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Abstract: The asymmetric skew divergence smooths one of the distributions by mixing it, to a degree
determined by the parameter λ, with the other distribution. Such divergence is an approximation
of the KL divergence that does not require the target distribution to be absolutely continuous with
respect to the source distribution. In this paper, an information geometric generalization of the skew
divergence called the α-geodesical skew divergence is proposed, and its properties are studied.
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1. Introduction

Let (X ,F , µ) be a measure space where X denotes the sample space, F the σ-algebra
of measurable events, and µ a positive measure. The set of the strictly positive probability
measure P is defined as

P :=
{

f (x) > 0 (∀x ∈ X ), and
∫
X

f (x)dµ(x) = 1
}

, (1)

and the set of nonnegative probability measure P+ is defined as

P+ :=
{

f (x) ≥ 0 (∀x ∈ X ), and
∫
X

f (x)dµ(x) = 1
}

. (2)

Then a number of divergences that appear in statistics and information theory [1,2]
are introduced.

Definition 1 (Kullback–Leibler divergence [3]). The Kullback–Leibler divergence or KL-divergence
DKL : P+ ×P → [0, ∞] is defined between two Radon–Nikodym densities p and q of µ-absolutely
continuous probability measures by

DKL[p‖q] :=
∫
X

p ln
p
q

dµ. (3)

KL-divergence is a measure of the difference between two probability distributions in
statistics and information theory [4–7]. This is also called the relative entropy and is known
not to satisfy the axiom of distance. Because the KL-divergence is asymmetric, several
symmetrizations have been proposed in the literature [8–10].

Definition 2 (Jensen–Shannon divergence [8]). The Jensen–Shannon divergence or JS-divergence
DJS : P ×P → [0, ∞) is defined between two Radon–Nikodym densities p and q of µ-absolutely
continuous probability measures by
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DJS[p‖q] :=
1
2

(
DKL

[
p
∥∥∥ p + q

2

]
+ DKL

[
q
∥∥∥ p + q

2

])

=
1
2

∫
X

(
p ln

2p
p + q

+ q ln
2q

p + q

)
dµ

= DJS[q‖p].

(4)

The JS-divergence is a symmetrized and smoothed version of the KL-divergence, and
it is bounded as

0 ≤ DJS[p‖q] ≤ ln 2. (5)

This property contrasts with the fact that KL-divergence is unbounded.

Definition 3 (Jeffreys divergence [11]). The Jeffreys divergence DJ [p‖q] : P × P → [0, ∞]
is defined between two Radon–Nikodym densities p and q of µ-absolutely continuous probability
measures by

DJ [p‖q] := DKL[p‖q] + DKL[q‖p]. (6)

Such symmetrized KL-divergences have appeared in various pieces of literature [12–18].
For continuous distributions, the KL-divergence is known to have computational

difficulty. To be more specific, if q takes a small value relative to p, the value of DKL[p‖q]
may diverge to infinity. The simplest idea to avoid this is to use very small ε > 0 and
modify DKL[p‖q] as follows:

D+
KL[p‖q] :=

∫
X

p ln
p

q + ε
dµ.

However, such an extension is unnatural in the sense that q + ε no longer satisfies
the condition for a probability measure:

∫
X ε + q(x)dµ(x) 6= 1. As a more natural way to

stabilize KL-divergence, the following skew divergences have been proposed:

Definition 4 (Skew divergence [8,19]). The skew divergence D(λ)
S [p‖q] : P × P → [0, ∞] is

defined between two Radon–Nikodym densities p and q of µ-absolutely continuous probability
measures by

D(λ)
S [p‖q] := DKL[p‖(1− λ)p + λq]

=
∫
X

p ln
p

(1− λ)p + λq
dµ,

(7)

where λ ∈ [0, 1].

Skew divergences have been experimentally shown to perform better in applications
such as natural language processing [20,21], image recognition [22,23] and graph analy-
sis [24,25]. In addition, there is research on quantum generalization of skew divergence [26].

The main contributions of this paper are summarized as follows:

• Several symmetrized divergences or skew divergences are generalized from an infor-
mation geometry perspective.

• It is proved that the natural skew divergence for the exponential family is equivalent
to the scaled KL-divergence.

• Several properties of geometrically generalized skew divergence are proved. Specifi-
cally, the functional space associated with the proposed divergence is shown to be a
Banach space.

