to parameterize the zero-inflated geometric and Poisson allowing a different 

proportion of zeros at each visit, but a single geometric scale parameter for all visits (see 

Appendix). As a sensitivity analysis for the 2-parameter distributions, we fitted each cross-

sectional survey separately, allowing a unique shape and scale parameter for each cross-

sectional visit. Since the 24 different communities in each of the two studies had differing 

numbers of individuals, we parameterized such that the fitted scale parameter for each cross-

sectional survey represented the mean proportion of the distribution; note that this mean 

proportion of the distribution was not necessarily the mean proportion of the data (Appendix 

A). Since post-treatment distributions were right-tailed, the first shape parameter of the beta 

binomial distribution was treated as the shape parameter, and the second shape parameter as 

the scale parameter (see reparameterizations in the Appendix). Each distribution was 

assessed by determining the parameter values that optimized the likelihood of the observed 

data, and ranked by the sample size-corrected Akaike Information Criterion (AICc) 

(Burnham and Anderson, 1998). The uncertainty of the parameter estimates was assessed 
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with bias-corrected 95% percentile bootstrap confidence intervals with 999 resamples. We 

performed goodness-of-fit testing with the chi-squared statistic, binning prevalence into 5% 

intervals and comparing versus the geometric distribution with the optimum scale parameter. 

We determined the P-value for the observed data by selecting 999 samples from the best-fit 

geometric distribution for each study visit, and treated each sample in the same manner as 

the observed data.

As sensitivity analyses, we fitted pre-treatment data from the two study regions before a 

program was initiated (time 0 months in Table 1 and the black curves in Fig. 1 and b); 

infection was not thought to be disappearing, and thus a geometric distribution was not 

expected. In addition, we estimated community prevalence from a stochastic SIS model, 

assuming R0 = 0.5 (infection disappearing), R0 = 1.0, R0 = 1.5, or R0 = 2.0 (infection not 

disappearing), and creating a sample of 50 children from each of 24 communities (Lietman 

et al., 2011). We determined the quasi-stationary distribution of the prevalence of infection 

pre-treatment by constructing an N × N matrix representing the N Kolmogorov forward 

equations without the zero state; the eigenvector associated with the largest eigenvalue of 

this matrix was taken as the quasi-stationary distribution(Brauer et al., 2008; Nasell, 1999; 

Ray et al., 2007). The quasi-stationary distribution after three annual mass distributions with 

80% coverage was estimated with 1000 simulations. In order to assess whether 24 

communities were sufficient to distinguish between different distributions, we fitted multiple 

samples of 24 simulated communities from geometric and discrete Weibull distributions. All 

calculations were performed in Mathematica 9.0 (Wolfram Research, Champaign, Illinois).

Data were from studies registered with ClinicalTrials.gov (NCT00221364 and 

NCT00322972) and approved by the National Ethics Review Committee of the Ethiopian 

Science and Technology Agency and the UCSF IRB (10-02630 and 10-02576).

2.1. Role of the funding source

The sponsors of the study had no role in trial design, data collection, data analysis, data 

interpretation, or writing of the report. TL had full access to all the data in the study and had 

final responsibility for the decision to submit for publication.

3. Results

Visits from the two studies were included if communities had received at least two mass 

antibiotic distributions and if the infection was documented to have decreased from 12 

months earlier were included. The 2 and 6 month visits from TEF and the 6 and 12 month 

visits from TANA were excluded because they were after a single treatment. The post-

treatment mean prevalence of infection in the two studies varied from 1.5% to 10.9% (Table 

1), decreasing after mass treatment. Density plots of the community-level prevalence over 

time are displayed in Fig. 1. In TANA, where GPS was available, we were unable to 

demonstrate statistically significant geographical clustering for any post-treatment visit 

(Moran’s I: P = 0.32 for 18 months, P = 0.30 for 24 months, P = 0.14 for 30 months, P = 

0.64 for 36 months).
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We determined the parameter values which maximized the likelihood of obtaining the 

observed data for the 7 distributions: geometric, binomial, Poisson, discrete Weibull, 

negative binomial, beta binomial, zero-inflated geometric, and zero-inflated Poisson 

distributions (Table 2). In each case, the geometric distribution had the lowest (best) AICc. 