Implementation of the proposed divergence is available on GitHub (https://github.
com/nocotan/geodesical_skew_divergence (accessed on 3 April 2021)).

https://github.com/nocotan/geodesical_skew_divergence
https://github.com/nocotan/geodesical_skew_divergence
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2. α-Geodesical Skew Divergence

The skew divergence is generalized based on the following function.

Definition 5 ( f -interpolation). For any a, b,∈ R, λ ∈ [0, 1] and α ∈ R, f -interpolation is
defined as

m(λ,α)
f (a, b) = f−1

α

(
(1− λ) fα(a) + λ fα(b)

)
, (8)

where

fα(x) =

{
x

1−α
2 (α 6= 1)

ln x (α = 1)
(9)

is the function that defines the f -mean [27].

The f -mean function satisfies

lim
α→∞

fα(x) =


∞ (|x| < 1),
1 (|x| = 1),
0 (|x| > 1),

lim
α→−∞

fα(x) =


0 (|x| < 1),
1 (|x| = 1),
∞ (|x| > 1).

It is easy to see that this family includes various known weighted means including
the e-mixture and m-mixture for α = ±1 in the literature of information geometry [28]:

(α = 1) m(λ,1)
f (a, b) = exp{(1− λ) ln a + λ ln b}

(α = −1) m(λ,−1)
f (a, b) = (1− λ)a + λb

(α = 0) m(λ,0)
f (a, b) =

(
(1− λ)

√
a + λ

√
b
)2

(α = 3) m(λ,3)
f (a, b) =

1
(1− λ) 1

a + λ 1
b

(α = ∞) m(λ,∞)
f (a, b) = min{a, b}

(α = −∞) m(λ,−∞)
f (a, b) = max{a, b}

The inverse function f−1
α is convex when α ∈ [−1, 1], and concave when

α ∈ (−∞,−1] ∪ (1, ∞). It is worth noting that the f -interpolation is a special case of
the Kolmogorov–Nagumo average [29–31] when α is restricted in the interval [−1, 1].

In order to consider the geometric meaning of this function, the notion of the statistical
manifold is introduced.

2.1. Statistical Manifold

Let
S = {pξ = p(x; ξ) ∈ P|ξ = (ξ1, . . . , ξn) ∈ Ξ} (10)

be a family of probability distribution on X , where each element pξ is parameterized by n
real-valued variables ξ = (ξ1, . . . , ξn) ∈ Ξ ⊂ Rn. The set S is called a statistical model and
is a subset of P . We also denote (S , gij) as a statistical model equipped with the Riemannian
metric gij. In particular, let gij be the Fisher–Rao metric, which is the Riemannian metric
induced from the Fisher information matrix [32].
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In the rest of this paper, the abbreviations

∂i = ∂ξ i =
∂

∂ξ i ,

` = `x(ξ) = ln pξ(x)

are used.

Definition 6 (Christoffel symbols). Let gij be a Riemannian metric, particularly the Fisher
information matrix, then the Christoffel symbols are given by

Γij,k =
1
2

(
∂igjk + ∂jgik − ∂kgij

)
, i, j, k = 1, . . . , n. (11)

Definition 7 (Levi-Civita connection). Let g be a Fisher–Riemannian metric on S which is a
2-covariant tensor defined locally by

g(Xξ , Yξ) =
n

∑
i,j=1

gij(ξ)ai(ξ)bj(ξ),

where Xξ = ∑n
i=1 ai(ξ)∂i pξ and Yξ = ∑n

i=1 bi(ξ)∂i pξ are vector fields in the 0-representation on
S . Then, its associated Levi-Civita connection ∇(0) is defined by

g(∇(0)
∂i

∂j, ∂k) = Γij,k. (12)

The fact that ∇(0) is a metrical connection can be written locally as

∂kgij = Γki,j + Γkj,i. (13)

It is worth noting that the superscript α of ∇(α) corresponds to a parameter of the
connection. Based on the above definitions, several connections parameterized by the
parameter α are introduced. The case α = 0 corresponds to the Levi-Civita connection
induced by the Fisher metric.