The binomial and Poisson distributions were the other single parameter distributions tested 

and offered far lower (worse) likelihoods. Note that the geometric distribution is a special 

case of the two-parameter distributions: discrete Weibull, negative binomial, and beta 

binomial (at least asymptotically), and the zero-inflated geometric distributions; thus with 

appropriate parameter choices, each can mimic a geometric distribution and achieve a 

likelihood of the observed data as least as high as that found with the geometric (with the 

exception of the zero-inflated geometric since we chose to use a single geometric scale 

parameter for each cross-sectional survey in a study, allowing the proportion that were zero 

to vary at each time point). Since none of these two-parameter distributions offered a 

significantly better fit than the geometric, the AICc was larger for these distributions. This 

suggests that these two-parameter distributions are less parsimonious than the geometric. 

The 95% confidence intervals for the estimation of the shape parameters for these two-

parameter distributions included one, which in these parameterizations were consistent with 

the geometric (Table 2). Note that when we treated each individual cross-sectional survey 

separately allowing the shape parameter to vary with each visit, either the geometric or the 

zero-inflated geometric had the best AICc (for individual TANA visits, see Appendix B); the 

95% CIs of shape parameter of the other three 2-parameter distributions included one for 

each separate visit. If the community-level prevalence of infection were indeed from a 

geometric distribution, how often would we have found results as close to a geometric as 

observed? With goodness-of-fit testing, we were unable to reject the hypothesis that the 

observed data from each entire study, or from any single post-treatment visit within a study, 

came from a geometric distribution (Table 1).

As sensitivity analyses, simulations of an SIS model with mass action and R0 = 0.5 were 

used to construct a dataset similar to the Ethiopian data with 24 communities evaluated at 4 

different time points. The geometric offered the optimal AICc, and in no case did the 

addition of a second parameter result in a statistically superior fit (likelihood ratio test, P > 

0.05). Similar sized sets of communities simulated from discrete Weibull distributions with 

shape parameters of 0.5 and 2.0 were easily distinguishable from the geometric (P < 0.05), 

with the Weibull distribution having the optimal AICc. The model selection process 

correctly identified samples taken from discrete Weibull distributions with shape parameters 

0.5 and 2.0. Empirical, pre-treatment surveys from the two Ethiopian areas studied were not 

consistent with a geometric distribution (Table 2). Simulations of an SIS model with mass 

action and R0 = 1.0, 1.5, and 2.0 (without treatment) were used to construct datasets similar 

to the Ethiopian data with 24 communities evaluated at 4 different time points. In all cases, 

the Poisson and the binomial distribution each had a far lower (better) AICc than the 

geometric distribution. Similar sets with an estimated treated reproduction number of Rt = 

1.0, 1.5, and 2.0 also were better fit by the Poisson and binomial than the geometric (for Rt = 

1.0 see Appendix C).
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4. Discussion

When assessing whether an infectious disease is on its way to elimination, survey of 

infection in every community in a region over time may be infeasible due to the costs of 

collection and processing. However, if the community-level cross-sectional prevalence of 

infection in an area can be approximated by a geometric distribution, then a single cross-

sectional sampling of communities can provide an accurate assessment of infection in an 

area. Here, we assessed two large, population-based surveys recently performed in multiple 

communities in controlled settings where transmission conditions were similar and constant, 

and where trachoma was known to be disappearing due to programmatic activity. In each 

case, the geometric distribution fitted the observed data better than the other distributions 

tested. Furthermore, we were unable to reject the hypothesis that each prevalence was drawn 

independently from a geometric distribution in these two settings where trachoma was 

known to be disappearing. Much of the distributional information available from examining 

every community is captured by the single, sufficient parameter of a geometric distribution.

Since a geometric distribution has a relatively heavy tail, outliers are to be expected. While 

we cannot discount the possibility that a high prevalence village has inherently higher 

transmission than its neighbors, this need not be hypothesized; occasional high prevalence 

communities are to be expected even from a set of communities with identically 

transmission characteristics, and do not necessarily reflect a hot spot for transmission or a 

program failure. Models predict that infection will still disappear from the high prevalence 

communities in the tail of this distribution (Ray et al., 2007, 2009). Empirical studies 

support this. Reports from Nepal, Tanzania, and the Gambia have found that the prevalence 

of infection in the most severely affected village in an otherwise hypo-endemic area 
decreases in the absence of treatment (Jha et al., 2002; Gaynor et al., 2003; Solomon et al., 

2004; Burton et al., 2010). Longitudinal studies that focused on the most severely affected 

community in an area may have led researchers to interpret this regression to the mean as 

enhanced efficacy of antibiotics and other interventions, relative to studies which included a 

control group (Gebre et al., 2011; Gaynor et al., 2003; Solomon et al., 2004; Stoller et al., 

2011; West et al., 2006).

Recent models fitted to data from areas moderately endemic for trachoma suggest the 

possibility of positive feedback (Lietman et al., 2011); that is, additional infection in a 

community may increase the per-susceptible risk of infection more than the proportional 

increase assumed by the mass-action model. In meso-endemic areas this may result in a bi-

modal distribution of prevalence, with a peak at elimination, and a second peak around an 

endemic equilibrium (Lietman et al., 2011). Note though that even a positive (or negative) 

feedback model should behave as a mass-action SIS model at a low enough prevalence, and 

thus the geometric distribution would still be expected. We would expect a mixture of two 

distributions if a survey area included distinct areas of low and high transmission. If the unit 

of the survey was not a single community, but a cluster of communities, we would expect the 

convolution of several geometric distributions (i.e. a negative binomial distribution with a 

shape parameter greater than one).
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There are many limitations of this study. These 2–4 years longitudinal studies show decrease 

in prevalence, but do not follow to complete elimination. The goodness-of-fit testing 

assumes independent sampling from an identical distribution; while the samples were 

exchangeable, there may be geographical correlations. None of the sentinel communities in 

either TEF or TANA were contiguous, and in TANA, where GPS was available, we were 

unable to demonstrate any significant geographical clustering. Note that any correlation 

would have made it more difficult to exclude a geometric distribution, hence in that sense 

our analysis was conservative. Likewise, the prevalence of infection in treatment arms in 

TANA was not significantly different; separation by treatment arm would have resulted in 

smaller datasets and more difficult exclusion of the geometric distribution.

The endgame for disease control offers special challenges. While districts or subdistricts 

may meet thresholds for control, concern for missing higher prevalence communities has led 

some to argue that programs need to examine every community. Knowledge that 

community-level prevalence approximates a geometric distribution, and that the scale of the 

distribution can be estimated from a survey sample, may allow programs the confidence they 

need to conserve resources. Population-based surveys of all communities in trachoma-

endemic areas would be an enormous undertaking, and appears to be unnecessary. Programs 

can assess whether they are on track towards elimination by a single cross-sectional survey. 

If the distribution of the community prevalence of infection in a particular area is consistent 

with a geometric distribution, this may be a good sign, since this would not be expected in 

areas where infection is not disappearing (Nåsell, 1996; Lietman et al., 2011). Note that 

elimination would only be expected to eventually occur if conditions remain the same. An 

increase in transmission due to discontinuation of programmatic activity of deterioration of 

socioeconomic status could prevent elimination. Additional studies will be necessary to 

determine whether the prevalence of the clinical signs of infection on which programs rely 

so heavily can also be approximated by a geometric distribution.

Can trachoma be eradicated? The strains of chlamydia that cause the disease are only 

transmitted between humans. No vaccine has been shown efficacious. While the WHO 

recommends hygiene and latrine programs, no non-antibiotic measure has yet been proven 

to decrease infection (Emerson et al., 2000; Stoller et al., 2011). Mass antibiotics 

distributions have proven effective in cluster-randomized trials, and have so far been well 

tolerated (Schachter et al., 1999; Chidambaram et al., 2006; House et al., 2009). Trachoma 

has been disappearing in some areas, even in the absence of a dedicated trachoma program 

(Hoechsmann et al., 2001; Jha et al., 2002; Dolin et al., 1997). This report suggests that if 

efforts are continued, infection will eventually disappear in previously hyper-endemic areas 

of Ethiopia. If these are representative of other severely affected regions, if trachoma 

programs can be maintained, and if antibiotic resistance does not evolve, then global 

eradication of trachoma may indeed be feasible.
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Appendix A

The discrete distributions were parameterized such that the prevalence of infection would 

not, on average, be affected by that community’s population size; the scale parameter which 

was maximized was the probability of an individual being infected at that cross-sectional 

survey, in that study. The 2-parameter distributions, were parameterized such that the shape 

parameter would be the same for all visits, and would equal one when the distribution 

represented a geometric distribution (asymptotically in the case of the beta binomial 

distribution). The probability mass functions used are:

Geometric distribution: 

Poisson distribution: 

Binomial distribution: 

Discrete Weibull distribution: 

Negative Binomial distribution: 

Beta Binomial distribution: 

Zero-inflated Geometric distribution: 

Zero-inflated Poisson distribution:  where α is the 

reparameterized shape parameter, t is the time point, j is the community, pt is 

the mean prevalence of the distribution for the time point t, nj is the number of 

individuals in the jth community, and i is the number infected in the 

community. For the two zero-inflated distributions, we allowed the shape 

parameter to vary between visits, keeping the prevalence parameter constant.
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Appendix B

Model fitting for individual visits of TANA, ranked by AICc of models for that visit. The 

best-fit shape and scale parameters are included.