Definition 8 (∇(1)-connection). Let g be the Fisher-Riemannian metric on S , which is a 2-
covariant tensor. Then, the ∇(1)-connection is defined by

g(∇(1)
∂i

∂j, ∂k) = Eξ [∂i∂j`∂k`]. (14)

It can also be expressed equivalently by explicitly writing as the Christoffel coefficients

Γ(1)
ij,k(ξ) = Eξ [∂i∂j`∂k`]. (15)

Definition 9 (∇(−1)-connection). Let g be the Fisher–Riemannian metric on S , which is a
2-covariant tensor. Then, the ∇(−1)-connection is defined by

g(∇(−1)
∂i

∂j, ∂k) = Γ(−1)
ij,k (ξ) = Eξ [(∂i∂j`+ ∂i`∂j`)∂k`]. (16)

In the following, the ∇-flatness is considered with respect to the corresponding
coordinates system. More details can be found in [28].

Proposition 1. The exponential family is ∇(1)-flat.

Proposition 2. The exponential family is ∇(−1)-flat if and only if it is ∇(0)-flat.
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Proposition 3. The mixture family is ∇(−1)-flat.

Proposition 4. The mixture family is ∇(1)-flat if and only if it is ∇(0)-flat.

Proposition 5. The relation between the foregoing three connections is given by

∇(0) =
1
2

(
∇(−1) +∇(1)

)
. (17)

Proof. It suffices to show

Γ(0)
ij,k =

1
2

(
Γ(−1)

ij,k + Γ(1)
ij,k

)
.

From the definitions of Γ(−1) and Γ(1),

Γ(−1)
ij,k + Γ(1)

ij,k = Eξ [(∂i∂j`+ ∂i`∂j`)∂k`] +Eξ [∂i∂j`∂k`]

= Eξ [(2∂i∂j`+ ∂i`∂j`)∂k`]

= 2Eξ

[
(∂i∂j`+

1
2

∂i`∂j`)∂k`
]

= 2Γ(0)
ij,k,

which proves the proposition.

The connections ∇(−1) and ∇(1) are two special connections on S with respect to the
mixture family and the exponential family, respectively. Moreover, they are related by the
duality condition, and the following 1-parameter family of connections is defined.

Definition 10 (∇(α)-connection). For α ∈ R, the ∇(α)-connection on the statistical model S is
defined as

∇(α) =
1 + α

2
∇(1) +

1− α

2
∇(−1). (18)

Proposition 6. The components Γ(α)
ij,k can be written as

Γ(α)
ij,k = Eξ

[(
∂i∂j`+

1− α

2
∂i`∂j`

)
∂k`

]
. (19)

The α-coordinate system associated with the ∇(α)-connection is endowed with the
α-geodesic, which is a straight line on the corresponding coordinates system. Then, we
introduce some relevant notions.

Definition 11 (α-divergence [33]). Let α be a real parameter. The α-divergence between two
probability vectors p and q is defined as

Dα[p‖q] =
4

1− α2

(
1−∑

i
p

1−α
2

i q
1+α

2
i

)
. (20)

The KL-divergence, which is a special case with α = 1, induces the linear connection
∇(1) as follows.

Proposition 7. The diagonal part of the third mixed derivatives of the KL-divergence is the negative
of the Christoffel symbol:

− ∂ξi ∂ξ j ∂ξk
0
DKL[pξ0‖pξ ]

∣∣∣
ξ=ξ0

= Γ(1)
ij,k(ξ0). (21)
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Proof. The second derivative in the argument ξ is given by

∂ξi ∂ξ j DKL[pξ0‖pξ ] = −
∫
X

pξ0(x)∂ξi ∂ξ j`x(ξ)dx,

and differentiating it with respect to ξk
0 yields

−∂ξi ∂ξ j ∂ξk
0
DKL[pξ0‖pξ ] = ∂ξk

0

∫
X

pξ0(x)∂ξi ∂ξ j`x(ξ)dx

=
∫
X

pξ0(x)∂ξi ∂ξ j`x(ξ)∂ξk
0
`x(ξ)dx.

Then, considering the diagonal part, one yields

−∂ξi ∂ξ j ∂ξk
0
DKL[pξ0‖pξ ]

∣∣∣
ξ=ξ0

= Eξ0 [∂i∂j`(ξ)∂k`(ξ)]

= Γ(1)
ij,k(ξ0).

More generally, the α-divergence with α ∈ R induces the ∇(α)-connection.

Definition 12 (α-representation [34]). For some positive measure m
1−α

2
i , the coordinate system

θ = (θi) derived from the α-divergence is

θi = m
1−α

2
i = fα(mi) (22)

and θi is called the α-representation of a positive measure m
1−α

2
i .

Definition 13 (α-geodesic [28]). The α-geodesic connecting two probability vectors p(x) and
q(x) is defined as

ri(t) = c(t) f−1
α

{
(1− t) fα(p(xi)) + t fα(q(xi))

}
, t ∈ [0, 1] (23)

where c(t) is determined as

c(t) =
1

∑n
i=1 ri(t)

. (24)

It is known that the appropriate reparameterizations for the parameter t are necessary
for a rigorous discussion in the space of probability measures [35,36]. However, as men-
tioned in the literature [35], an explicit expression for the reparametrizations τp,a and τp,q is
unknown. A similar discussion has been made in the derivation of the φβ-path [37], where
it is mentioned that the normalizing factor is unknown in general. Furthermore, the f -mean
is not convex depending on the α. For these reasons, it is generally difficult to discuss
α-geodesics in probability measures by normalization or reparameterization, and to avoid
unnecessary complexity, the parameter t is assumed to be appropriately reparameterized.

Let ψα(θ) =
1−α

2 ∑n
i=1 mi. Then, the dual coordinate system η is given by η = ∇ψα(θ) as

ηi = (θi)
1+α
1−α = f−α(mi). (25)

Hence, it is the (−α)-representation of mi.

2.2. Generalization of Skew Divergences

From Definition 13, the f -interpoloation is considered as an unnormalized version of
the α-geodesic. Using the notion of geodesics, skew divergence is generalized in terms of
information geometry as follows.
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Definition 14 (α-Geodesical Skew Divergence). The α-geodesical skew divergence D(α,λ)
GS :

P × P → [0, ∞] is defined between two Radon–Nikodym densities p and q of µ-absolutely
continuous probability measures by:

D(α,λ)
GS

[
p‖q
]

:= DKL

[
p‖m(λ,α)

f (p, q)
]

=
∫
X

p ln
p

m(λ,α)
f (p, q)

dµ,
(26)

where α ∈ R and λ ∈ [0, 1].

Some special cases of α-geodesical skew divergence are listed below:

(∀α ∈ R, λ = 1) D(α,1)
GS [p‖q] = DKL[p‖q]

(∀α ∈ R, λ = 0) D(α,0)
GS [p‖q] = DKL[p‖p] = 0

(α = 1, ∀λ ∈ [0, 1]) D(1,λ)
GS [p‖q] = λDKL[p‖q] (scaled KL-divergence)

(α = −1, ∀λ ∈ [0, 1]) D(−1,λ)
GS [p‖q] = D(λ)

S [p‖q] (skew divergence)

(α = 0, ∀λ ∈ [0, 1]) D(0,λ)
GS [p‖q] =

∫
X

p ln
p

{(1− λ)
√

p + λ
√

q}2 dµ

(α = 3, ∀λ ∈ [0, 1]) D(3,λ)
GS [p‖q] = D(λ)

S [p‖q] + H(p) + H(q)

(α = ∞, ∀λ ∈ [0, 1]) D(∞,λ)
GS [p‖q] =

∫
X

p ln
p

min{p, q}dµ

(α = −∞, ∀λ ∈ [0, 1]) D(−∞,λ)
GS [p‖q] =

∫
X

p ln
p

max{p, q}dµ

Furthermore, α-geodesical skew divergence is a special form of the generalized skew
K-divergence [10,38], which is a family of abstract means-based divergences. In this paper,
the skew K-divergence touched upon in [10] is characterized in terms of α-geodesic on
positive measures, and its geometric and functional analytic properties are investigated.
When the Kolmogorov–Nagumo average (i.e., when the function f−1 in Equation (8) is a
strictly monotone convex function) the geodesic has been shown to be well-defined [37].

2.3. Symmetrization of α-Geodesical Skew Divergence

It is easy to symmetrize the α-geodesical skew divergence as follows.

Definition 15 (Symmetrized α-Geodesical Skew Divergence). The symmetrized α-geodesical
skew divergence D̄(α,λ)

GS : P ×P → [0, ∞] is defined between two Radon–Nikodym densities p and
q of µ-absolutely continuous probability measures by:

D̄(α,λ)
GS [p‖q] :=

1
2

(
D(α,λ)

GS [p‖q] + D(α,λ)
GS [q‖p]

)
, (27)

where α ∈ R and λ ∈ [0, 1].
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It is seen that D̄(α,λ)
GS [p‖q] includes several symmetrized divergences.