Visit AICc Distribution Parameters logLikelihood Shape Scale

TANA baseline 173.55 Negative Binomial 5 –80.107 8.352 0.395

187.12 Discrete Weibull 5 –86.894 1.345 1.000

190.30 Poisson 4 –90.097 0.397

193.53 Zero-inflated Poisson 5 –90.097 0.397 0.000

193.72 Geometric 4 –91.809 0.395

196.95 Zero-inflated Geometric 5 –91.809 0.395 0.000

218.73 Binomial 4 –104.314 0.397

TANA 18 months 105.21 Geometric 4 –47.551 0.043

108.16 Discrete Weibull 5 –47.411 1.101 0.051

108.19 Negative Binomial 5 –47.429 1.270 0.043

108.44 Zero-inflated Geometric 5 –47.551 0.043 0.000

117.63 Zero-inflated Poisson 5 –52.150 0.054 0.204

120.70 Poisson 4 –55.297 0.043

122.78 Binomial 4 –56.338 0.043

TANA 24 months 96.71 Geometric 4 –43.304 0.036

99.48 Zero-inflated Poisson 5 –43.071 0.053 0.327

99.84 Discrete Weibull 5 –43.256 1.066 0.040

99.87 Negative Binomial 5 –43.270 1.160 0.036

99.91 Zero-inflated Geometric 5 –43.287 0.037 0.034

106.46 Poisson 4 –48.179 0.036

107.53 Binomial 4 –48.711 0.036

TANA 30 months 67.88 Geometric 4 –28.885 0.015

69.92 Zero-inflated Poisson 5 –28.294 0.032 0.529

70.40 Zero-inflated Geometric 5 –28.532 0.020 0.257

70.66 Negative Binomial 5 –28.663 0.590 0.015

70.72 Discrete Weibull 5 –28.695 0.855 0.013

73.47 Poisson 4 –31.681 0.015

73.80 4 –31.847 0.015

TANA 36 months 85.71 Geometric 4 –37.804 0.026

88.33 Zero-inflated Geometric 5 –37.499 0.032 0.173

88.39 Discrete Weibull 5 –37.530 0.853 0.021

88.41 Negative Binomial 5 –37.539 0.655 0.026

90.82 Zero-inflated Poisson 5 –38.745 0.047 0.440

99.13 Poisson 4 –44.511 0.027

100.16 Binomial 4 –45.028 0.027
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Appendix C

Model fitting for individual visits of simulated SIS model, ranked by AICc of models for 

that visit. The best-fit shape and scale parameters are included. Parameters for the model 

include: population of 50 children per community, R0 = 2.6 (in the absence of treatment), 

estimated Rt = 1.0 (in the presence of treatment)(Melese et al., 2004), 80% coverage with 

100% effective antibiotic, rate of recovery 1/52 weeks.