D̄(α,1)
GS [p‖q] = 1

2

(
DKL[p‖q] + DKL[q‖p]

)
, (half of Jeffreys divergence)

D̄(−1, 1
2 )

GS [p‖q] = 1
2

(
DKL

[
p‖ p + q

2

]
+ DKL

[
q‖ p + q

2

])
, (JS-divergence)

D̄(−1,λ)
GS [p‖q] = 1

2

(
DKL

[
p‖(1− λ)p + λq

]
+ DKL

[
q‖(1− λ)q + λp

])
.

The last one is the λ-JS-divergence [39], which is a generalization of the JS-divergence.

3. Properties of α-Geodesical Skew Divergence

In this section, the properties of the α-geodesical skew divergence are studied.

Proposition 8 (Non-negativity of the α-geodesical skew divergence). For α ≥ −1 and
λ ∈ [0, 1], the α-geodesical skew divergence D(α,λ)

GS [p‖q] satisfies the following inequality:

D(α,λ)
GS [p‖q] ≥ 0. (28)

Proof. When λ is fixed, the f -interpolation has the following inverse monotonicity with
respect to α:

m(λ,α)
f (p, q) ≥ m(λ,α′)

f (p, q), (α ≤ α′). (29)

From Gibbs’ inequality [40] and Equation (29), one obtains

D(α,λ)
GS [p‖q] =

∫
X

p ln
p

m(α,λ)
f (p, q)

dµ

≥
( ∫
X

pdµ
)

ln
p

m(α,λ)
f (p, q)

≥ 1 · ln 1 = 0.

Proposition 9 (Asymmetry of the α-geodesical skew divergence). α-Geodesical skew diver-
gence is not symmetric in general:

D(α,λ)
GS [p|q] 6= D(α,λ)

GS [q‖p]. (30)

Proof. For example, if λ = 1, then ∀α ∈ R, it holds that

D(α,1)
GS [p‖q]− D(α,1)

GS [q‖p] = DKL[p‖q]− DKL[q‖p],

and the asymmetry of the KL-divergence results in an asymmetry of the geodesic skew
divergence.

When a function f (x) of x ∈ [0, 1] satisfies f (x) = f (1 − x), it is referred to as
centrosymmetric.

Proposition 10 (Non-centrosymmetricity of the α-geodesical skew divergence with respect
to λ). α-Geodesical skew divergence is not centrosymmetric in general with respect to the parameter
λ ∈ [0, 1]:

D(α,λ)
GS [p‖q] 6= D(α,1−λ)

GS [p‖q]. (31)
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Proof. For example, if λ = 1, then ∀α ∈ R, we have

D(α,λ)
GS [p‖q]− D(α,1−λ)

GS [p‖q] = D(α,1)
GS [p‖q]− D(α,0)

GS [p‖q]

=
∫
X

p ln
p
q
−
∫
X

p ln
p
p

=
∫
X

p ln
p
q
≥ 0.

(32)

Proposition 11 (Monotonicity of the α-geodesical skew divergence with respect to α).
α-Geodesical skew divergence satisfies the following inequality for all α ∈ R, λ ∈ [0, 1].

D(α,λ)
GS [p‖q] ≥ D(α′ ,λ)

GS [p‖q], (α ≥ α′).

Proof. Obvious from the inverse monotonicity of the f -interpolation (29) and the mono-
tonicity of the logarithmic function.

Figure 1 shows the monotonicity of the geodesic skew divergence with respect to α.
In this figure, divergence is calculated between two binomial distributions.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
G

S[
p|

q]

= 1
= 0
= 1
= 2
= 3
= 4

Figure 1. Monotonicity of the α-geodesical skew divergence with respect to α. The α-geodesical skew
divergence between the binomial distributions p = B(10, 0.3) and q = B(10, 0.7) has been calculated.

Proposition 12 (Subadditivity of the α-geodesical skew divergence with respect to α).
α-Geodesical skew divergence satisfies the following inequality for all α, β ∈ R, λ ∈ [0, 1]

D(α+β,λ)
GS [p‖q] ≤ D(α,λ)

GS [p‖q] + D(β,λ)
GS [p‖q].

Proof. For some α and λ, m(λ,α)
f takes the form of the Kolmogorov mean [29], which is

obvious from its continuity, monotonicity and self-distributivity.

Proposition 13 (Continuity of the α-geodesical skew divergence with respect to α and λ).
α-Geodesical skew divergence has the continuity property.

Proof. We can prove from the continuity of the KL-divergence and the Kolmogorov
mean.

Figure 2 shows the continuity of the geodesic skew divergence with respect to α and
λ. Both source and target distributions are binomial distributions. From this figure, it can
be seen that the divergence changes smoothly as the parameters change.
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Figure 2. Continuity of the α-geodesmcal skew divergence with respect to α and λ. The α-
geodesical skew divergence between the binomial distributions p = B(10, 0.3) and q = B(10, 0.7) has
been calculated.

Lemma 1. Suppose α→ ∞. Then,

lim
α→∞

D(α,λ)
GS [p‖q] =

∫
X

p ln
p

min {p, q}dµ (33)

holds for all λ ∈ [0, 1].

Proof. Let u = 1−α
2 . Then limα→∞ u = −∞. Assuming p0 ≤ p1, it holds that

lim
α→∞

m(λ,α)
f (p0, p1) = lim

u→−∞

(
(1− λ)pu

0 + λpu
1

) 1
u

= p0 lim
u→−∞

(
(1− λ) + λ

( p1

p0

)u
) 1

u

= p0 = min {p0, p1}.

Then, the following equality

lim
α→∞

D(α,λ)
GS [p‖q] =

∫
X

p ln
p

limα→∞ m(λ,α)
f (p0, p1)

dµ

=
∫
X

p ln
p

min {p, q}dµ

holds.

Lemma 2. Suppose α→ −∞. Then,

lim
α→∞

D(α,λ)
GS [p‖q] =

∫
X

p ln
p

max {p, q}dµ (34)

holds for all λ ∈ [0, 1].
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Proof. Let u = 1−α
2 . Then limα→−∞ u = ∞. Assuming p0 ≤ p1, it holds that

lim
α→∞

m(λ,α)
f (p0, p1) = lim

u→−∞

(
(1− λ)pu

0 + λpu
1

) 1
u

= p1 lim
u→−∞

(
(1− λ)

( p0

p1

)u
+ λ

) 1
u

= p1 = max {p0, p1}.

Then, the following equality

lim
α→−∞

D(α,λ)
GS [p‖q] =

∫
X

p ln
p

limα→−∞ m(λ,α)
f (p0, p1)

dµ

=
∫
X

p ln
p

max {p, q}dµ

holds.

Proposition 14 (Lower bound of the α-geodesical skew divergence). α-Geodesical skew
divergence satisfies the following inequality for all α ∈ R, λ ∈ [0, 1].

D(α,λ)
GS [p‖q] ≥

∫
X

p ln
p

max{p, q}dµ. (35)

Proof. It follows from the definition of the inverse monotonicity of f -interpolation (29)
and Lemma 2.

Proposition 15 (Upper bound of the α-geodesical skew divergence). α-Geodesical skew
divergence satisfies the following inequality for all α ∈ R, λ ∈ [0, 1].

D(α,λ)
GS [p‖q] ≤

∫
X

p ln
p

min{p, q}dµ. (36)

Proof. It follows from the definition of the f -interpolation (29) and Lemma 1.

Theorem 1 (Strong convexity of the α-geodesical skew divergence). α-Geodesical skew
divergence D(α,λ)

GS [p‖q] is strongly convex in p with respect to the total variation norm.

Proof. Let r := m(α,λ)
f (p, q) and f j :=

pj
r (j = 0, 1), so that ft = pt

r (t ∈ (0, 1)). From
Taylor’s theorem, for g(x) := x ln x and j = 0, 1, it holds that

g( f j) = g( ft) + g′( ft)( f j − ft) + ( f j − ft)
2
∫ 1

0
g
′′
((1− s) ft + s f j)(1− s)ds.

Let

δ := (1− t)g( f0) + tg( f1)− g( ft)

= (1− t)t( f1 − f0)
2
∫ 1

0

(
t

(1− s) ft + s f0
+

1− t
(1− s) ft + s f1

)
(1− s)ds

= (1− t)t( f1 − f0)
2
∫ 1

0

(
t

fu0(t, s)
+

1− t
fu1(t, s)

)
(1− s)ds,
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where

uj(t, s) := (1− s)t + jt,

fµj(t, s) := (1− s) ft + s f j.

Then,

∆ := (1− t)H(p0) + tH(p1)− H(pt)

=
∫

δdr

= (1− t)t
∫ 1

0
(1− s)ds

[
tI(u0(t, s)) + (1− t)I(u1(t, s))

]
,

where

‖p1 − p0‖ :=
∫
|dp1 − dp0|dµ,

H(p) := D(α,λ)
GS [p‖r] =

∫
p ln

p
r

dµ,

I(u) :=
∫

( f1 − f0)
2

fu
dr.