Visit AICc Distribution Parameters Log Likelihood Shape Scale

Simulated baseline 148.55 Poisson 1 −73.183 0.395

150.94 Zero-inflated Poisson 2 −73.183 0.572 1.000

150.94 Negative Binomial 2 −73.183 1120,000 0.397

159.10 Binomial 1 −78.462 0.000

206.20 Discrete Weibull 2 −100.814 1.223 0.395

212.02 Geometric 1 −104.917 0.000

214.41 Zero-inflated Geometric 2 −104.917 0.573 0.397

Simulated 18 months 151.41 Negative Binomial 2 −73.419 4.261 0.043

151.66 Discrete Weibull 2 −73.546 1.669 0.051

160.52 Zero-inflated Poisson 2 −77.972 0.197 0.043

160.49 Geometric 1 −79.152 0.000

162.87 Zero-inflated Geometric 2 −79.152 0.189 0.204

169.14 Poisson 1 −83.477 0.043

179.79 Binomial 1 −88.804 0.043

Simulated 24 months 165.43 Negative Binomial 2 −80.429 3.944 0.036

167.17 Discrete Weibull 2 −81.297 1.506 0.327

174.50 Geometric 1 −86.161 0.040

176.89 Zero-inflated Geometric 2 −86.161 0.257 0.036

182.11 Zero-inflated Poisson 2 −88.769 0.268 0.034

197.62 Poisson 1 −97.720 0.036

222.16 Binomial 1 −109.989 0.036

Simulated 30 months 174.68 Negative Binomial 2 −85.053 4.651 0.015

179.35 Discrete Weibull 2 −87.390 1.401 0.529

185.06 Zero-inflated Poisson 2 −90.243 0.345 0.257

186.29 Geometric 1 −92.052 0.015

188.68 Zero-inflated Geometric 2 −92.052 0.331 0.013

208.15 Poisson 1 −102.983 0.015

241.48 Binomial 1 −119.651 0.015

Simulated 36 months 111.89 Discrete Weibull 2 −53.662 1.802 0.026

112.17 Negative Binomial 2 −53.799 5.766 0.173

112.64 Zero-inflated Poisson 2 −54.033 0.078 0.021

112.64 Poisson 1 −55.229 0.026

113.73 Binomial 1 −55.775 0.440

118.57 Geometric 1 −58.193 0.027

120.96 Zero-inflated Geometric 2 −58.193 0.073 0.027
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Fig. 1. 
(a) Distribution of the prevalence of ocular chlamydia infection in 1-5 year-old children in 

24 communities in the TEF study, Gurage, Ethiopia. (Lakew et al., 2009a) Communities 

were treated biannually with mass oral azithromycin. The distribution of infection for each 

cross-sectional survey is displayed as a density plot, in which each community’s 

contribution is the Bayesian posterior derived from the observed prevalence and a non-

informative, uniform prior. The prevalence clearly decreases from baseline (black curve) to 

post-treatment visits at 12, 18, and 24 months (progressively lighter grey curves). (b) 

Distribution of the prevalence of ocular chlamydia infection in 0–9 year-old children in 24 

communities in the TANA study, Amhara, Ethiopia. (Gebre et al., 2012) Communities were 

treated annually or biannually. The prevalence decreases from baseline (black curve) to post-

treatment visits at 18, 24, 30, and 36 months (progressively lighter grey curves).
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Table 1

Prevalence of ocular chlamydial infection in longitudinal studies of trachoma in Ethiopia.

Prevalence of Infection

Communities Mean prevalence Standard deviation of prevalence Geometric distribution goodness of fit test 
(P-value)

TEF Ethiopia

 0 Months 16 0.529 0.218 0.03

 12 Months 16 0.069 0.109 0.23

 18 Months 16 0.032 0.037 0.58

 24 Months 16 0.020 0.022 0.30

TANA Ethiopia

 0 Months 24 0.394 0.153 0.03

 18 Months 24 0.043 0.050 0.29

 24 Months 24 0.036 0.041 0.12

 30 Months 24 0.015 0.025 0.89

 36 Months 24 0.026 0.037 0.74
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Table 2

Model fit of the distribution of the community-level prevalence of infection in Ethiopian trachoma studies.

TEF 12, 18, and 24 months Shape parameter No. of parameters Loge Likelihood AICc

Geometric 4 −125.79 263.576

Negative binomial 0.824 (0.364 to 1.663) 5 −125.58 265.165

Beta binomial 0.742 (0.335 to 1.526) 5 −125.76 265.528

Discrete Weibull 0.999 (0.750 to 1.289) 5 −125.79 265.580

Zero-inflated Geometric 0.956 (0.934 to 0.972) 5 −130.91 275.815

Poisson 4 −153.42 318.838

Binomial 4 −157.68 327.356

TANA 18, 24, 30, and 36 months Shape parameter No. of parameters Loge Likelihood AICc

Geometric 5 −157.544 329.089

Beta binomial 0.926 (0.674 to 1.412) 6 −157.435 330.871

Negative binomial 0.960 (0.462 to 1.820) 6 −157.535 331.070

Zero-inflated Geometric 0.957 (0.935 to 0.976) 6 −157.894 331.788

Discrete Weibull 1.030 (0.792 to 1.363) 6 −158.390 332.779

Poisson 5 −179.668 373.335

Binomial 5 −181.924 377.849
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