Now, it is suffice to prove that ∆ ≥ t(1−t)
2 ‖p1 − p0‖2. For all u ∈ (0, 1), it is seen that

p1 is absolutely continuous with respect to pu. Let gu := p1
pu

= f1
fu

. One obtains

I(u) =
1

(1− u)2

∫
( f1 − fu)2

fu
dr

=
1

(1− u)2

∫
(gu − 1)2dpu

≥ 1
(1− u)2

(∫
|gu − 1|dpu

)2

=
1

(1− u)2 ‖p1 − pu‖2 = ‖p1 − p0‖2,

and hence, for j = 0, 1,

∆ ≥ t(1− t)
2
‖p1 − p0‖2.

4. Natural α-Geodesical Skew Divergence for Exponential Family

In this section, the exponential family is considered in which the probability density
function is given by

p(x; θ) = exp
{

θ · x + k(x)− ψ(θ)
}

, (37)

where x is a random variable. In the above equation, θ = (θ1, . . . , θn) is an n-dimensional
vector parameter to specify distribution, k(x) is a function of x and ψ corresponds to the
normalization factor.

In skew divergence, the probability distribution of the target is a weighted average
of the two distributions. This implicitly assumes that interpolation of the two probability
distributions is properly given by linear interpolation. Here, in the exponential family, the
interpolation between natural parameters rather than interpolation between probability
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distributions themselves is considered. Namely, the geodesic connecting two distributions
p(x; θp) and q(x; θq) on the θ-coordinate system is considered:

θ(λ) = (1− λ)θp + λθq, (38)

where λ ∈ [0, 1] is the parameter. The probability distributions on the geodesic θ(λ) are

p(x; λ) = p(x; θ(λ))

= exp
{

λ(θq − θp) · x + θp · x− ψ(λ)
}

.
(39)

Hence, a geodesic itself is a one-dimensional exponential family, where λ is the natural
parameter. A geodesic consists of a linear interpolation of the two distributions in the
logarithmic scale because

ln p(x; λ) = (1− λ) ln p(x; θp) + λ ln p(x; θq)− ψ(λ). (40)

This corresponds to the case α = 1 on the f -interpolation with normalization factor
c(λ) = exp {−ψ(λ)},

p(x; θ(λ)) = m(λ,1)
f (p(x; θp), p(x; θq)). (41)

This induces the natural geodesic skew divergence with α = 1 as

D(1,λ)
GS [p‖q] =

∫
X

p ln

(
p

m(λ,1)
f (p, q)

)
dµ

=
∫
X

p ln p− p ln
(

m(λ,1)
f (p, q)

)
dµ

=
∫
X

p ln p− p ln
(

exp{(1− λ) ln p + λ ln q}
)

dµ

=
∫
X

(
p ln p− (1− λ)p ln p− λp ln q

)
dµ

=
∫
X

(
λp ln p− λp ln q

)
dµ

= λ
∫
X

p ln
p
q

dµ

= λDKL[p‖q],

and this is equal to the scaled KL divergence.
More generally, let θ

(α)
P and θ

(α)
Q be the parameter representations on the α-coordinate

system of probability distributions P and Q. Then, the geodesics between them are repre-
sented as in Figure 3, and it induces the α-geodesical skew divergence.

Figure 3. The geodesic between two probability distributions on the α-coordinate system.
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5. Function Space Associated with the α-Geodesical Skew Divergence

To discuss the functional nature of the α-geodesical skew divergence in more depth,
the function space it constitutes is considered. For an α-geodesical skew divergence
f (α,λ)
q (p) = D(α,λ)

GS [p‖q] with one side of the distribution fixed, let the entire set be

Fq =
{

f (α,λ)
q | α ∈ R, λ ∈ [0, 1]

}
. (42)

For f (α,λ)
q ∈ Fq, its semi-norm is defined by

∥∥∥ f (α,λ)
q

∥∥∥
p

:=
∫
X

(∣∣∣ f (α,λ)
q

∣∣∣pdµ
) 1

p
. (43)

By defining addition and scalar multiplication for f (α,λ)
q , g(α,λ)

q ∈ Fq, c ∈ R as follows,
Fq becomes a semi-norm vector space:

( f (α,λ)
q + g(α,λ)

q )(u) := f (α,λ)
q (u) + g(α,λ)

q (u) = D(α,λ)
GS [u‖q] + D(α′ ,λ′)

GS [u‖q], (44)

(c f )(u) := c f (α,λ)
q (u) = c · D(α,λ)

GS [u‖q]. (45)

Theorem 2. Let N be the kernel of ‖ · ‖p as follows:

N := ker(‖ · ‖p) =
{

f (α,λ)
q | f (α,λ)

q = 0
}

. (46)

Then the quotient space V := (Fq, ‖ · ‖p)/N is a Banach space.

Proof. It is sufficient to prove that f (α,λ)
q is integrable to the power of p and that V is

complete. From Proposition 15, the α-geodesical skew divergence is bounded from above
for all α ∈ R and λ ∈ [0, 1]. Since f (α,λ)

q is continuous, we know that it is p-power integrable.
Let { fn} be a Cauchy sequence of V :

lim
n,m→∞

‖ fn − fm‖p = 0.

As n(k), k = 1, 2, . . . , can be taken to be monotonically increasing and

‖ fn − fn(k)‖p < 2−k

with respect to n > n(k), let

‖ fn(k+1) − fn(k)‖p < 2−k.

If gn = | fn(1)|+ ∑n−1
j=1 | fn(j+1) − fn(j)| ∈ V , it is non-negatively monotonically increas-

ing at each point, and from the subadditivity of the norm, ‖gn‖p ≤ ‖ fn(1)‖p + ∑n−1
j=1 2−j.

From the monotonic convergence theorem, we have∥∥∥ lim
n→∞

gn

∥∥∥
p
= lim

n→∞
‖gn‖p ≤ ‖ fn(1)‖p + 1 < ∞.

That is, limn→∞ gn exists almost everywhere, and limn→∞ gn ∈ V . From
limn→∞ gn < ∞, we have

fn(1) +
n−1

∑
j=1

( fn(j+1) − fn(j)) = lim
n→∞

fn(1)
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converges absolutely almost everywhere to | limn→∞ fn(n)| ≤ limn→∞ gn, a.e.. That is,
limn→∞ fn(n) ∈ V . Then ∣∣∣ lim

n→∞
fn − fn(n)

∣∣∣ ≤ lim
n→∞

gn

and from the superior convergence theorem, we can obtain

lim
n→∞

∥∥∥ lim
n→∞

fn − fn(n)

∥∥∥
p
= 0

We have now confirmed the completeness of V .

Corollary 1. Let
F+ =

{
f (α,λ)
q | α ∈ R, λ ∈ (0, 1], q ∈ P

}
. (47)

Then the space V+ := (F+, ‖ · ‖p) is a Banach space.

Proof. If we restrict λ ∈ (0, 1], D(α,λ)
GS [u‖q] = 0 if and only if u = q. Then, V+ has the

unique identity element, and then V+ is a complete norm space.

Consider the second argument Q of D(α,λ)
GS (P||Q) is fixed, which is referred to as the

reference distribution. Figure 4 shows values of the α-geodesical skew divergence for a
fixed reference Q, where both P and Q are restricted to be Gaussian. In this figure, the
reference distribution is N (0, 0.5) and the parameters of input distributions are varied
in µ ∈ [0, 4.5] and σ2 ∈ [0.5, 2.3]. From this figure, one can see that a larger value of α
emphasizes the discrepancy between distributions P and Q. Figure 5 illustrates a coordinate
system associated with the α-geodesical skew divergence for different α. As seen from the
figure, for the same pair of distributions P and Q, the value of divergence with α = 3 is
larger than that with α = −1.

Figure 4. α-geodesical skew divergence between two normal distributions. The reference distribution
is Q = N (0, 0.5). For P1, P2, . . . , Pj, (j = 1, 2, . . . , 10), let their mean and variance be µj and σ2

j ,

respectively, where µj+1 − µj = 0.5 and σ2
j+1 − σ2

j = 0.2.

Figure 5. Coordinate system of Fq or F+. Such a coordinate system is not Euclidean.
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6. Conclusions and Discussion

In this paper, a new family of divergence is proposed to address the computational
difficulty of KL-divergence. The proposed α-geodesical skew divergence is a natural
derivation from the concept of α-geodesics in information geometry and generalizes many
existing divergences.

Furthermore, α-geodesical skew divergence leads to several applications. For example,
the new divergence can be applied to the annealed importance sampling by the same
analogy as in previous studies using q-paths [41]. It could also be applied to linguistics, a
field in which skew divergence was originally used [19].
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